/* Copyright 2016 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Coral board-specific configuration */ #include "adc.h" #include "adc_chip.h" #include "button.h" #include "charge_manager.h" #include "charge_ramp.h" #include "charge_state.h" #include "charger.h" #include "chipset.h" #include "console.h" #include "driver/als_opt3001.h" #include "driver/accel_kionix.h" #include "driver/accel_kx022.h" #include "driver/accelgyro_bmi160.h" #include "driver/charger/bd9995x.h" #include "driver/tcpm/anx74xx.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_angle.h" #include "lid_switch.h" #include "math_util.h" #include "motion_sense.h" #include "motion_lid.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "sku.h" #include "spi.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "temp_sensor.h" #include "thermistor.h" #include "timer.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) #define IN_ALL_SYS_PG POWER_SIGNAL_MASK(X86_ALL_SYS_PG) #define IN_PGOOD_PP3300 POWER_SIGNAL_MASK(X86_PGOOD_PP3300) #define IN_PGOOD_PP5000 POWER_SIGNAL_MASK(X86_PGOOD_PP5000) #define USB_PD_PORT_ANX74XX 0 #define USB_PD_PORT_PS8751 1 static int sku_id; static void tcpc_alert_event(enum gpio_signal signal) { int port = -1; switch (signal) { case GPIO_USB_C0_PD_INT_ODL: port = 0; break; case GPIO_USB_C1_PD_INT_ODL: port = 1; break; default: return; } schedule_deferred_pd_interrupt(port); } #ifdef CONFIG_USB_PD_TCPC_LOW_POWER static void anx74xx_cable_det_handler(void) { int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET); int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_L); /* * A cable_det low->high transition was detected. If following the * debounce time, cable_det is high, and reset_n is low, then ANX3429 is * currently in standby mode and needs to be woken up. Set the * TCPC_RESET event which will bring the ANX3429 out of standby * mode. Setting this event is gated on reset_n being low because the * ANX3429 will always set cable_det when transitioning to normal mode * and if in normal mode, then there is no need to trigger a tcpc reset. */ if (cable_det && !reset_n) task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_cable_det_handler); void anx74xx_cable_det_interrupt(enum gpio_signal signal) { /* debounce for 2 msec */ hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC)); } #endif /* * enable_input_devices() is called by the tablet_mode ISR, but changes the * state of GPIOs, so its definition must reside after including gpio_list. * Use DECLARE_DEFERRED to generate enable_input_devices_data. */ static void enable_input_devices(void); DECLARE_DEFERRED(enable_input_devices); #define LID_DEBOUNCE_US (30 * MSEC) /* Debounce time for lid switch */ void tablet_mode_interrupt(enum gpio_signal signal) { hook_call_deferred(&enable_input_devices_data, LID_DEBOUNCE_US); } #include "gpio_list.h" /* ADC channels */ const struct adc_t adc_channels[] = { /* Vfs = Vref = 2.816V, 10-bit unsigned reading */ [ADC_TEMP_SENSOR_CHARGER] = { "CHARGER", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, [ADC_TEMP_SENSOR_AMB] = { "AMBIENT", NPCX_ADC_CH1, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, [ADC_BOARD_ID] = { "BRD_ID", NPCX_ADC_CH2, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, [ADC_BOARD_SKU_1] = { "BRD_SKU_1", NPCX_ADC_CH3, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, [ADC_BOARD_SKU_0] = { "BRD_SKU_0", NPCX_ADC_CH4, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { 4, PWM_CONFIG_DSLEEP, 100 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); const struct i2c_port_t i2c_ports[] = { {"tcpc0", NPCX_I2C_PORT0_0, 