963 lines
28 KiB
C
963 lines
28 KiB
C
|
/*
|
||
|
xxHash - Fast Hash algorithm
|
||
|
Copyright (C) 2012-2015, Yann Collet
|
||
|
|
||
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are
|
||
|
met:
|
||
|
|
||
|
* Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
copyright notice, this list of conditions and the following disclaimer
|
||
|
in the documentation and/or other materials provided with the
|
||
|
distribution.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
You can contact the author at :
|
||
|
- xxHash source repository : https://github.com/Cyan4973/xxHash
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
* Tuning parameters
|
||
|
**************************************/
|
||
|
/* XXH_FORCE_MEMORY_ACCESS
|
||
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
|
||
|
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
|
||
|
* The below switch allow to select different access method for improved performance.
|
||
|
* Method 0 (default) : use `memcpy()`. Safe and portable.
|
||
|
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
|
||
|
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
|
||
|
* Method 2 : direct access. This method is portable but violate C standard.
|
||
|
* It can generate buggy code on targets which generate assembly depending on alignment.
|
||
|
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
|
||
|
* See http://stackoverflow.com/a/32095106/646947 for details.
|
||
|
* Prefer these methods in priority order (0 > 1 > 2)
|
||
|
*/
|
||
|
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
||
|
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
|
||
|
# define XXH_FORCE_MEMORY_ACCESS 2
|
||
|
# elif defined(__INTEL_COMPILER) || \
|
||
|
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
|
||
|
# define XXH_FORCE_MEMORY_ACCESS 1
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/* XXH_ACCEPT_NULL_INPUT_POINTER :
|
||
|
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
|
||
|
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
|
||
|
* By default, this option is disabled. To enable it, uncomment below define :
|
||
|
*/
|
||
|
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
|
||
|
|
||
|
/* XXH_FORCE_NATIVE_FORMAT :
|
||
|
* By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
|
||
|
* Results are therefore identical for little-endian and big-endian CPU.
|
||
|
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
|
||
|
* Should endian-independance be of no importance for your application, you may set the #define below to 1,
|
||
|
* to improve speed for Big-endian CPU.
|
||
|
* This option has no impact on Little_Endian CPU.
|
||
|
*/
|
||
|
#define XXH_FORCE_NATIVE_FORMAT 0
|
||
|
|
||
|
/* XXH_USELESS_ALIGN_BRANCH :
|
||
|
* This is a minor performance trick, only useful with lots of very small keys.
|
||
|
* It means : don't make a test between aligned/unaligned, because performance will be the same.
|
||
|
* It saves one initial branch per hash.
|
||
|
*/
|
||
|
#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
||
|
# define XXH_USELESS_ALIGN_BRANCH 1
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
* Compiler Specific Options
|
||
|
***************************************/
|
||
|
#ifdef _MSC_VER /* Visual Studio */
|
||
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
||
|
# define FORCE_INLINE static __forceinline
|
||
|
#else
|
||
|
# if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
||
|
# ifdef __GNUC__
|
||
|
# define FORCE_INLINE static inline __attribute__((always_inline))
|
||
|
# else
|
||
|
# define FORCE_INLINE static inline
|
||
|
# endif
|
||
|
# else
|
||
|
# define FORCE_INLINE static
|
||
|
# endif /* __STDC_VERSION__ */
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
* Includes & Memory related functions
|
||
|
***************************************/
|
||
|
#include "xxhash.h"
|
||
|
/* Modify the local functions below should you wish to use some other memory routines */
|
||
|
/* for malloc(), free() */
|
||
|
#include <stdlib.h>
|
||
|
static void* XXH_malloc(size_t s) { return malloc(s); }
|
||
|
static void XXH_free (void* p) { free(p); }
|
||
|
/* for memcpy() */
|
||
|
#include <string.h>
|
||
|
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
|
||
|
|
||
|
|
||
|
/**************************************
|
||
|
* Basic Types
|
||
|
***************************************/
|
||
|
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
||
|
# include <stdint.h>
|
||
|
typedef uint8_t BYTE;
|
||
|
typedef uint16_t U16;
|
||
|
typedef uint32_t U32;
|
||
|
typedef int32_t S32;
|
||
|
typedef uint64_t U64;
|
||
|
#else
|
||
|
typedef unsigned char BYTE;
|
||
|
typedef unsigned short U16;
|
||
|
typedef unsigned int U32;
|
||
|
typedef signed int S32;
|
||
|
typedef unsigned long long U64;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
|
||
|
|
||
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
||
|
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
|
||
|
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
|
||
|
|
||
|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
|
||
|
|
||
|
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
||
|
/* currently only defined for gcc and icc */
|
||
|
typedef union { U32 u32; U64 u64; } __packed unalign;
|
||
|
|
||
|
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
||
|
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* portable and safe solution. Generally efficient.
