coreboot-libre-fam15h-rdimm/util/nvramtool/accessors/layout-bin.c

612 lines
18 KiB
C
Raw Normal View History

2024-03-04 11:14:53 +01:00
/*****************************************************************************\
* lbtable.c
*****************************************************************************
* Copyright (C) 2012, Vikram Narayanan
* Unified build_opt_tbl and nvramtool
* build_opt_tbl.c
* Copyright (C) 2003 Eric Biederman (ebiederm@xmission.com)
* Copyright (C) 2007-2010 coresystems GmbH
*
* Copyright (C) 2002-2005 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
* and Stefan Reinauer <stepan@openbios.org>.
* UCRL-CODE-2003-012
* All rights reserved.
*
* This file is part of nvramtool, a utility for reading/writing coreboot
* parameters and displaying information from the coreboot table.
* For details, see https://coreboot.org/nvramtool.
*
* Please also read the file DISCLAIMER which is included in this software
* distribution.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (as published by the
* Free Software Foundation) version 2, dated June 1991.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
* conditions of the GNU General Public License for more details.
\*****************************************************************************/
#include <string.h>
#ifndef __MINGW32__
#include <sys/mman.h>
#endif
#include "common.h"
#include "coreboot_tables.h"
#include "ip_checksum.h"
#include "lbtable.h"
#include "layout.h"
#include "cmos_lowlevel.h"
#include "hexdump.h"
#include "cbfs.h"
#include "layout-text.h"
static void process_cmos_table(void);
static void get_cmos_checksum_info(void);
static void try_convert_checksum_layout(cmos_checksum_layout_t * layout);
static void try_add_cmos_table_enum(cmos_enum_t * cmos_enum);
static void try_add_cmos_table_entry(cmos_entry_t * cmos_entry);
static const struct cmos_entries *first_cmos_table_entry(void);
static const struct cmos_entries *next_cmos_table_entry(const struct
cmos_entries *last);
static const struct cmos_enums *first_cmos_table_enum(void);
static const struct cmos_enums *next_cmos_table_enum
(const struct cmos_enums *last);
static const struct lb_record *first_cmos_rec(uint32_t tag);
static const struct lb_record *next_cmos_rec(const struct lb_record *last,
uint32_t tag);
/* The CMOS option table is located within the coreboot table. It tells us
* where the CMOS parameters are located in the nonvolatile RAM.
*/
static const struct cmos_option_table *cmos_table = NULL;
#define ROUNDUP4(x) (x += (4 - (x % 4)))
void process_layout(void)
{
if ((cmos_table) == NULL) {
fprintf(stderr,
"%s: CMOS option table not found in coreboot table. "
"Apparently, the coreboot installed on this system was "
"built without selecting CONFIG_USE_OPTION_TABLE.\n",
prog_name);
exit(1);
}
process_cmos_table();
get_cmos_checksum_info();
}
void get_layout_from_cbfs_file(void)
{
uint32_t len;
cmos_table = cbfs_find_file("cmos_layout.bin", CBFS_COMPONENT_CMOS_LAYOUT, &len);
process_layout();
}
static int write_cmos_layout_bin(FILE *f)
{
const cmos_entry_t *cmos_entry;
const cmos_enum_t *cmos_enum;
cmos_checksum_layout_t layout;
struct cmos_option_table table;
struct cmos_entries entry;
struct cmos_enums cenum;
struct cmos_checksum csum;
size_t sum = 0;
int len;
for (cmos_entry = first_cmos_entry(); cmos_entry != NULL;
cmos_entry = next_cmos_entry(cmos_entry)) {
if (cmos_entry == first_cmos_entry()) {
sum += sizeof(table);
table.header_length = sizeof(table);
table.tag = LB_TAG_CMOS_OPTION_TABLE;
table.size = 0;
if (fwrite((char *)&table, sizeof(table), 1, f) != 1) {
perror("Error writing image file");
goto err;
}
}
memset(&entry, 0, sizeof(entry));
entry.tag = LB_TAG_OPTION;
entry.config = cmos_entry->config;
entry.config_id = (uint32_t)cmos_entry->config_id;
entry.bit = cmos_entry->bit;
entry.length = cmos_entry->length;
if (!is_ident((char *)cmos_entry->name)) {
fprintf(stderr,
"Error - Name %s is an invalid identifier\n",
cmos_entry->name);
goto err;
}
memcpy(entry.name, cmos_entry->name, strlen(cmos_entry->name));
