coreboot-libre-fam15h-rdimm/3rdparty/chromeec/driver/battery/smart.c

609 lines
14 KiB
C
Raw Normal View History

2024-03-04 11:14:53 +01:00
/* Copyright 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Smart battery driver.
*/
#include "battery.h"
#include "battery_smart.h"
#include "console.h"
#include "host_command.h"
#include "i2c.h"
#include "timer.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_CHARGER, outstr);
#define CPRINTS(format, args...) cprints(CC_CHARGER, format, ## args)
#define BATTERY_NO_RESPONSE_TIMEOUT (1000*MSEC)
static int fake_state_of_charge = -1;
test_mockable int sb_read(int cmd, int *param)
{
#ifdef CONFIG_BATTERY_CUT_OFF
/*
* Some batteries would wake up after cut-off if we talk to it.
*/
if (battery_is_cut_off())
return EC_RES_ACCESS_DENIED;
#endif
return i2c_read16(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS,
cmd, param);
}
test_mockable int sb_write(int cmd, int param)
{
#ifdef CONFIG_BATTERY_CUT_OFF
/*
* Some batteries would wake up after cut-off if we talk to it.
*/
if (battery_is_cut_off())
return EC_RES_ACCESS_DENIED;
#endif
return i2c_write16(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS,
cmd, param);
}
int sb_read_string(int offset, uint8_t *data, int len)
{
#ifdef CONFIG_BATTERY_CUT_OFF
/*
* Some batteries would wake up after cut-off if we talk to it.
*/
if (battery_is_cut_off())
return EC_RES_ACCESS_DENIED;
#endif
return i2c_read_string(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS,
offset, data, len);
}
int sb_read_mfgacc(int cmd, int block, uint8_t *data, int len)
{
int rv;
/*
* First two bytes returned from read are command sent hence read
* doesn't yield anything if the length is less than 3 bytes.
*/
if (len < 3)
return EC_ERROR_INVAL;
/* Send manufacturer access command */
rv = sb_write(SB_MANUFACTURER_ACCESS, cmd);
if (rv)
return rv;
/*
* Read data on the register block.
* First two bytes returned are command sent,
* rest are actual data LSB to MSB.
*/
rv = sb_read_string(block, data, len);
if (rv)
return rv;
if ((data[0] | data[1] << 8) != cmd)
return EC_ERROR_UNKNOWN;
return EC_SUCCESS;
}
int sb_write_block(int reg, const uint8_t *val, int len)
{
#ifdef CONFIG_BATTERY_CUT_OFF
/*
* Some batteries would wake up after cut-off if we talk to it.
*/
if (battery_is_cut_off())
return EC_RES_ACCESS_DENIED;
#endif
/* TODO: implement smbus_write_block. */
return i2c_write_block(I2C_PORT_BATTERY, BATTERY_ADDR_FLAGS,
reg, val, len);
}
int battery_get_mode(int *mode)
{
return sb_read(SB_BATTERY_MODE, mode);
}
/**
* Force battery to mAh mode (instead of 10mW mode) for reporting capacity.
*
* @return non-zero if error.
*/
static int battery_force_mah_mode(void)
{
int val, rv;
rv = battery_get_mode(&val);
if (rv)
return rv;
if (val & MODE_CAPACITY)
rv = sb_write(SB_BATTERY_MODE, val & ~MODE_CAPACITY);
return rv;
}
int battery_state_of_charge_abs(int *percent)
{
return sb_read(SB_ABSOLUTE_STATE_OF_CHARGE, percent);
}
int battery_remaining_capacity(int *capacity)
{
int rv = battery_force_mah_mode();
if (rv)
return rv;
return sb_read(SB_REMAINING_CAPACITY, capacity);
}
int battery_full_charge_capacity(int *capacity)
{
int rv = battery_force_mah_mode();
if (rv)
return rv;
return sb_read(SB_FULL_CHARGE_CAPACITY, capacity);
}
int battery_time_to_empty(int *minutes)
{
return sb_read(SB_AVERAGE_TIME_TO_EMPTY, minutes);
}
int battery_run_time_to_empty(int *minutes)