|
||
|
* see : http://stackoverflow.com/a/32095106/646947
|
||
|
*/
|
||
|
|
||
|
static U32 XXH_read32(const void* memPtr)
|
||
|
{
|
||
|
U32 val;
|
||
|
memcpy(&val, memPtr, sizeof(val));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static U64 XXH_read64(const void* memPtr)
|
||
|
{
|
||
|
U64 val;
|
||
|
memcpy(&val, memPtr, sizeof(val));
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
#endif // XXH_FORCE_DIRECT_MEMORY_ACCESS
|
||
|
|
||
|
|
||
|
/******************************************
|
||
|
* Compiler-specific Functions and Macros
|
||
|
******************************************/
|
||
|
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
||
|
|
||
|
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
|
||
|
#if defined(_MSC_VER)
|
||
|
# define XXH_rotl32(x,r) _rotl(x,r)
|
||
|
# define XXH_rotl64(x,r) _rotl64(x,r)
|
||
|
#else
|
||
|
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
|
||
|
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
|
||
|
#endif
|
||
|
|
||
|
#if defined(_MSC_VER) /* Visual Studio */
|
||
|
# define XXH_swap32 _byteswap_ulong
|
||
|
# define XXH_swap64 _byteswap_uint64
|
||
|
#elif GCC_VERSION >= 403
|
||
|
# define XXH_swap32 __builtin_bswap32
|
||
|
# define XXH_swap64 __builtin_bswap64
|
||
|
#else
|
||
|
static U32 XXH_swap32 (U32 x)
|
||
|
{
|
||
|
return ((x << 24) & 0xff000000 ) |
|
||
|
((x << 8) & 0x00ff0000 ) |
|
||
|
((x >> 8) & 0x0000ff00 ) |
|
||
|
((x >> 24) & 0x000000ff );
|
||
|
}
|
||
|
static U64 XXH_swap64 (U64 x)
|
||
|
{
|
||
|
return ((x << 56) & 0xff00000000000000ULL) |
|
||
|
((x << 40) & 0x00ff000000000000ULL) |
|
||
|
((x << 24) & 0x0000ff0000000000ULL) |
|
||
|
((x << 8) & 0x000000ff00000000ULL) |
|
||
|
((x >> 8) & 0x00000000ff000000ULL) |
|
||
|
((x >> 24) & 0x0000000000ff0000ULL) |
|
||
|
((x >> 40) & 0x000000000000ff00ULL) |
|
||
|
((x >> 56) & 0x00000000000000ffULL);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/***************************************
|
||
|
* Architecture Macros
|
||
|
***************************************/
|
||
|
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianness;
|
||
|
|
||
|
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example one the compiler command line */
|
||
|
#ifndef XXH_CPU_LITTLE_ENDIAN
|
||
|
static const int one = 1;
|
||
|
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&one))
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*****************************
|
||
|
* Memory reads
|
||
|
*****************************/
|
||
|
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
|
||
|
|
||
|
FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianness endian, XXH_alignment align)
|
||
|
{
|
||
|
if (align==XXH_unaligned)
|
||
|
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
|
||
|
else
|
||
|
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianness endian)
|
||
|
{
|
||
|
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianness endian, XXH_alignment align)
|
||
|
{
|
||
|
if (align==XXH_unaligned)
|
||
|
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
|
||
|
else
|
||
|
