coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/stm32/spi_master-stm32h7.c

339 lines
7.6 KiB
C
Raw Normal View History

2024-03-04 11:14:53 +01:00
/*
* Copyright 2017 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* SPI master driver.
*/
#include "common.h"
#include "dma.h"
#include "gpio.h"
#include "shared_mem.h"
#include "spi.h"
#include "stm32-dma.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* SPI ports are used as master */
static stm32_spi_regs_t *SPI_REGS[] = {
#ifdef CONFIG_STM32_SPI1_MASTER
STM32_SPI1_REGS,
#endif
STM32_SPI2_REGS,
STM32_SPI3_REGS,
STM32_SPI4_REGS,
};
/* DMA request mapping on channels */
static uint8_t dma_req_tx[ARRAY_SIZE(SPI_REGS)] = {
#ifdef CONFIG_STM32_SPI1_MASTER
DMAMUX1_REQ_SPI1_TX,
#endif
DMAMUX1_REQ_SPI2_TX,
DMAMUX1_REQ_SPI3_TX,
DMAMUX1_REQ_SPI4_TX,
};
static uint8_t dma_req_rx[ARRAY_SIZE(SPI_REGS)] = {
#ifdef CONFIG_STM32_SPI1_MASTER
DMAMUX1_REQ_SPI1_RX,
#endif
DMAMUX1_REQ_SPI2_RX,
DMAMUX1_REQ_SPI3_RX,
DMAMUX1_REQ_SPI4_RX,
};
static struct mutex spi_mutex[ARRAY_SIZE(SPI_REGS)];
#define SPI_TRANSACTION_TIMEOUT_USEC (800 * MSEC)
static const struct dma_option dma_tx_option[] = {
#ifdef CONFIG_STM32_SPI1_MASTER
{
STM32_DMAC_SPI1_TX, (void *)&STM32_SPI1_REGS->txdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
#endif
{
STM32_DMAC_SPI2_TX, (void *)&STM32_SPI2_REGS->txdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
{
STM32_DMAC_SPI3_TX, (void *)&STM32_SPI3_REGS->txdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
{
STM32_DMAC_SPI4_TX, (void *)&STM32_SPI4_REGS->txdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
};
static const struct dma_option dma_rx_option[] = {
#ifdef CONFIG_STM32_SPI1_MASTER
{
STM32_DMAC_SPI1_RX, (void *)&STM32_SPI1_REGS->rxdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
#endif
{
STM32_DMAC_SPI2_RX, (void *)&STM32_SPI2_REGS->rxdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
{
STM32_DMAC_SPI3_RX, (void *)&STM32_SPI3_REGS->rxdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
{
STM32_DMAC_SPI4_RX, (void *)&STM32_SPI4_REGS->rxdr,
STM32_DMA_CCR_MSIZE_8_BIT | STM32_DMA_CCR_PSIZE_8_BIT
},
};
static uint8_t spi_enabled[ARRAY_SIZE(SPI_REGS)];
/**
* Initialize SPI module, registers, and clocks
*
* - port: which port to initialize.
*/
static void spi_master_config(int port)
{
int i, div = 0;
stm32_spi_regs_t *spi = SPI_REGS[port];
/*
* Set SPI master, baud rate, and software slave control.
*/
for (i = 0; i < spi_devices_used; i++)
if ((spi_devices[i].port == port) &&
(div < spi_devices[i].div))
div = spi_devices[i].div;
spi->cr1 = STM32_SPI_CR1_SSI;
spi->cfg2 = STM32_SPI_CFG2_MSTR | STM32_SPI_CFG2_SSM
| STM32_SPI_CFG2_AFCNTR;
spi->cfg1 = STM32_SPI_CFG1_DATASIZE(8) | STM32_SPI_CFG1_FTHLV(4)
| STM32_SPI_CFG1_CRCSIZE(8) | STM32_SPI_CR1_DIV(div);
dma_select_channel(dma_tx_option[port].channel, dma_req_tx[port]);
dma_select_channel(dma_rx_option[port].channel, dma_req_rx[port]);
}
static int spi_master_initialize(int port)
{
int i;
spi_master_config(port);
for (i = 0; i < spi_devices_used; i++) {
if (spi_devices[i].port != port)
continue;
/* Drive SS high */
gpio_set_level(spi_devices[i].gpio_cs, 1);
}
/* Set flag */
spi_enabled[port] = 1;
return EC_SUCCESS;
}
/**
* Shutdown SPI module
*/
static int spi_master_shutdown(int port)
{
int rv = EC_SUCCESS;
stm32_spi_regs_t *spi = SPI_REGS[port];
/* Set flag */
spi_enabled[port] = 0;
/* Disable DMA streams */
dma_disable(dma_tx_option[port].channel);
dma_disable(dma_rx_option[port].channel);
/* Disable SPI */
spi->cr1 &= ~STM32_SPI_CR1_SPE;
/* Disable DMA buffers */
spi->cfg1 &= ~(STM32_SPI_CFG1_TXDMAEN | STM32_SPI_CFG1_RXDMAEN);
return rv;
}
int spi_enable(int port, int enable)
{
if (enable == spi_enabled[port])
return EC_SUCCESS;
if (enable)
return spi_master_initialize(port);
else
return spi_master_shutdown(port);
}
static int spi_dma_start(int port, const uint8_t *txdata,
uint8_t *rxdata, int len)
{
dma_chan_t *txdma;
stm32_spi_regs_t *spi = SPI_REGS[port];
/*
* Workaround for STM32H7 errata: without resetting the SPI controller,
* the RX DMA requests will happen too early on the 2nd transfer.