entry.name[strlen(cmos_entry->name)] = '\0';
len = strlen(cmos_entry->name) + 1;
if (len % 4)
ROUNDUP4(len);
entry.size = sizeof(entry) - CMOS_MAX_NAME_LENGTH + len;
sum += entry.size;
if (fwrite((char *)&entry, entry.size, 1, f) != 1) {
perror("Error writing image file");
goto err;
}
}
for (cmos_enum = first_cmos_enum();
cmos_enum != NULL; cmos_enum = next_cmos_enum(cmos_enum)) {
memset(&cenum, 0, sizeof(cenum));
cenum.tag = LB_TAG_OPTION_ENUM;
memcpy(cenum.text, cmos_enum->text, strlen(cmos_enum->text));
cenum.text[strlen(cmos_enum->text)] = '\0';
len = strlen((char *)cenum.text) + 1;
if (len % 4)
ROUNDUP4(len);
cenum.config_id = cmos_enum->config_id;
cenum.value = cmos_enum->value;
cenum.size = sizeof(cenum) - CMOS_MAX_TEXT_LENGTH + len;
sum += cenum.size;
if (fwrite((char *)&cenum, cenum.size, 1, f) != 1) {
perror("Error writing image file");
goto err;
}
}
layout.summed_area_start = cmos_checksum_start;
layout.summed_area_end = cmos_checksum_end;
layout.checksum_at = cmos_checksum_index;
checksum_layout_to_bits(&layout);
csum.tag = LB_TAG_OPTION_CHECKSUM;
csum.size = sizeof(csum);
csum.range_start = layout.summed_area_start;
csum.range_end = layout.summed_area_end;
csum.location = layout.checksum_at;
csum.type = CHECKSUM_PCBIOS;
sum += csum.size;
if (fwrite((char *)&csum, csum.size, 1, f) != 1) {
perror("Error writing image file");
goto err;
}
if (fseek(f, 0, SEEK_SET) != 0) {
perror("Error while seeking");
goto err;
}
table.size = sum;
if (fwrite((char *)&table, sizeof(table), 1, f) != 1) {
perror("Error writing image file");
goto err;
}
return sum;
err:
fclose(f);
exit(1);
}
void write_cmos_output_bin(const char *binary_filename)
{
FILE *fp;
if ((fp = fopen(binary_filename, "wb")) == NULL) {
fprintf(stderr,
"%s: Can not open file %s for writing: "
"%s\n", prog_name, binary_filename, strerror(errno));
exit(1);
}
write_cmos_layout_bin(fp);
fclose(fp);
}
/****************************************************************************
* get_layout_from_cmos_table
*
* Find the CMOS table which is stored within the coreboot table and set the
* global variable cmos_table to point to it.
****************************************************************************/
void get_layout_from_cmos_table(void)
{
get_lbtable();
cmos_table = (const struct cmos_option_table *)
find_lbrec(LB_TAG_CMOS_OPTION_TABLE);
process_layout();
}
/****************************************************************************
* process_cmos_table
*
* Extract layout information from the CMOS option table and store it in our
* internal repository.
****************************************************************************/
static void process_cmos_table(void)
{
const struct cmos_enums *p;
const struct cmos_entries *q;
cmos_enum_t cmos_enum;
cmos_entry_t cmos_entry;
/* First add the enums. */
for (p = first_cmos_table_enum(); p != NULL;
p = next_cmos_table_enum(p)) {
cmos_enum.config_id = p->config_id;
cmos_enum.value = p->value;
strncpy(cmos_enum.text, (char *)p->text, CMOS_MAX_TEXT_LENGTH);
cmos_enum.text[CMOS_MAX_TEXT_LENGTH] = '\0';
try_add_cmos_table_enum(&cmos_enum);
}
/* Now add the entries. We must add the entries after the enums because
* the entries are sanity checked against the enums as they are added.
*/
for (q = first_cmos_table_entry(); q != NULL;
q = next_cmos_table_entry(q)) {
cmos_entry.bit = q->bit;
cmos_entry.length = q->length;
switch (q->config) {
case 'e':
cmos_entry.config = CMOS_ENTRY_ENUM;
break;
case 'h':
cmos_entry.config = CMOS_ENTRY_HEX;
break;
case 'r':
cmos_entry.config = CMOS_ENTRY_RESERVED;
break;
case 's':
cmos_entry.config = CMOS_ENTRY_STRING;
break;
default:
fprintf(stderr,
"%s: Entry in CMOS option table has unknown config "
"value.\n", prog_name);
exit(1);
}
cmos_entry.config_id = q->config_id;
strncpy(cmos_entry.name, (char *)q->name, CMOS_MAX_NAME_LENGTH);
cmos_entry.name[CMOS_MAX_NAME_LENGTH] = '\0';
try_add_cmos_table_entry(&cmos_entry);
}
}
/****************************************************************************
* get_cmos_checksum_info
*
* Get layout information for CMOS checksum.