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianness endian)
|
||
|
{
|
||
|
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
|
||
|
}
|
||
|
|
||
|
|
||
|
/***************************************
|
||
|
* Macros
|
||
|
***************************************/
|
||
|
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } /* use only *after* variable declarations */
|
||
|
|
||
|
|
||
|
/***************************************
|
||
|
* Constants
|
||
|
***************************************/
|
||
|
#define PRIME32_1 2654435761U
|
||
|
#define PRIME32_2 2246822519U
|
||
|
#define PRIME32_3 3266489917U
|
||
|
#define PRIME32_4 668265263U
|
||
|
#define PRIME32_5 374761393U
|
||
|
|
||
|
#define PRIME64_1 11400714785074694791ULL
|
||
|
#define PRIME64_2 14029467366897019727ULL
|
||
|
#define PRIME64_3 1609587929392839161ULL
|
||
|
#define PRIME64_4 9650029242287828579ULL
|
||
|
#define PRIME64_5 2870177450012600261ULL
|
||
|
|
||
|
|
||
|
/*****************************
|
||
|
* Simple Hash Functions
|
||
|
*****************************/
|
||
|
FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianness endian, XXH_alignment align)
|
||
|
{
|
||
|
const BYTE* p = (const BYTE*)input;
|
||
|
const BYTE* bEnd = p + len;
|
||
|
U32 h32;
|
||
|
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
|
||
|
|
||
|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||
|
if (p==NULL)
|
||
|
{
|
||
|
len=0;
|
||
|
bEnd=p=(const BYTE*)(size_t)16;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (len>=16)
|
||
|
{
|
||
|
const BYTE* const limit = bEnd - 16;
|
||
|
U32 v1 = seed + PRIME32_1 + PRIME32_2;
|
||
|
U32 v2 = seed + PRIME32_2;
|
||
|
U32 v3 = seed + 0;
|
||
|
U32 v4 = seed - PRIME32_1;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
v1 += XXH_get32bits(p) * PRIME32_2;
|
||
|
v1 = XXH_rotl32(v1, 13);
|
||
|
v1 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
v2 += XXH_get32bits(p) * PRIME32_2;
|
||
|
v2 = XXH_rotl32(v2, 13);
|
||
|
v2 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
v3 += XXH_get32bits(p) * PRIME32_2;
|
||
|
v3 = XXH_rotl32(v3, 13);
|
||
|
v3 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
v4 += XXH_get32bits(p) * PRIME32_2;
|
||
|
v4 = XXH_rotl32(v4, 13);
|
||
|
v4 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
}
|
||
|
while (p<=limit);
|
||
|
|
||
|
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
h32 = seed + PRIME32_5;
|
||
|
}
|
||
|
|
||
|
h32 += (U32) len;
|
||
|
|
||
|
while (p+4<=bEnd)
|
||
|
{
|
||
|
h32 += XXH_get32bits(p) * PRIME32_3;
|
||
|
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
|
||
|
p+=4;
|
||
|
}
|
||
|
|
||
|
while (p<bEnd)
|
||
|
{
|
||
|
h32 += (*p) * PRIME32_5;
|
||
|
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
|
||
|
p++;
|
||
|
}
|
||
|
|
||
|
h32 ^= h32 >> 15;
|
||
|
h32 *= PRIME32_2;
|
||
|
h32 ^= h32 >> 13;
|
||
|
h32 *= PRIME32_3;
|
||
|
h32 ^= h32 >> 16;
|
||
|
|
||
|
return h32;
|
||
|
}
|
||
|
|
||
|
|
||
|
unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
|
||
|
{
|
||
|
#if 0
|
||
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
||
|
