coreboot-libre-fam15h-rdimm/3rdparty/chromeec/board/coral/battery.c

703 lines
18 KiB
C
Raw Normal View History

2024-03-04 11:14:53 +01:00
/* Copyright 2017 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Battery pack vendor provided charging profile
*/
#include "battery.h"
#include "battery_smart.h"
#include "bd9995x.h"
#include "charge_ramp.h"
#include "charge_state.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "extpower.h"
#include "gpio.h"
#include "hooks.h"
#include "i2c.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_CHARGER, format, ## args)
/* Number of writes needed to invoke battery cutoff command */
#define SHIP_MODE_WRITES 2
enum battery_type {
BATTERY_LGC15,
BATTERY_LGC203,
BATTERY_SANYO,
BATTERY_SONY,
BATTERY_PANASONIC,
BATTERY_CELXPERT,
BATTERY_LGC011,
BATTERY_SMP011,
BATTERY_LGC,
BATTERY_BYD,
BATTERY_SIMPLO,
BATTERY_TYPE_COUNT,
};
struct ship_mode_info {
const uint8_t reg_addr;
const uint16_t reg_data[SHIP_MODE_WRITES];
};
struct fet_info {
const int mfgacc_support;
const uint8_t reg_addr;
const uint16_t reg_mask;
const uint16_t disconnect_val;
};
struct fuel_gauge_info {
const char *manuf_name;
const char *device_name;
const struct ship_mode_info ship_mode;
const struct fet_info fet;
};
struct board_batt_params {
const struct fuel_gauge_info fuel_gauge;
const struct battery_info batt_info;
};
#define DEFAULT_BATTERY_TYPE BATTERY_SANYO
static enum battery_present batt_pres_prev = BP_NOT_SURE;
static enum battery_type board_battery_type = BATTERY_TYPE_COUNT;
/* Battery may delay reporting battery present */
static int battery_report_present = 1;
static int disch_on_ac;
/*
* Battery info for all Coral battery types. Note that the fields
* start_charging_min/max and charging_min/max are not used for the charger.
* The effective temperature limits are given by discharging_min/max_c.
*
* Fuel Gauge (FG) parameters which are used for determing if the battery
* is connected, the appropriate ship mode (battery cutoff) command, and the
* charge/discharge FETs status.
*
* Ship mode (battery cutoff) requires 2 writes to the appropirate smart battery
* register. For some batteries, the charge/discharge FET bits are set when
* charging/discharging is active, in other types, these bits set mean that
* charging/discharging is disabled. Therefore, in addition to the mask for
* these bits, a disconnect value must be specified. Note that for TI fuel
* gauge, the charge/discharge FET status is found in Operation Status (0x54),
* but a read of Manufacturer Access (0x00) will return the lower 16 bits of
* Operation status which contains the FET status bits.
*
* The assumption for battery types supported is that the charge/discharge FET
* status can be read with a sb_read() command and therefore, only the regsister
* address, mask, and disconnect value need to be provided.