400, GPIO_EC_I2C_USB_C0_PD_SCL, GPIO_EC_I2C_USB_C0_PD_SDA}, {"tcpc1", NPCX_I2C_PORT0_1, 400, GPIO_EC_I2C_USB_C1_PD_SCL, GPIO_EC_I2C_USB_C1_PD_SDA}, {"accelgyro", I2C_PORT_GYRO, 400, GPIO_EC_I2C_GYRO_SCL, GPIO_EC_I2C_GYRO_SDA}, {"sensors", NPCX_I2C_PORT2, 400, GPIO_EC_I2C_SENSOR_SCL, GPIO_EC_I2C_SENSOR_SDA}, {"batt", NPCX_I2C_PORT3, 100, GPIO_EC_I2C_POWER_SCL, GPIO_EC_I2C_POWER_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); #ifdef CONFIG_CMD_I2C_STRESS_TEST struct i2c_stress_test i2c_stress_tests[] = { /* NPCX_I2C_PORT0_0 */ #ifdef CONFIG_CMD_I2C_STRESS_TEST_TCPC { .port = NPCX_I2C_PORT0_0, .addr_flags = ANX74XX_I2C_ADDR1_FLAGS, .i2c_test = &anx74xx_i2c_stress_test_dev, }, #endif /* NPCX_I2C_PORT0_1 */ #ifdef CONFIG_CMD_I2C_STRESS_TEST_TCPC { .port = NPCX_I2C_PORT0_1, .addr_flags = PS8751_I2C_ADDR1_FLAGS, .i2c_test = &ps8xxx_i2c_stress_test_dev, }, #endif /* NPCX_I2C_PORT1 */ #ifdef CONFIG_CMD_I2C_STRESS_TEST_ACCEL { .port = I2C_PORT_GYRO, .addr_flags = BMI160_ADDR0_FLAGS, .i2c_test = &bmi160_i2c_stress_test_dev, }, #endif /* NPCX_I2C_PORT2 */ #ifdef CONFIG_CMD_I2C_STRESS_TEST_ACCEL { .port = I2C_PORT_LID_ACCEL, .addr_flags = KX022_ADDR1_FLAGS, .i2c_test = &kionix_i2c_stress_test_dev, }, #endif /* NPCX_I2C_PORT3 */ #ifdef CONFIG_CMD_I2C_STRESS_TEST_BATTERY { .i2c_test = &battery_i2c_stress_test_dev, }, #endif #ifdef CONFIG_CMD_I2C_STRESS_TEST_CHARGER { .i2c_test = &bd9995x_i2c_stress_test_dev, }, #endif }; const int i2c_test_dev_used = ARRAY_SIZE(i2c_stress_tests); #endif /* CONFIG_CMD_I2C_STRESS_TEST */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = { [USB_PD_PORT_ANX74XX] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = NPCX_I2C_PORT0_0, .addr_flags = ANX74XX_I2C_ADDR1_FLAGS, }, .drv = &anx74xx_tcpm_drv, }, [USB_PD_PORT_PS8751] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = NPCX_I2C_PORT0_1, .addr_flags = PS8751_I2C_ADDR1_FLAGS, }, .drv = &ps8xxx_tcpm_drv, }, }; uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_ODL)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const enum gpio_signal hibernate_wake_pins[] = { GPIO_AC_PRESENT, GPIO_LID_OPEN, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); static int ps8751_tune_mux(int port) { /* 0x98 sets lower EQ of DP port (4.5db) */ mux_write(port, PS8XXX_REG_MUX_DP_EQ_CONFIGURATION, 0x98); return EC_SUCCESS; } struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = { [USB_PD_PORT_ANX74XX] = { .driver = &anx74xx_tcpm_usb_mux_driver, .hpd_update = &anx74xx_tcpc_update_hpd_status, }, [USB_PD_PORT_PS8751] = { .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, .board_init = &ps8751_tune_mux, } }; const int usb_port_enable[CONFIG_USB_PORT_POWER_SMART_PORT_COUNT] = { GPIO_USB1_ENABLE, }; /** * Power on (or off) a single TCPC. * minimum on/off delays are included. * * @param port Port number of TCPC. * @param mode 0: power off, 1: power on. */ void board_set_tcpc_power_mode(int port, int mode) { if (port != USB_PD_PORT_ANX74XX) return; switch (mode) { case ANX74XX_NORMAL_MODE: gpio_set_level(GPIO_EN_USB_TCPC_PWR, 1); msleep(ANX74XX_PWR_H_RST_H_DELAY_MS); gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); break; case ANX74XX_STANDBY_MODE: gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); msleep(ANX74XX_RST_L_PWR_L_DELAY_MS); gpio_set_level(GPIO_EN_USB_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); break; default: break; } } /** * Reset all system PD/TCPC MCUs -- currently only called from * handle_pending_reboot() in common/power.c just before hard * resetting the system. This logic is likely not needed as the * PP3300_A rail should be dropped on EC reset. */ void board_reset_pd_mcu(void) { /* Assert