****************************************************************************/
static void get_cmos_checksum_info(void)
{
const cmos_entry_t *e;
struct cmos_checksum *checksum;
cmos_checksum_layout_t layout;
unsigned index, index2;
checksum = (struct cmos_checksum *)next_cmos_rec((const struct lb_record *)first_cmos_table_enum(), LB_TAG_OPTION_CHECKSUM);
if (checksum != NULL) { /* We are lucky. The coreboot table hints us to the checksum.
* We might have to check the type field here though.
*/
layout.summed_area_start = checksum->range_start;
layout.summed_area_end = checksum->range_end;
layout.checksum_at = checksum->location;
try_convert_checksum_layout(&layout);
cmos_checksum_start = layout.summed_area_start;
cmos_checksum_end = layout.summed_area_end;
cmos_checksum_index = layout.checksum_at;
return;
}
if ((e = find_cmos_entry(checksum_param_name)) == NULL)
return;
/* If we get here, we are unlucky. The CMOS option table contains the
* location of the CMOS checksum. However, there is no information
* regarding which bytes of the CMOS area the checksum is computed over.
* Thus we have to hope our presets will be fine.
*/
if (e->bit % 8) {
fprintf(stderr,
"%s: Error: CMOS checksum is not byte-aligned.\n",
prog_name);
exit(1);
}
index = e->bit / 8;
index2 = index + 1; /* The CMOS checksum occupies 16 bits. */
if (verify_cmos_byte_index(index) || verify_cmos_byte_index(index2)) {
fprintf(stderr,
"%s: Error: CMOS checksum location out of range.\n",
prog_name);
exit(1);
}
if (((index >= cmos_checksum_start) && (index <= cmos_checksum_end)) ||
(((index2) >= cmos_checksum_start)
&& ((index2) <= cmos_checksum_end))) {
fprintf(stderr,
"%s: Error: CMOS checksum overlaps checksummed area.\n",
prog_name);
exit(1);
}
cmos_checksum_index = index;
}
/****************************************************************************
* try_convert_checksum_layout
*
* Perform sanity checking on CMOS checksum layout information and attempt to
* convert information from bit positions to byte positions. Return OK on
* success or an error code on failure.
****************************************************************************/
static void try_convert_checksum_layout(cmos_checksum_layout_t * layout)
{
switch (checksum_layout_to_bytes(layout)) {
case OK:
return;
case LAYOUT_SUMMED_AREA_START_NOT_ALIGNED:
fprintf(stderr,
"%s: CMOS checksummed area start is not byte-aligned.\n",
prog_name);
break;
case LAYOUT_SUMMED_AREA_END_NOT_ALIGNED:
fprintf(stderr,
"%s: CMOS checksummed area end is not byte-aligned.\n",
prog_name);
break;
case LAYOUT_CHECKSUM_LOCATION_NOT_ALIGNED:
fprintf(stderr,
"%s: CMOS checksum location is not byte-aligned.\n",
prog_name);
break;
case LAYOUT_INVALID_SUMMED_AREA:
fprintf(stderr,
"%s: CMOS checksummed area end must be greater than "
"CMOS checksummed area start.\n", prog_name);
break;
case LAYOUT_CHECKSUM_OVERLAPS_SUMMED_AREA:
fprintf(stderr,
"%s: CMOS checksum overlaps checksummed area.\n",
prog_name);
break;
case LAYOUT_SUMMED_AREA_OUT_OF_RANGE:
fprintf(stderr,
"%s: CMOS checksummed area out of range.\n", prog_name);
break;
case LAYOUT_CHECKSUM_LOCATION_OUT_OF_RANGE:
fprintf(stderr,
"%s: CMOS checksum location out of range.\n",
prog_name);
break;
default:
BUG();
}
exit(1);
}
/****************************************************************************
* try_add_cmos_table_enum
*
* Attempt to add a CMOS enum to our internal repository. Exit with an error
* message on failure.
****************************************************************************/
static void try_add_cmos_table_enum(cmos_enum_t * cmos_enum)
{
switch (add_cmos_enum(cmos_enum)) {
case OK:
return;
case LAYOUT_DUPLICATE_ENUM:
fprintf(stderr, "%s: Duplicate enum %s found in CMOS option "
"table.\n", prog_name, cmos_enum->text);
break;
default:
BUG();
}
exit(1);
}
/****************************************************************************
* try_add_cmos_table_entry
*
* Attempt to add a CMOS entry to our internal repository. Exit with an
* error message on failure.
