coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/mt_scp/hrtimer.c

254 lines
5.9 KiB
C
Raw Normal View History

2024-03-04 11:14:53 +01:00
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* High-res hardware timer
*
* SCP hardware 32bit count down timer can be configured to source clock from
* 32KHz, 26MHz, BCLK or PCLK. This implementation selects BCLK (ULPOSC1/8) as a
* source, countdown mode and converts to micro second value matching common
* timer.
*/
#include "clock.h"
#include "clock_chip.h"
#include "common.h"
#include "console.h"
#include "hooks.h"
#include "hwtimer.h"
#include "panic.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "watchdog.h"
#define IRQ_TIMER(n) CONCAT2(SCP_IRQ_TIMER, n)
#define TIMER_SYSTEM 5
#define TIMER_EVENT 3
/* ULPOSC1 should be a multiple of 8. */
BUILD_ASSERT((ULPOSC1_CLOCK_MHZ % 8) == 0);
#define TIMER_CLOCK_MHZ (ULPOSC1_CLOCK_MHZ / 8)
/* Common timer overflows at 0x100000000 micro seconds */
#define OVERFLOW_TICKS (TIMER_CLOCK_MHZ * 0x100000000 - 1)
static uint8_t sys_high;
static uint8_t event_high;
/* Convert hardware countdown timer to 64bit countup ticks */
static inline uint64_t timer_read_raw_system(void)
{
uint32_t timer_ctrl = SCP_TIMER_IRQ_CTRL(TIMER_SYSTEM);
uint32_t sys_high_adj = sys_high;
/*
* If an IRQ is pending, but has not been serviced yet, adjust the
* sys_high value.
*/
if (timer_ctrl & TIMER_IRQ_STATUS)
sys_high_adj = sys_high ? (sys_high - 1) : (TIMER_CLOCK_MHZ-1);
return OVERFLOW_TICKS - (((uint64_t)sys_high_adj << 32) |
SCP_TIMER_VAL(TIMER_SYSTEM));
}
static inline uint64_t timer_read_raw_event(void)
{
return OVERFLOW_TICKS - (((uint64_t)event_high << 32) |
SCP_TIMER_VAL(TIMER_EVENT));
}
static inline void timer_set_clock(int n, uint32_t clock_source)
{
SCP_TIMER_EN(n) = (SCP_TIMER_EN(n) & ~TIMER_CLK_MASK) |
clock_source;
}
static inline void timer_ack_irq(int n)
{
SCP_TIMER_IRQ_CTRL(n) |= TIMER_IRQ_CLEAR;
}
/* Set hardware countdown value */
static inline void timer_set_reset_value(int n, uint32_t reset_value)
{
SCP_TIMER_RESET_VAL(n) = reset_value;
}
static void timer_reset(int n)
{
__hw_timer_enable_clock(n, 0);
timer_ack_irq(n);
timer_set_reset_value(n, 0xffffffff);
timer_set_clock(n, TIMER_CLK_32K);
}
/* Reload a new 32bit countdown value */
static void timer_reload(int n, uint32_t value)
{
__hw_timer_enable_clock(n, 0);
timer_set_reset_value(n, value);
__hw_timer_enable_clock(n, 1);
}
static int timer_reload_event_high(void)
{
if (event_high) {
if (SCP_TIMER_RESET_VAL(TIMER_EVENT) == 0xffffffff)
__hw_timer_enable_clock(TIMER_EVENT, 1);
else
timer_reload(TIMER_EVENT, 0xffffffff);
event_high--;
return 1;
}
/* Disable event timer clock when done. */
__hw_timer_enable_clock(TIMER_EVENT, 0);
return 0;
}
void __hw_clock_event_clear(void)
{
__hw_timer_enable_clock(TIMER_EVENT, 0);
timer_set_reset_value(TIMER_EVENT, 0x0000c1ea4);
event_high = 0;
}
void __hw_clock_event_set(uint32_t deadline)
{
uint64_t deadline_raw = (uint64_t)deadline * TIMER_CLOCK_MHZ;
uint64_t now_raw = timer_read_raw_system();
uint32_t event_deadline;
if (deadline_raw > now_raw) {
deadline_raw -= now_raw;
event_deadline = (uint32_t)deadline_raw;
event_high = deadline_raw >> 32;
} else {
event_deadline = 1;
event_high = 0;
}
if (event_deadline)
timer_reload(TIMER_EVENT, event_deadline);
else
timer_reload_event_high();
}
void __hw_timer_enable_clock(int n, int enable)
{
if (enable) {
SCP_TIMER_IRQ_CTRL(n) |= 1;
SCP_TIMER_EN(n) |= 1;
} else {
SCP_TIMER_EN(n) &= ~1;
SCP_TIMER_IRQ_CTRL(n) &= ~1;
}
}
int __hw_clock_source_init(uint32_t start_t)
{
int t;
/*
* TODO(b/120169529): check clock tree to see if we need to turn on
* MCLK and BCLK gate.