reset to TCPC1 (ps8751) */ gpio_set_level(GPIO_USB_C1_PD_RST_ODL, 0); /* Assert reset to TCPC0 (anx3429) */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); /* TCPC1 (ps8751) requires 1ms reset down assertion */ msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS)); /* Deassert reset to TCPC1 */ gpio_set_level(GPIO_USB_C1_PD_RST_ODL, 1); /* Disable TCPC0 power */ gpio_set_level(GPIO_EN_USB_TCPC_PWR, 0); /* * anx3429 requires 10ms reset/power down assertion */ msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); board_set_tcpc_power_mode(USB_PD_PORT_ANX74XX, 1); } static void board_tcpc_init(void) { int port, reg; int count = 0; /* Wait for disconnected battery to wake up */ while (battery_hw_present() == BP_YES && battery_is_present() == BP_NO) { usleep(100 * MSEC); /* Give up waiting after 2 seconds */ if (++count > 20) break; } /* Only reset TCPC if not sysjump */ if (!system_jumped_to_this_image()) board_reset_pd_mcu(); /* * TODO: Remove when Coral is updated with PS8751 A3. * * Force PS8751 A2 to wake from low power mode. * If PS8751 remains in low power mode after sysjump, * TCPM_INIT will fail due to not able to access PS8751. * * NOTE: PS8751 A3 will wake on any I2C access. */ i2c_read8(NPCX_I2C_PORT0_1, 0x08, 0xA0, ®); /* Enable TCPC0 interrupt */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); /* Enable TCPC1 interrupt */ gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); #ifdef CONFIG_USB_PD_TCPC_LOW_POWER /* Enable CABLE_DET interrupt for ANX3429 wake from standby */ gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET); #endif /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) { const struct usb_mux *mux = &usb_muxes[port]; mux->hpd_update(port, 0, 0); } } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_DEFAULT); const struct temp_sensor_t temp_sensors[] = { /* FIXME(dhendrix): tweak action_delay_sec */ [TEMP_SENSOR_BATTERY] = {.name = "Battery", .type = TEMP_SENSOR_TYPE_BATTERY, .read = charge_get_battery_temp, .idx = 0, .action_delay_sec = 1}, [TEMP_SENSOR_AMBIENT] = {.name = "Ambient", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_51k1_47k_4050b, .idx = ADC_TEMP_SENSOR_AMB, .action_delay_sec = 5}, [TEMP_SENSOR_CHARGER] = {.name = "Charger", .type = TEMP_SENSOR_TYPE_BOARD, .read = get_temp_3v3_13k7_47k_4050b, .idx = ADC_TEMP_SENSOR_CHARGER, .action_delay_sec = 1}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* Called by APL power state machine when transitioning from G3 to S5 */ void chipset_pre_init_callback(void) { /* * No need to re-init PMIC since settings are sticky across sysjump. * However, be sure to check that PMIC is already enabled. If it is * then there's no need to re-sequence the PMIC. */ if (system_jumped_to_this_image() && gpio_get_level(GPIO_PMIC_EN)) return; /* Enable PP5000 before PP3300 due to NFC: chrome-os-partner:50807 */ gpio_set_level(GPIO_EN_PP5000, 1); while (!gpio_get_level(GPIO_PP5000_PG)) ; /* * To prevent SLP glitches, PMIC_EN (V5A_EN) should be enabled * at the same time as PP3300 (chrome-os-partner:51323). */ /* Enable 3.3V rail */ gpio_set_level(GPIO_EN_PP3300, 1); while (!gpio_get_level(GPIO_PP3300_PG)) ; /* Enable PMIC */ gpio_set_level(GPIO_PMIC_EN, 1); } static void board_set_tablet_mode(void) { int tablet_mode = 0; if (SKU_IS_CONVERTIBLE(sku_id)) tablet_mode = !gpio_get_level(GPIO_TABLET_MODE_L); tablet_set_mode(tablet_mode); } /* Initialize board. */ static void board_init(void) { /* Ensure tablet mode is initialized according to the hardware state * so that the cached state reflects reality. */ board_set_tablet_mode(); gpio_enable_interrupt(GPIO_TABLET_MODE_L); /* Enable