XXH32_state_t state;
|
||
|
XXH32_reset(&state, seed);
|
||
|
XXH32_update(&state, input, len);
|
||
|
return XXH32_digest(&state);
|
||
|
#else
|
||
|
XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
|
||
|
|
||
|
# if !defined(XXH_USELESS_ALIGN_BRANCH)
|
||
|
if ((((size_t)input) & 3) == 0) /* Input is 4-bytes aligned, leverage the speed benefit */
|
||
|
{
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
||
|
else
|
||
|
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
||
|
}
|
||
|
# endif
|
||
|
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
||
|
else
|
||
|
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianness endian, XXH_alignment align)
|
||
|
{
|
||
|
const BYTE* p = (const BYTE*)input;
|
||
|
const BYTE* bEnd = p + len;
|
||
|
U64 h64;
|
||
|
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
|
||
|
|
||
|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||
|
if (p==NULL)
|
||
|
{
|
||
|
len=0;
|
||
|
bEnd=p=(const BYTE*)(size_t)32;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (len>=32)
|
||
|
{
|
||
|
const BYTE* const limit = bEnd - 32;
|
||
|
U64 v1 = seed + PRIME64_1 + PRIME64_2;
|
||
|
U64 v2 = seed + PRIME64_2;
|
||
|
U64 v3 = seed + 0;
|
||
|
U64 v4 = seed - PRIME64_1;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
v1 += XXH_get64bits(p) * PRIME64_2;
|
||
|
p+=8;
|
||
|
v1 = XXH_rotl64(v1, 31);
|
||
|
v1 *= PRIME64_1;
|
||
|
v2 += XXH_get64bits(p) * PRIME64_2;
|
||
|
p+=8;
|
||
|
v2 = XXH_rotl64(v2, 31);
|
||
|
v2 *= PRIME64_1;
|
||
|
v3 += XXH_get64bits(p) * PRIME64_2;
|
||
|
p+=8;
|
||
|
v3 = XXH_rotl64(v3, 31);
|
||
|
v3 *= PRIME64_1;
|
||
|
v4 += XXH_get64bits(p) * PRIME64_2;
|
||
|
p+=8;
|
||
|
v4 = XXH_rotl64(v4, 31);
|
||
|
v4 *= PRIME64_1;
|
||
|
}
|
||
|
while (p<=limit);
|
||
|
|
||
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
||
|
|
||
|
v1 *= PRIME64_2;
|
||
|
v1 = XXH_rotl64(v1, 31);
|
||
|
v1 *= PRIME64_1;
|
||
|
h64 ^= v1;
|
||
|
h64 = h64 * PRIME64_1 + PRIME64_4;
|
||
|
|
||
|
v2 *= PRIME64_2;
|
||
|
v2 = XXH_rotl64(v2, 31);
|
||
|
v2 *= PRIME64_1;
|
||
|
h64 ^= v2;
|
||
|
h64 = h64 * PRIME64_1 + PRIME64_4;
|
||
|
|
||
|
v3 *= PRIME64_2;
|
||
|
v3 = XXH_rotl64(v3, 31);
|
||
|
v3 *= PRIME64_1;
|
||
|
h64 ^= v3;
|
||
|
h64 = h64 * PRIME64_1 + PRIME64_4;
|
||
|
|
||
|
v4 *= PRIME64_2;
|
||
|
v4 = XXH_rotl64(v4, 31);
|
||
|
v4 *= PRIME64_1;
|
||
|
h64 ^= v4;
|
||
|
h64 = h64 * PRIME64_1 + PRIME64_4;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
h64 = seed + PRIME64_5;
|
||
|
}
|
||
|
|
||
|
h64 += (U64) len;
|
||
|
|
||
|
while (p+8<=bEnd)
|
||
|
{
|
||
|
U64 k1 = XXH_get64bits(p);
|
||
|
k1 *= PRIME64_2;
|
||
|
k1 = XXH_rotl64(k1,31);
|
||
|
k1 *= PRIME64_1;
|
||
|
h64 ^= k1;
|
||
|
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
|
||
|
p+=8;
|
||
|
}
|
||
|
|
||
|
if (p+4<=bEnd)
|
||
|
{
|
||
|
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
|
||
|
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
|
||
|
p+=4;
|
||
|
}
|
||
|
|
||
|
while (p<bEnd)
|
||
|
{
|
||
|
h64 ^= (*p) * PRIME64_5;
|
||
|
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
|
||
|