*/
SCP_CLK_GATE |= (CG_TIMER_M | CG_TIMER_B);
/* Reset all timer, select 32768Hz clock source */
for (t = 0; t < NUM_TIMERS; t++)
timer_reset(t);
/* Enable timer IRQ wake source */
SCP_INTC_IRQ_WAKEUP |= (1 << IRQ_TIMER(0)) | (1 << IRQ_TIMER(1)) |
(1 << IRQ_TIMER(2)) | (1 << IRQ_TIMER(3)) |
(1 << IRQ_TIMER(4)) | (1 << IRQ_TIMER(5));
/*
* Timer configuration:
* OS TIMER - count up @ 13MHz, 64bit value with latch.
* SYS TICK - count down @ 26MHz
* EVENT TICK - count down @ 26MHz
*/
/* Turn on OS TIMER, tick at 13MHz */
SCP_OSTIMER_CON |= 1;
/* System timestamp timer from BCLK (sourced from ULPOSC) */
SCP_CLK_BCLK = CLK_BCLK_SEL_ULPOSC1_DIV8;
timer_set_clock(TIMER_SYSTEM, TIMER_CLK_BCLK);
sys_high = TIMER_CLOCK_MHZ-1;
timer_set_reset_value(TIMER_SYSTEM, 0xffffffff);
__hw_timer_enable_clock(TIMER_SYSTEM, 1);
task_enable_irq(IRQ_TIMER(TIMER_SYSTEM));
/* Event tick timer */
timer_set_clock(TIMER_EVENT, TIMER_CLK_BCLK);
task_enable_irq(IRQ_TIMER(TIMER_EVENT));
return IRQ_TIMER(TIMER_SYSTEM);
}
uint32_t __hw_clock_source_read(void)
{
return timer_read_raw_system() / TIMER_CLOCK_MHZ;
}
uint32_t __hw_clock_event_get(void)
{
return (timer_read_raw_event() + timer_read_raw_system())
/ TIMER_CLOCK_MHZ;
}
static void __hw_clock_source_irq(int n)
{
uint32_t timer_ctrl = SCP_TIMER_IRQ_CTRL(n);
/* Ack if we're hardware interrupt */
if (timer_ctrl & TIMER_IRQ_STATUS)
timer_ack_irq(n);
switch (n) {
case TIMER_EVENT:
if (timer_ctrl & TIMER_IRQ_STATUS) {
if (timer_reload_event_high())
return;
}
process_timers(0);
break;
case TIMER_SYSTEM:
/* If this is a hardware irq, check overflow */
if (timer_ctrl & TIMER_IRQ_STATUS) {
if (sys_high) {
sys_high--;
process_timers(0);
} else {
/* Overflow, reload system timer */
sys_high = TIMER_CLOCK_MHZ-1;
process_timers(1);
}
} else {
process_timers(0);
}
break;
default:
return;
}
}
#define DECLARE_TIMER_IRQ(n) \
void __hw_clock_source_irq_##n(void) { __hw_clock_source_irq(n); } \
DECLARE_IRQ(IRQ_TIMER(n), __hw_clock_source_irq_##n, 2)
DECLARE_TIMER_IRQ(0);
DECLARE_TIMER_IRQ(1);
DECLARE_TIMER_IRQ(2);
DECLARE_TIMER_IRQ(3);
DECLARE_TIMER_IRQ(4);
DECLARE_TIMER_IRQ(5);