****************************************************************************/
static void try_add_cmos_table_entry(cmos_entry_t * cmos_entry)
{
const cmos_entry_t *conflict;
switch (add_cmos_entry(cmos_entry, &conflict)) {
case OK:
return;
case CMOS_AREA_OUT_OF_RANGE:
fprintf(stderr,
"%s: Bad CMOS option layout in CMOS option table entry "
"%s.\n", prog_name, cmos_entry->name);
break;
case CMOS_AREA_TOO_WIDE:
fprintf(stderr,
"%s: Area too wide for CMOS option table entry %s.\n",
prog_name, cmos_entry->name);
break;
case LAYOUT_ENTRY_OVERLAP:
fprintf(stderr,
"%s: CMOS option table entries %s and %s have overlapping "
"layouts.\n", prog_name, cmos_entry->name,
conflict->name);
break;
case LAYOUT_ENTRY_BAD_LENGTH:
/* Silently ignore entries with zero length. Although this should
* never happen in practice, we should handle the case in a
* reasonable manner just to be safe.
*/
return;
case LAYOUT_MULTIBYTE_ENTRY_NOT_ALIGNED:
fprintf(stderr,
"%s: Unaligned CMOS option table entry %s "
"spans multiple bytes.\n", prog_name, cmos_entry->name);
break;
default:
BUG();
}
exit(1);
}
/****************************************************************************
* first_cmos_table_entry
*
* Return a pointer to the first entry in the CMOS table that represents a
* CMOS parameter. Return NULL if CMOS table is empty.
****************************************************************************/
static const struct cmos_entries *first_cmos_table_entry(void)
{
return (const struct cmos_entries *)first_cmos_rec(LB_TAG_OPTION);
}
/****************************************************************************
* next_cmos_table_entry
*
* Return a pointer to the next entry after 'last' in the CMOS table that
* represents a CMOS parameter. Return NULL if there are no more parameters.
****************************************************************************/
static const struct cmos_entries *next_cmos_table_entry(const struct
cmos_entries *last)
{
return (const struct cmos_entries *)
next_cmos_rec((const struct lb_record *)last, LB_TAG_OPTION);
}
/****************************************************************************
* first_cmos_table_enum
*
* Return a pointer to the first entry in the CMOS table that represents a
* possible CMOS parameter value. Return NULL if the table does not contain
* any such entries.
****************************************************************************/
static const struct cmos_enums *first_cmos_table_enum(void)
{
return (const struct cmos_enums *)first_cmos_rec(LB_TAG_OPTION_ENUM);
}
/****************************************************************************
* next_cmos_table_enum
*
* Return a pointer to the next entry after 'last' in the CMOS table that
* represents a possible CMOS parameter value. Return NULL if there are no
* more parameter values.
****************************************************************************/
static const struct cmos_enums *next_cmos_table_enum
(const struct cmos_enums *last) {
return (const struct cmos_enums *)
next_cmos_rec((const struct lb_record *)last, LB_TAG_OPTION_ENUM);
}
/****************************************************************************
* first_cmos_rec
*
* Return a pointer to the first entry in the CMOS table whose type matches
* 'tag'. Return NULL if CMOS table contains no such entry.
*
* Possible values for 'tag' are as follows:
*
* LB_TAG_OPTION: The entry represents a CMOS parameter.
* LB_TAG_OPTION_ENUM: The entry represents a possible value for a CMOS
* parameter of type 'enum'.
*
* The CMOS table tells us where in the nonvolatile RAM to look for CMOS
* parameter values and specifies their types as 'enum', 'hex', or
* 'reserved'.
****************************************************************************/
static const struct lb_record *first_cmos_rec(uint32_t tag)
{
const char *p;
uint32_t bytes_processed, bytes_for_entries;
const struct lb_record *lbrec;
p = ((const char *)cmos_table) + cmos_table->header_length;
bytes_for_entries = cmos_table->size - cmos_table->header_length;
for (bytes_processed = 0;
bytes_processed < bytes_for_entries;
bytes_processed += lbrec->size) {
lbrec = (const struct lb_record *)&p[bytes_processed];
if (lbrec->tag == tag)
return lbrec;
}
return NULL;
}
/****************************************************************************
* next_cmos_rec
*
* Return a pointer to the next entry after 'last' in the CMOS table whose
* type matches 'tag'. Return NULL if the table contains no more entries of
* this type.
****************************************************************************/
static const struct lb_record *next_cmos_rec(const struct lb_record *last,
uint32_t tag)
{
const char *p;
uint32_t bytes_processed, bytes_for_entries, last_offset;
const struct lb_record *lbrec;
p = ((const char *)cmos_table) + cmos_table->header_length;
bytes_for_entries = cmos_table->size - cmos_table->header_length;
last_offset = ((const char *)last) - p;
for (bytes_processed = last_offset + last->size;
bytes_processed < bytes_for_entries;
bytes_processed += lbrec->size) {
lbrec = (const struct lb_record *)&p[bytes_processed];
if (lbrec->tag == tag)
return lbrec;
}
return NULL;
}