*/
static const struct board_batt_params info[] = {
/* LGC AC15A8J Battery Information */
[BATTERY_LGC15] = {
.fuel_gauge = {
.manuf_name = "LGC",
.device_name = "AC15A8J",
.ship_mode = {
.reg_addr = 0x3A,
.reg_data = { 0xC574, 0xC574 },
},
.fet = {
.mfgacc_support = 1,
.reg_addr = 0x0,
.reg_mask = 0x0002,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 11520, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* LGC C203-36J Battery Information */
[BATTERY_LGC203] = {
.fuel_gauge = {
.manuf_name = "AS1GXXc3KB",
.ship_mode = {
.reg_addr = 0x00,
.reg_data = { 0x0010, 0x0010 },
},
.fet = {
.mfgacc_support = 1,
.reg_addr = 0x0,
.reg_mask = 0x0002,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 11520, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 45,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* SANYO AC15A3J Battery Information */
[BATTERY_SANYO] = {
.fuel_gauge = {
.manuf_name = "SANYO",
.ship_mode = {
.reg_addr = 0x3A,
.reg_data = { 0xC574, 0xC574 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x4000,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 11550, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* Sony Ap13J4K Battery Information */
[BATTERY_SONY] = {
.fuel_gauge = {
.manuf_name = "SONYCorp",
.ship_mode = {
.reg_addr = 0x3A,
.reg_data = { 0xC574, 0xC574 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x8000,
.disconnect_val = 0x8000,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 11400, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* Panasonic AP1505L Battery Information */
[BATTERY_PANASONIC] = {
.fuel_gauge = {
.manuf_name = "PANASONIC",
.ship_mode = {
.reg_addr = 0x3A,
.reg_data = { 0xC574, 0xC574 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x4000,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 11550, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* Celxpert Li7C3PG0 Battery Information */
[BATTERY_CELXPERT] = {
.fuel_gauge = {
.manuf_name = "Celxpert",
.ship_mode = {
.reg_addr = 0x34,
.reg_data = { 0x0, 0x1000 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x0018,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13050, 5),
.voltage_normal = 11400, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 200, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* LGC\011 L17L3PB0 Battery Information */
[BATTERY_LGC011] = {
.fuel_gauge = {
.manuf_name = "LGC",
.ship_mode = {
.reg_addr = 0x34,
.reg_data = { 0x0, 0x1000 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x0018,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13050, 5),
.voltage_normal = 11400, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 500, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* SMP\011 L17M3PB0 Battery Information */
[BATTERY_SMP011] = {
.fuel_gauge = {
.manuf_name = "SMP",
.ship_mode = {
.reg_addr = 0x34,
.reg_data = { 0x0, 0x1000 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x0018,
.disconnect_val = 0x0,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13050, 5),
.voltage_normal = 11400, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 186, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* LGC DELL Y07HK Battery Information */
[BATTERY_LGC] = {
.fuel_gauge = {
.manuf_name = "LGC-LGC3.553",
.ship_mode = {
.reg_addr = 0x0,
.reg_data = { 0x10, 0x10 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x6000,
.disconnect_val = 0x6000,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 114000, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* BYD DELL FY8XM6C Battery Information */
[BATTERY_BYD] = {
.fuel_gauge = {
.manuf_name = "BYD",
.ship_mode = {
.reg_addr = 0x0,
.reg_data = { 0x10, 0x10 },
},
.fet = {
.reg_addr = 0x0,
.reg_mask = 0x6000,
.disconnect_val = 0x6000,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 114000, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
/* Simplo () Battery Information */
[BATTERY_SIMPLO] = {
.fuel_gauge = {
.manuf_name = "SMP-SDI3.72",
.ship_mode = {
.reg_addr = 0x0,
.reg_data = { 0x10, 0x10 },
},
.fet = {
.reg_addr = 0x43,
.reg_mask = 0x0003,
.disconnect_val = 0x0000,
}
},
.batt_info = {
.voltage_max = TARGET_WITH_MARGIN(13200, 5),
.voltage_normal = 114900, /* mV */
.voltage_min = 9000, /* mV */
.precharge_current = 256, /* mA */
.start_charging_min_c = 0,
.start_charging_max_c = 50,
.charging_min_c = 0,
.charging_max_c = 60,
.discharging_min_c = 0,
.discharging_max_c = 60,
},
},
};
BUILD_ASSERT(ARRAY_SIZE(info) == BATTERY_TYPE_COUNT);
static inline const struct board_batt_params *board_get_batt_params(void)
{
return &info[board_battery_type == BATTERY_TYPE_COUNT ?
DEFAULT_BATTERY_TYPE : board_battery_type];
}
/* Get type of the battery connected on the board */
static int board_get_battery_type(void)
{
char manu_name[32], device_name[32];
int i;
if (!battery_manufacturer_name(manu_name, sizeof(manu_name))) {
for (i = 0; i < BATTERY_TYPE_COUNT; i++) {
if (!strcasecmp(manu_name,
info[i].fuel_gauge.manuf_name)) {
if (info[i].fuel_gauge.device_name == NULL) {
board_battery_type = i;
break;
} else if (!battery_device_name(device_name,
sizeof(device_name))) {
if (!strcasecmp(device_name,
info[i].fuel_gauge.device_name)) {
board_battery_type = i;
break;
}
}
}
}
}
return board_battery_type;
}
/*
* Initialize the battery type for the board.