p++;
|
||
|
}
|
||
|
|
||
|
h64 ^= h64 >> 33;
|
||
|
h64 *= PRIME64_2;
|
||
|
h64 ^= h64 >> 29;
|
||
|
h64 *= PRIME64_3;
|
||
|
h64 ^= h64 >> 32;
|
||
|
|
||
|
return h64;
|
||
|
}
|
||
|
|
||
|
|
||
|
unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
|
||
|
{
|
||
|
#if 0
|
||
|
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
|
||
|
XXH64_state_t state;
|
||
|
XXH64_reset(&state, seed);
|
||
|
XXH64_update(&state, input, len);
|
||
|
return XXH64_digest(&state);
|
||
|
#else
|
||
|
XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
|
||
|
|
||
|
# if !defined(XXH_USELESS_ALIGN_BRANCH)
|
||
|
if ((((size_t)input) & 7)==0) /* Input is aligned, let's leverage the speed advantage */
|
||
|
{
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
|
||
|
else
|
||
|
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
|
||
|
}
|
||
|
# endif
|
||
|
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
|
||
|
else
|
||
|
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/****************************************************
|
||
|
* Advanced Hash Functions
|
||
|
****************************************************/
|
||
|
|
||
|
/*** Allocation ***/
|
||
|
typedef struct
|
||
|
{
|
||
|
U64 total_len;
|
||
|
U32 seed;
|
||
|
U32 v1;
|
||
|
U32 v2;
|
||
|
U32 v3;
|
||
|
U32 v4;
|
||
|
U32 mem32[4]; /* defined as U32 for alignment */
|
||
|
U32 memsize;
|
||
|
} XXH_istate32_t;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
U64 total_len;
|
||
|
U64 seed;
|
||
|
U64 v1;
|
||
|
U64 v2;
|
||
|
U64 v3;
|
||
|
U64 v4;
|
||
|
U64 mem64[4]; /* defined as U64 for alignment */
|
||
|
U32 memsize;
|
||
|
} XXH_istate64_t;
|
||
|
|
||
|
|
||
|
XXH32_state_t* XXH32_createState(void)
|
||
|
{
|
||
|
XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); /* A compilation error here means XXH32_state_t is not large enough */
|
||
|
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
|
||
|
}
|
||
|
XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
|
||
|
{
|
||
|
XXH_free(statePtr);
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH64_state_t* XXH64_createState(void)
|
||
|
{
|
||
|
XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); /* A compilation error here means XXH64_state_t is not large enough */
|
||
|
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
|
||
|
}
|
||
|
XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
|
||
|
{
|
||
|
XXH_free(statePtr);
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*** Hash feed ***/
|
||
|
|
||
|
XXH_errorcode XXH32_reset(XXH32_state_t* state_in, unsigned int seed)
|
||
|
{
|
||
|
XXH_istate32_t* state = (XXH_istate32_t*) state_in;
|
||
|
state->seed = seed;
|
||
|
state->v1 = seed + PRIME32_1 + PRIME32_2;
|
||
|
state->v2 = seed + PRIME32_2;
|
||
|
state->v3 = seed + 0;
|
||
|
state->v4 = seed - PRIME32_1;
|
||
|
state->total_len = 0;
|
||
|
state->memsize = 0;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
|
||
|
{
|
||
|
XXH_istate64_t* state = (XXH_istate64_t*) state_in;
|
||
|
state->seed = seed;
|
||
|
state->v1 = seed + PRIME64_1 + PRIME64_2;
|
||
|
state->v2 = seed + PRIME64_2;