{
return sb_read(SB_RUN_TIME_TO_EMPTY, minutes);
}
int battery_time_to_full(int *minutes)
{
return sb_read(SB_AVERAGE_TIME_TO_FULL, minutes);
}
/* Read battery status */
int battery_status(int *status)
{
return sb_read(SB_BATTERY_STATUS, status);
}
/* Battery charge cycle count */
int battery_cycle_count(int *count)
{
return sb_read(SB_CYCLE_COUNT, count);
}
int battery_design_capacity(int *capacity)
{
int rv = battery_force_mah_mode();
if (rv)
return rv;
return sb_read(SB_DESIGN_CAPACITY, capacity);
}
/* Designed battery output voltage
* unit: mV
*/
int battery_design_voltage(int *voltage)
{
return sb_read(SB_DESIGN_VOLTAGE, voltage);
}
/* Read serial number */
int battery_serial_number(int *serial)
{
return sb_read(SB_SERIAL_NUMBER, serial);
}
test_mockable int battery_time_at_rate(int rate, int *minutes)
{
int rv;
int ok, time;
int loop, cmd, output_sign;
if (rate == 0) {
*minutes = 0;
return EC_ERROR_INVAL;
}
rv = sb_write(SB_AT_RATE, rate);
if (rv)
return rv;
loop = 5;
while (loop--) {
rv = sb_read(SB_AT_RATE_OK, &ok);
if (rv)
return rv;
if (ok) {
if (rate > 0) {
cmd = SB_AT_RATE_TIME_TO_FULL;
output_sign = -1;
} else {
cmd = SB_AT_RATE_TIME_TO_EMPTY;
output_sign = 1;
}
rv = sb_read(cmd, &time);
if (rv)
return rv;
*minutes = (time == 0xffff) ? 0 : output_sign * time;
return EC_SUCCESS;
} else {
/* wait 10ms for AT_RATE_OK */
msleep(10);
}
}
return EC_ERROR_TIMEOUT;
}
test_mockable int battery_manufacture_date(int *year, int *month, int *day)
{
int rv;
int ymd;
rv = sb_read(SB_SPECIFICATION_INFO, &ymd);
if (rv)
return rv;
/* battery date format:
* ymd = day + month * 32 + (year - 1980) * 256
*/
*year = (ymd >> 8) + 1980;
*month = (ymd & 0xff) / 32;
*day = (ymd & 0xff) % 32;
return EC_SUCCESS;
}
int get_battery_manufacturer_name(char *dest, int size)
{
return sb_read_string(SB_MANUFACTURER_NAME, dest, size);
}
/* Read device name */
test_mockable int battery_device_name(char *dest, int size)
{
return sb_read_string(SB_DEVICE_NAME, dest, size);
}
/* Read battery type/chemistry */
test_mockable int battery_device_chemistry(char *dest, int size)
{
return sb_read_string(SB_DEVICE_CHEMISTRY, dest, size);
}
#ifdef CONFIG_CMD_PWR_AVG
int battery_get_avg_current(void)
{
int current;
/* This is a signed 16-bit value. */
sb_read(SB_AVERAGE_CURRENT, &current);
return (int16_t)current;
}
/*
* Technically returns only the instantaneous reading, but tests showed that
* for the majority of charge states above 3% this varies by less than 40mV
* every minute, so we accept the inaccuracy here.
*/
int battery_get_avg_voltage(void)
{
int voltage = -EC_ERROR_UNKNOWN;
sb_read(SB_VOLTAGE, &voltage);
return voltage;
}
#endif /* CONFIG_CMD_PWR_AVG */
void battery_get_params(struct batt_params *batt)
{
struct batt_params batt_new = {0};
int v;
if (sb_read(SB_TEMPERATURE, &batt_new.temperature))
batt_new.flags |= BATT_FLAG_BAD_TEMPERATURE;
if (sb_read(SB_RELATIVE_STATE_OF_CHARGE, &batt_new.state_of_charge)
&& fake_state_of_charge < 0)
batt_new.flags |= BATT_FLAG_BAD_STATE_OF_CHARGE;
/* If soc is faked, override with faked data */
if (fake_state_of_charge >= 0)
batt_new.state_of_charge = fake_state_of_charge;
if (sb_read(SB_VOLTAGE, &batt_new.voltage))
batt_new.flags |= BATT_FLAG_BAD_VOLTAGE;
/* This is a signed 16-bit value. */
if (sb_read(SB_CURRENT, &v))
batt_new.flags |= BATT_FLAG_BAD_CURRENT;
else
batt_new.current = (int16_t)v;