*
* Very first battery info is called by the charger driver to initialize
* the charger parameters hence initialize the battery type for the board
* as soon as the I2C is initialized.
*/
static void board_init_battery_type(void)
{
if (board_get_battery_type() != BATTERY_TYPE_COUNT)
CPRINTS("found batt:%s",
info[board_battery_type].fuel_gauge.manuf_name);
else
CPRINTS("battery not found");
}
DECLARE_HOOK(HOOK_INIT, board_init_battery_type, HOOK_PRIO_INIT_I2C + 1);
const struct battery_info *battery_get_info(void)
{
return &board_get_batt_params()->batt_info;
}
int board_cut_off_battery(void)
{
int rv;
int cmd;
int data;
/* If battery type is unknown can't send ship mode command */
if (board_get_battery_type() == BATTERY_TYPE_COUNT)
return EC_RES_ERROR;
/* Ship mode command must be sent twice to take effect */
cmd = info[board_battery_type].fuel_gauge.ship_mode.reg_addr;
data = info[board_battery_type].fuel_gauge.ship_mode.reg_data[0];
rv = sb_write(cmd, data);
if (rv != EC_SUCCESS)
return EC_RES_ERROR;
data = info[board_battery_type].fuel_gauge.ship_mode.reg_data[1];
rv = sb_write(cmd, data);
return rv ? EC_RES_ERROR : EC_RES_SUCCESS;
}
static int charger_should_discharge_on_ac(struct charge_state_data *curr)
{
/* can not discharge on AC without battery */
if (curr->batt.is_present != BP_YES)
return 0;
/* Do not discharge on AC if the battery is still waking up */
if (!(curr->batt.flags & BATT_FLAG_WANT_CHARGE) &&
!(curr->batt.status & STATUS_FULLY_CHARGED))
return 0;
/*
* In light load (<450mA being withdrawn from VSYS) the DCDC of the
* charger operates intermittently i.e. DCDC switches continuously
* and then stops to regulate the output voltage and current, and
* sometimes to prevent reverse current from flowing to the input.
* This causes a slight voltage ripple on VSYS that falls in the
* audible noise frequency (single digit kHz range). This small
* ripple generates audible noise in the output ceramic capacitors
* (caps on VSYS and any input of DCDC under VSYS).
*
* To overcome this issue enable the battery learning operation
* and suspend USB charging and DC/DC converter.
*/
if (!battery_is_cut_off() &&
!(curr->batt.flags & BATT_FLAG_WANT_CHARGE) &&
(curr->batt.status & STATUS_FULLY_CHARGED))
return 1;
/*
* To avoid inrush current from the external charger, enable
* discharge on AC till the new charger is detected and charge
* detect delay has passed.
*/
if (!chg_ramp_is_detected() && curr->batt.state_of_charge > 2)
return 1;
return 0;
}
int charger_profile_override(struct charge_state_data *curr)
{
disch_on_ac = charger_should_discharge_on_ac(curr);
charger_discharge_on_ac(disch_on_ac);
if (disch_on_ac) {
curr->state = ST_DISCHARGE;
return 0;
}
return 0;
}
enum battery_present battery_hw_present(void)
{
/* The GPIO is low when the battery is physically present */
return gpio_get_level(GPIO_EC_BATT_PRES_L) ? BP_NO : BP_YES;
}
static int battery_init(void)
{
int batt_status;
return battery_status(&batt_status) ? 0 :
!!(batt_status & STATUS_INITIALIZED);
}
/* Allow booting now that the battery has woke up */
static void battery_now_present(void)
{
CPRINTS("battery will now report present");
battery_report_present = 1;
}
DECLARE_DEFERRED(battery_now_present);
/*
* This function checks the charge/dishcarge FET status bits. Each battery type
* supported provides the register address, mask, and disconnect value for these
* 2 FET status bits. If the FET status matches the disconnected value, then
* BATTERY_DISCONNECTED is returned. This function is required to handle the
* cases when the fuel gauge is awake and will return a non-zero state of
* charge, but is not able yet to provide power (i.e. discharge FET is not
* active). By returning BATTERY_DISCONNECTED the AP will not be powered up
* until either the external charger is able to provided enough power, or
* the battery is able to provide power and thus prevent a brownout when the
* AP is powered on by the EC.