|
||
|
state->v3 = seed + 0;
|
||
|
state->v4 = seed - PRIME64_1;
|
||
|
state->total_len = 0;
|
||
|
state->memsize = 0;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianness endian)
|
||
|
{
|
||
|
XXH_istate32_t* state = (XXH_istate32_t *) state_in;
|
||
|
const BYTE* p = (const BYTE*)input;
|
||
|
const BYTE* const bEnd = p + len;
|
||
|
|
||
|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||
|
if (input==NULL) return XXH_ERROR;
|
||
|
#endif
|
||
|
|
||
|
state->total_len += len;
|
||
|
|
||
|
if (state->memsize + len < 16) /* fill in tmp buffer */
|
||
|
{
|
||
|
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
|
||
|
state->memsize += (U32)len;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
if (state->memsize) /* some data left from previous update */
|
||
|
{
|
||
|
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
|
||
|
{
|
||
|
const U32* p32 = state->mem32;
|
||
|
state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
|
||
|
state->v1 = XXH_rotl32(state->v1, 13);
|
||
|
state->v1 *= PRIME32_1;
|
||
|
p32++;
|
||
|
state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
|
||
|
state->v2 = XXH_rotl32(state->v2, 13);
|
||
|
state->v2 *= PRIME32_1;
|
||
|
p32++;
|
||
|
state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
|
||
|
state->v3 = XXH_rotl32(state->v3, 13);
|
||
|
state->v3 *= PRIME32_1;
|
||
|
p32++;
|
||
|
state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
|
||
|
state->v4 = XXH_rotl32(state->v4, 13);
|
||
|
state->v4 *= PRIME32_1;
|
||
|
p32++;
|
||
|
}
|
||
|
p += 16-state->memsize;
|
||
|
state->memsize = 0;
|
||
|
}
|
||
|
|
||
|
if (p <= bEnd-16)
|
||
|
{
|
||
|
const BYTE* const limit = bEnd - 16;
|
||
|
U32 v1 = state->v1;
|
||
|
U32 v2 = state->v2;
|
||
|
U32 v3 = state->v3;
|
||
|
U32 v4 = state->v4;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
v1 += XXH_readLE32(p, endian) * PRIME32_2;
|
||
|
v1 = XXH_rotl32(v1, 13);
|
||
|
v1 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
v2 += XXH_readLE32(p, endian) * PRIME32_2;
|
||
|
v2 = XXH_rotl32(v2, 13);
|
||
|
v2 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
v3 += XXH_readLE32(p, endian) * PRIME32_2;
|
||
|
v3 = XXH_rotl32(v3, 13);
|
||
|
v3 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
v4 += XXH_readLE32(p, endian) * PRIME32_2;
|
||
|
v4 = XXH_rotl32(v4, 13);
|
||
|
v4 *= PRIME32_1;
|
||
|
p+=4;
|
||
|
}
|
||
|
while (p<=limit);
|
||
|
|
||
|
state->v1 = v1;
|
||
|
state->v2 = v2;
|
||
|
state->v3 = v3;
|
||
|
state->v4 = v4;
|
||
|
}
|
||
|
|
||
|
if (p < bEnd)
|
||
|
{
|
||
|
XXH_memcpy(state->mem32, p, bEnd-p);
|
||
|
state->memsize = (int)(bEnd-p);
|
||
|
}
|
||
|
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
|
||
|
{
|
||
|
XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
|
||
|
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
|
||
|
else
|
||
|
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianness endian)
|
||
|
{
|
||
|
const XXH_istate32_t* state = (const XXH_istate32_t*) state_in;
|
||
|
const BYTE * p = (const BYTE*)state->mem32;
|
||
|