*/
STM32_RCC_APB2RSTR = STM32_RCC_PB2_SPI4;
STM32_RCC_APB2RSTR = 0;
dma_clear_isr(dma_tx_option[port].channel);
dma_clear_isr(dma_rx_option[port].channel);
/* restore proper SPI configuration registers. */
spi_master_config(port);
spi->cr2 = len;
spi->cfg1 |= STM32_SPI_CFG1_RXDMAEN;
/* Set up RX DMA */
if (rxdata)
dma_start_rx(&dma_rx_option[port], len, rxdata);
/* Set up TX DMA */
if (txdata) {
txdma = dma_get_channel(dma_tx_option[port].channel);
dma_prepare_tx(&dma_tx_option[port], len, txdata);
dma_go(txdma);
}
spi->cfg1 |= STM32_SPI_CFG1_TXDMAEN;
spi->cr1 |= STM32_SPI_CR1_SPE;
spi->cr1 |= STM32_SPI_CR1_CSTART;
return EC_SUCCESS;
}
static inline bool dma_is_enabled_(const struct dma_option *option)
{
return dma_is_enabled(dma_get_channel(option->channel));
}
static int spi_dma_wait(int port)
{
timestamp_t timeout;
stm32_spi_regs_t *spi = SPI_REGS[port];
int rv = EC_SUCCESS;
/* Wait for DMA transmission to complete */
if (dma_is_enabled_(&dma_tx_option[port])) {
rv = dma_wait(dma_tx_option[port].channel);
if (rv)
return rv;
timeout.val = get_time().val + SPI_TRANSACTION_TIMEOUT_USEC;
/* Wait for FIFO empty and BSY bit clear */
while (!(spi->sr & (STM32_SPI_SR_TXC)))
if (get_time().val > timeout.val)
return EC_ERROR_TIMEOUT;
/* Disable TX DMA */
dma_disable(dma_tx_option[port].channel);
}
/* Wait for DMA reception to complete */
if (dma_is_enabled_(&dma_rx_option[port])) {
rv = dma_wait(dma_rx_option[port].channel);
if (rv)
return rv;
timeout.val = get_time().val + SPI_TRANSACTION_TIMEOUT_USEC;
/* Wait for FRLVL[1:0] to indicate FIFO empty */
while (spi->sr & (STM32_SPI_SR_FRLVL | STM32_SPI_SR_RXNE))
if (get_time().val > timeout.val)
return EC_ERROR_TIMEOUT;
/* Disable RX DMA */
dma_disable(dma_rx_option[port].channel);
}
spi->cr1 &= ~STM32_SPI_CR1_SPE;
spi->cfg1 &= ~(STM32_SPI_CFG1_TXDMAEN | STM32_SPI_CFG1_RXDMAEN);
return rv;
}
int spi_transaction_async(const struct spi_device_t *spi_device,
const uint8_t *txdata, int txlen,
uint8_t *rxdata, int rxlen)
{
int rv = EC_SUCCESS;
int port = spi_device->port;
int full_readback = 0;
char *buf = NULL;
#ifndef CONFIG_SPI_HALFDUPLEX
if (rxlen == SPI_READBACK_ALL) {
buf = rxdata;
full_readback = 1;
} else {
rv = shared_mem_acquire(MAX(txlen, rxlen), &buf);
if (rv != EC_SUCCESS)
return rv;
}
#endif
/* Drive SS low */
gpio_set_level(spi_device->gpio_cs, 0);
rv = spi_dma_start(port, txdata, buf, txlen);
if (rv != EC_SUCCESS)
goto err_free;
if (full_readback)
return EC_SUCCESS;
if (rxlen) {
rv = spi_dma_wait(port);
if (rv != EC_SUCCESS)
goto err_free;
rv = spi_dma_start(port, buf, rxdata, rxlen);
if (rv != EC_SUCCESS)
goto err_free;
}
err_free:
if (!full_readback)
shared_mem_release(buf);
return rv;
}
int spi_transaction_flush(const struct spi_device_t *spi_device)
{
int rv = spi_dma_wait(spi_device->port);
/* Drive SS high */
gpio_set_level(spi_device->gpio_cs, 1);
return rv;
}
int spi_transaction_wait(const struct spi_device_t *spi_device)
{
return spi_dma_wait(spi_device->port);
}
int spi_transaction(const struct spi_device_t *spi_device,
const uint8_t *txdata, int txlen,
uint8_t *rxdata, int rxlen)
{
int rv;
int port = spi_device->port;
mutex_lock(spi_mutex + port);
rv = spi_transaction_async(spi_device, txdata, txlen, rxdata, rxlen);
rv |= spi_transaction_flush(spi_device);
mutex_unlock(spi_mutex + port);
return rv;
}