if (sb_read(SB_CHARGING_VOLTAGE, &batt_new.desired_voltage))
batt_new.flags |= BATT_FLAG_BAD_DESIRED_VOLTAGE;
if (sb_read(SB_CHARGING_CURRENT, &batt_new.desired_current))
batt_new.flags |= BATT_FLAG_BAD_DESIRED_CURRENT;
if (battery_remaining_capacity(&batt_new.remaining_capacity))
batt_new.flags |= BATT_FLAG_BAD_REMAINING_CAPACITY;
if (battery_full_charge_capacity(&batt_new.full_capacity))
batt_new.flags |= BATT_FLAG_BAD_FULL_CAPACITY;
if (battery_status(&batt_new.status))
batt_new.flags |= BATT_FLAG_BAD_STATUS;
/* If any of those reads worked, the battery is responsive */
if ((batt_new.flags & BATT_FLAG_BAD_ANY) != BATT_FLAG_BAD_ANY)
batt_new.flags |= BATT_FLAG_RESPONSIVE;
#ifdef CONFIG_BATTERY_MEASURE_IMBALANCE
if (battery_imbalance_mv() > CONFIG_BATTERY_MAX_IMBALANCE_MV)
batt_new.flags |= BATT_FLAG_IMBALANCED_CELL;
#endif
#if defined(CONFIG_BATTERY_PRESENT_CUSTOM) || \
defined(CONFIG_BATTERY_PRESENT_GPIO)
/* Hardware can tell us for certain */
batt_new.is_present = battery_is_present();
#else
/* No hardware test, so we only know it's there if it responds */
if (batt_new.flags & BATT_FLAG_RESPONSIVE)
batt_new.is_present = BP_YES;
else
batt_new.is_present = BP_NOT_SURE;
#endif
/*
* Charging allowed if both desired voltage and current are nonzero
* and battery isn't full (and we read them all correctly).
*/
if (!(batt_new.flags & (BATT_FLAG_BAD_DESIRED_VOLTAGE |
BATT_FLAG_BAD_DESIRED_CURRENT |
BATT_FLAG_BAD_STATE_OF_CHARGE)) &&
#ifdef CONFIG_BATTERY_REQUESTS_NIL_WHEN_DEAD
/*
* TODO (crosbug.com/p/29467): remove this workaround
* for dead battery that requests no voltage/current
*/
((batt_new.desired_voltage &&
batt_new.desired_current &&
batt_new.state_of_charge < BATTERY_LEVEL_FULL) ||
(batt_new.desired_voltage == 0 &&
batt_new.desired_current == 0 &&
batt_new.state_of_charge == 0)))
#else
batt_new.desired_voltage &&
batt_new.desired_current &&
batt_new.state_of_charge < BATTERY_LEVEL_FULL)
#endif
batt_new.flags |= BATT_FLAG_WANT_CHARGE;
else
/* Force both to zero */
batt_new.desired_voltage = batt_new.desired_current = 0;
#ifdef HAS_TASK_HOSTCMD
/* if there is no host, we don't care about compensation */
battery_compensate_params(&batt_new);
#endif
/* Update visible battery parameters */
memcpy(batt, &batt_new, sizeof(*batt));
}
/* Wait until battery is totally stable */
int battery_wait_for_stable(void)
{
int status;
uint64_t wait_timeout = get_time().val + BATTERY_NO_RESPONSE_TIMEOUT;
CPRINTS("Wait for battery stabilized during %d",
BATTERY_NO_RESPONSE_TIMEOUT);
while (get_time().val < wait_timeout) {
/* Starting pinging battery */
if (battery_status(&status) == EC_SUCCESS) {
/* Battery is stable */
CPRINTS("battery responded with status %x", status);
return EC_SUCCESS;
}
msleep(25); /* clock stretching could hold 25ms */
}
CPRINTS("battery not responding");
return EC_ERROR_NOT_POWERED;
}
#if defined(CONFIG_CMD_BATTFAKE)
static int command_battfake(int argc, char **argv)
{
char *e;
int v;
if (argc == 2) {
v = strtoi(argv[1], &e, 0);
if (*e || v < -1 || v > 100)
return EC_ERROR_PARAM1;
fake_state_of_charge = v;
}
if (fake_state_of_charge >= 0)
ccprintf("Fake batt %d%%\n",
fake_state_of_charge);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(battfake, command_battfake,
"percent (-1 = use real level)",
"Set fake battery level");
#endif
#ifdef CONFIG_CMD_BATT_MFG_ACCESS
static int command_batt_mfg_access_read(int argc, char **argv)