const BYTE* bEnd = (const BYTE*)(state->mem32) + state->memsize;
|
||
|
U32 h32;
|
||
|
|
||
|
if (state->total_len >= 16)
|
||
|
{
|
||
|
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
h32 = state->seed + PRIME32_5;
|
||
|
}
|
||
|
|
||
|
h32 += (U32) state->total_len;
|
||
|
|
||
|
while (p+4<=bEnd)
|
||
|
{
|
||
|
h32 += XXH_readLE32(p, endian) * PRIME32_3;
|
||
|
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
|
||
|
p+=4;
|
||
|
}
|
||
|
|
||
|
while (p<bEnd)
|
||
|
{
|
||
|
h32 += (*p) * PRIME32_5;
|
||
|
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
|
||
|
p++;
|
||
|
}
|
||
|
|
||
|
h32 ^= h32 >> 15;
|
||
|
h32 *= PRIME32_2;
|
||
|
h32 ^= h32 >> 13;
|
||
|
h32 *= PRIME32_3;
|
||
|
h32 ^= h32 >> 16;
|
||
|
|
||
|
return h32;
|
||
|
}
|
||
|
|
||
|
|
||
|
unsigned int XXH32_digest (const XXH32_state_t* state_in)
|
||
|
{
|
||
|
XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
|
||
|
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH32_digest_endian(state_in, XXH_littleEndian);
|
||
|
else
|
||
|
return XXH32_digest_endian(state_in, XXH_bigEndian);
|
||
|
}
|
||
|
|
||
|
|
||
|
FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianness endian)
|
||
|
{
|
||
|
XXH_istate64_t * state = (XXH_istate64_t *) state_in;
|
||
|
const BYTE* p = (const BYTE*)input;
|
||
|
const BYTE* const bEnd = p + len;
|
||
|
|
||
|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
|
||
|
if (input==NULL) return XXH_ERROR;
|
||
|
#endif
|
||
|
|
||
|
state->total_len += len;
|
||
|
|
||
|
if (state->memsize + len < 32) /* fill in tmp buffer */
|
||
|
{
|
||
|
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
|
||
|
state->memsize += (U32)len;
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
if (state->memsize) /* some data left from previous update */
|
||
|
{
|
||
|
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
|
||
|
{
|
||
|
const U64* p64 = state->mem64;
|
||
|
state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
|
||
|
state->v1 = XXH_rotl64(state->v1, 31);
|
||
|
state->v1 *= PRIME64_1;
|
||
|
p64++;
|
||
|
state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
|
||
|
state->v2 = XXH_rotl64(state->v2, 31);
|
||
|
state->v2 *= PRIME64_1;
|
||
|
p64++;
|
||
|
state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
|
||
|
state->v3 = XXH_rotl64(state->v3, 31);
|
||
|
state->v3 *= PRIME64_1;
|
||
|
p64++;
|
||
|
state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
|
||
|
state->v4 = XXH_rotl64(state->v4, 31);
|
||
|
state->v4 *= PRIME64_1;
|
||
|
p64++;
|
||
|
}
|
||
|
p += 32-state->memsize;
|
||
|
state->memsize = 0;
|
||
|
}
|
||
|
|
||
|
if (p+32 <= bEnd)
|
||
|
{
|
||
|
const BYTE* const limit = bEnd - 32;
|
||
|
U64 v1 = state->v1;
|
||
|
U64 v2 = state->v2;
|
||
|
U64 v3 = state->v3;
|
||
|
U64 v4 = state->v4;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
v1 += XXH_readLE64(p, endian) * PRIME64_2;
|
||
|
v1 = XXH_rotl64(v1, 31);
|
||
|
v1 *= PRIME64_1;
|
||
|
p+=8;
|
||
|
v2 += XXH_readLE64(p, endian) * PRIME64_2;
|
||
|
v2 = XXH_rotl64(v2, 31);
|
||
|
v2 *= PRIME64_1;
|
||
|
p+=8;
|
||
|
v3 += XXH_readLE64(p, endian) * PRIME64_2;