*/
static int battery_check_disconnect(void)
{
int rv;
int reg;
uint8_t data[6];
/* If battery type is not known, can't check CHG/DCHG FETs */
if (board_battery_type == BATTERY_TYPE_COUNT) {
/* Keep trying to determine the battery type */
board_init_battery_type();
if (board_battery_type == BATTERY_TYPE_COUNT)
/* Still don't know, so return here */
return BATTERY_DISCONNECT_ERROR;
}
/* Read the status of charge/discharge FETs */
if (info[board_battery_type].fuel_gauge.fet.mfgacc_support == 1) {
rv = sb_read_mfgacc(PARAM_OPERATION_STATUS,
SB_ALT_MANUFACTURER_ACCESS, data, sizeof(data));
/* Get the lowest 16bits of the OperationStatus() data */
reg = data[2] | data[3] << 8;
} else
rv = sb_read(info[board_battery_type].fuel_gauge.fet.reg_addr,
&reg);
if (rv)
return BATTERY_DISCONNECT_ERROR;
CPRINTS("Battery FET: reg 0x%04x mask 0x%04x disc 0x%04x", reg,
info[board_battery_type].fuel_gauge.fet.reg_mask,
info[board_battery_type].fuel_gauge.fet.disconnect_val);
reg &= info[board_battery_type].fuel_gauge.fet.reg_mask;
if (reg == info[board_battery_type].fuel_gauge.fet.disconnect_val)
return BATTERY_DISCONNECTED;
return BATTERY_NOT_DISCONNECTED;
}
/*
* Physical detection of battery.
*/
enum battery_present battery_is_present(void)
{
enum battery_present batt_pres;
static int battery_report_present_timer_started;
/* Get the physical hardware status */
batt_pres = battery_hw_present();
/*
* Make sure battery status is implemented, I2C transactions are
* success & the battery status is Initialized to find out if it
* is a working battery and it is not in the cut-off mode.
*
* FETs are turned off after Power Shutdown time.
* The device will wake up when a voltage is applied to PACK.
* Battery status will be inactive until it is initialized.
*/
if (batt_pres == BP_YES && batt_pres_prev != batt_pres &&
(battery_is_cut_off() != BATTERY_CUTOFF_STATE_NORMAL ||
battery_check_disconnect() != BATTERY_NOT_DISCONNECTED ||
battery_init() == 0)) {
battery_report_present = 0;
/*
* When this path is taken, the _timer_started flag must be
* reset so the 'else if' path will be entered and the
* battery_report_present flag can be set by the deferred
* call. This handles the case of the battery being disconected
* and reconnected while running or if battery_init() returns an
* error due to a failed sb_read.
*/
battery_report_present_timer_started = 0;
} else if (batt_pres == BP_YES && batt_pres_prev == BP_NO &&
!battery_report_present_timer_started) {
/*
* Wait 1/2 second before reporting present if it was
* previously reported as not present
*/
battery_report_present_timer_started = 1;
battery_report_present = 0;
hook_call_deferred(&battery_now_present_data, 500 * MSEC);
}
if (!battery_report_present)
batt_pres = BP_NO;
batt_pres_prev = batt_pres;
return batt_pres;
}
int board_battery_initialized(void)
{
return battery_hw_present() == batt_pres_prev;
}
/* Customs options controllable by host command. */
#define PARAM_FASTCHARGE (CS_PARAM_CUSTOM_PROFILE_MIN + 0)
#define PARAM_LEARN_MODE 0x10001
#define PARAM_DISCONNECT_STATE 0x10002
enum ec_status charger_profile_override_get_param(uint32_t param,
uint32_t *value)
{
switch (param) {
case PARAM_LEARN_MODE:
*value = disch_on_ac;
return EC_SUCCESS;
case PARAM_DISCONNECT_STATE:
*value = battery_check_disconnect();
return EC_SUCCESS;
default:
return EC_RES_INVALID_PARAM;
}
}
enum ec_status charger_profile_override_set_param(uint32_t param,
uint32_t value)
{
return EC_RES_INVALID_PARAM;
}