{
char *e;
uint8_t data[32];
int cmd, block, len = 6;
int rv;
if (argc < 3 || argc > 4)
return EC_ERROR_PARAM_COUNT;
cmd = strtoi(argv[1], &e, 0);
if (*e || cmd < 0)
return EC_ERROR_PARAM1;
block = strtoi(argv[2], &e, 0);
if (*e || block < 0)
return EC_ERROR_PARAM2;
if (argc > 3) {
len = strtoi(argv[3], &e, 0);
len += 2;
if (*e || len < 3 || len > sizeof(data))
return EC_ERROR_PARAM3;
}
rv = sb_read_mfgacc(cmd, block, data, len);
if (rv)
return rv;
ccprintf("data[MSB->LSB]=0x");
do {
len--;
ccprintf("%02x ", data[len]);
} while (len > 2);
ccprintf("\n");
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(battmfgacc, command_batt_mfg_access_read,
"cmd block | len",
"Read battery manufacture access data");
#endif /* CONFIG_CMD_BATT_MFG_ACCESS */
/*****************************************************************************/
/* Smart battery pass-through
*/
#ifdef CONFIG_I2C_PASSTHROUGH
static enum ec_status
host_command_sb_read_word(struct host_cmd_handler_args *args)
{
int rv;
int val;
const struct ec_params_sb_rd *p = args->params;
struct ec_response_sb_rd_word *r = args->response;
if (p->reg > 0x1c)
return EC_RES_INVALID_PARAM;
rv = sb_read(p->reg, &val);
if (rv)
return EC_RES_ERROR;
r->value = val;
args->response_size = sizeof(struct ec_response_sb_rd_word);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_SB_READ_WORD,
host_command_sb_read_word,
EC_VER_MASK(0));
static enum ec_status
host_command_sb_write_word(struct host_cmd_handler_args *args)
{
int rv;
const struct ec_params_sb_wr_word *p = args->params;
if (p->reg > 0x1c)
return EC_RES_INVALID_PARAM;
rv = sb_write(p->reg, p->value);
if (rv)
return EC_RES_ERROR;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_SB_WRITE_WORD,
host_command_sb_write_word,
EC_VER_MASK(0));
static enum ec_status
host_command_sb_read_block(struct host_cmd_handler_args *args)
{
int rv;
const struct ec_params_sb_rd *p = args->params;
struct ec_response_sb_rd_block *r = args->response;
if ((p->reg != SB_MANUFACTURER_NAME) &&
(p->reg != SB_DEVICE_NAME) &&
(p->reg != SB_DEVICE_CHEMISTRY) &&
(p->reg != SB_MANUFACTURER_DATA))
return EC_RES_INVALID_PARAM;
rv = sb_read_string(p->reg, r->data, 32);
if (rv)
return EC_RES_ERROR;
args->response_size = sizeof(struct ec_response_sb_rd_block);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_SB_READ_BLOCK,
host_command_sb_read_block,
EC_VER_MASK(0));
static enum ec_status
host_command_sb_write_block(struct host_cmd_handler_args *args)
{
/* Not implemented */
return EC_RES_INVALID_COMMAND;
}
DECLARE_HOST_COMMAND(EC_CMD_SB_WRITE_BLOCK,
host_command_sb_write_block,
EC_VER_MASK(0));
#endif
#ifdef CONFIG_CMD_I2C_STRESS_TEST_BATTERY
test_mockable int sb_i2c_test_read(int cmd, int *param)
{
char chemistry[sizeof(CONFIG_BATTERY_DEVICE_CHEMISTRY) + 1];
int rv;
if (cmd == SB_DEVICE_CHEMISTRY) {
rv = battery_device_chemistry(chemistry,
sizeof(CONFIG_BATTERY_DEVICE_CHEMISTRY));
if (rv)
return rv;
if (strcasecmp(chemistry, CONFIG_BATTERY_DEVICE_CHEMISTRY))
return EC_ERROR_UNKNOWN;
*param = EC_SUCCESS;
return EC_SUCCESS;
}
return sb_read(cmd, param);
}
struct i2c_stress_test_dev battery_i2c_stress_test_dev = {
.reg_info = {
.read_reg = SB_DEVICE_CHEMISTRY,
.read_val = EC_SUCCESS,
.write_reg = SB_AT_RATE,
},
.i2c_read_dev = &sb_i2c_test_read,
.i2c_write_dev = &sb_write,
};
#endif /* CONFIG_CMD_I2C_STRESS_TEST_BATTERY */