|
||
|
v3 = XXH_rotl64(v3, 31);
|
||
|
v3 *= PRIME64_1;
|
||
|
p+=8;
|
||
|
v4 += XXH_readLE64(p, endian) * PRIME64_2;
|
||
|
v4 = XXH_rotl64(v4, 31);
|
||
|
v4 *= PRIME64_1;
|
||
|
p+=8;
|
||
|
}
|
||
|
while (p<=limit);
|
||
|
|
||
|
state->v1 = v1;
|
||
|
state->v2 = v2;
|
||
|
state->v3 = v3;
|
||
|
state->v4 = v4;
|
||
|
}
|
||
|
|
||
|
if (p < bEnd)
|
||
|
{
|
||
|
XXH_memcpy(state->mem64, p, bEnd-p);
|
||
|
state->memsize = (int)(bEnd-p);
|
||
|
}
|
||
|
|
||
|
return XXH_OK;
|
||
|
}
|
||
|
|
||
|
XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
|
||
|
{
|
||
|
XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
|
||
|
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
|
||
|
else
|
||
|
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianness endian)
|
||
|
{
|
||
|
const XXH_istate64_t * state = (const XXH_istate64_t *) state_in;
|
||
|
const BYTE * p = (const BYTE*)state->mem64;
|
||
|
const BYTE* bEnd = (const BYTE*)state->mem64 + state->memsize;
|
||
|
U64 h64;
|
||
|
|
||
|
if (state->total_len >= 32)
|
||
|
{
|
||
|
U64 v1 = state->v1;
|
||
|
U64 v2 = state->v2;
|
||
|
U64 v3 = state->v3;
|
||
|
U64 v4 = state->v4;
|
||
|
|
||
|
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
|
||
|
|
||
|
v1 *= PRIME64_2;
|
||
|
v1 = XXH_rotl64(v1, 31);
|
||
|
v1 *= PRIME64_1;
|
||
|
h64 ^= v1;
|
||
|
h64 = h64*PRIME64_1 + PRIME64_4;
|
||
|
|
||
|
v2 *= PRIME64_2;
|
||
|
v2 = XXH_rotl64(v2, 31);
|
||
|
v2 *= PRIME64_1;
|
||
|
h64 ^= v2;
|
||
|
h64 = h64*PRIME64_1 + PRIME64_4;
|
||
|
|
||
|
v3 *= PRIME64_2;
|
||
|
v3 = XXH_rotl64(v3, 31);
|
||
|
v3 *= PRIME64_1;
|
||
|
h64 ^= v3;
|
||
|
h64 = h64*PRIME64_1 + PRIME64_4;
|
||
|
|
||
|
v4 *= PRIME64_2;
|
||
|
v4 = XXH_rotl64(v4, 31);
|
||
|
v4 *= PRIME64_1;
|
||
|
h64 ^= v4;
|
||
|
h64 = h64*PRIME64_1 + PRIME64_4;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
h64 = state->seed + PRIME64_5;
|
||
|
}
|
||
|
|
||
|
h64 += (U64) state->total_len;
|
||
|
|
||
|
while (p+8<=bEnd)
|
||
|
{
|
||
|
U64 k1 = XXH_readLE64(p, endian);
|
||
|
k1 *= PRIME64_2;
|
||
|
k1 = XXH_rotl64(k1,31);
|
||
|
k1 *= PRIME64_1;
|
||
|
h64 ^= k1;
|
||
|
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
|
||
|
p+=8;
|
||
|
}
|
||
|
|
||
|
if (p+4<=bEnd)
|
||
|
{
|
||
|
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
|
||
|
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
|
||
|
p+=4;
|
||
|
}
|
||
|
|
||
|
while (p<bEnd)
|
||
|
{
|
||
|
h64 ^= (*p) * PRIME64_5;
|
||
|
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
|
||
|
p++;
|
||
|
}
|
||
|
|
||
|
h64 ^= h64 >> 33;
|
||
|
h64 *= PRIME64_2;
|
||
|
h64 ^= h64 >> 29;
|
||
|
h64 *= PRIME64_3;
|
||
|
h64 ^= h64 >> 32;
|
||
|
|
||
|
return h64;
|
||
|
}
|
||
|
|
||
|
|
||
|
unsigned long long XXH64_digest (const XXH64_state_t* state_in)
|
||
|
{
|
||
|
XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
|
||
|
|
||
|
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
|
||
|
return XXH64_digest_endian(state_in, XXH_littleEndian);
|
||
|
else
|
||
|
return XXH64_digest_endian(state_in, XXH_bigEndian);
|
||
|
}
|
||
|
|
||
|
|