charger interrupts */ gpio_enable_interrupt(GPIO_CHARGER_INT_L); /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_BASE_SIXAXIS_INT_L); /* Need to read SKU ID at least once each boot */ sku_id = BOARD_VERSION_UNKNOWN; } /* PP3300 needs to be enabled before TCPC init hooks */ DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_FIRST); int pd_snk_is_vbus_provided(int port) { if (port != 0 && port != 1) panic("Invalid charge port\n"); return bd9995x_is_vbus_provided(port); } /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { enum bd9995x_charge_port bd9995x_port; int bd9995x_port_select = 1; switch (charge_port) { case USB_PD_PORT_ANX74XX: case USB_PD_PORT_PS8751: /* Don't charge from a source port */ if (board_vbus_source_enabled(charge_port)) return -1; bd9995x_port = charge_port; break; case CHARGE_PORT_NONE: bd9995x_port_select = 0; bd9995x_port = BD9995X_CHARGE_PORT_BOTH; /* * To avoid inrush current from the external charger, enable * discharge on AC till the new charger is detected and * charge detect delay has passed. */ if (charge_get_percent() > 2) charger_discharge_on_ac(1); break; default: panic("Invalid charge port\n"); break; } CPRINTS("New chg p%d", charge_port); return bd9995x_select_input_port(bd9995x_port, bd9995x_port_select); } /** * Set the charge limit based upon desired maximum. * * @param port Port number. * @param supplier Charge supplier type. * @param charge_ma Desired charge limit (mA). * @param charge_mv Negotiated charge voltage (mV). */ void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* Enable charging trigger by BC1.2 detection */ int bc12_enable = (supplier == CHARGE_SUPPLIER_BC12_CDP || supplier == CHARGE_SUPPLIER_BC12_DCP || supplier == CHARGE_SUPPLIER_BC12_SDP || supplier == CHARGE_SUPPLIER_OTHER); if (bd9995x_bc12_enable_charging(port, bc12_enable)) return; charge_ma = (charge_ma * 95) / 100; charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } /** * Return if VBUS is sagging too low */ int board_is_vbus_too_low(int port, enum chg_ramp_vbus_state ramp_state) { return charger_get_vbus_voltage(port) < BD9995X_BC12_MIN_VOLTAGE; } static void enable_input_devices(void) { /* We need to turn on tablet mode for motion sense */ board_set_tablet_mode(); /* Then, we disable peripherals only when the lid reaches 360 position. * (It's probably already disabled by motion_sense_task.) * We deliberately do not enable peripherals when the lid is leaving * 360 position. Instead, we let motion_sense_task enable it once it * reaches laptop zone (180 or less). */ if (tablet_get_mode()) lid_angle_peripheral_enable(0); } /* Enable or disable input devices, based on chipset state and tablet mode */ #ifndef TEST_BUILD void lid_angle_peripheral_enable(int enable) { /* If the lid is in 360 position, ignore the lid angle, * which might be faulty. Disable keyboard. */ if (tablet_get_mode() || chipset_in_state(CHIPSET_STATE_ANY_OFF)) enable = 0; keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE); } #endif /* Called on AP S5 -> S3 transition */ static void board_chipset_startup(void) { /* Enable USB-A port. */ gpio_set_level(GPIO_USB1_ENABLE, 1); /* Enable Trackpad */ gpio_set_level(GPIO_EN_P3300_TRACKPAD_ODL, 0); hook_call_deferred(&enable_input_devices_data, 0); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S5 transition */ static void board_chipset_shutdown(void) { /* Disable USB-A port. */ gpio_set_level(GPIO_USB1_ENABLE, 0); /* Disable Trackpad */ gpio_set_level(GPIO_EN_P3300_TRACKPAD_ODL, 1); hook_call_deferred(&enable_input_devices_data, 0); /* FIXME(dhendrix): Drive USB_PD_RST_ODL low to prevent leakage? (see comment in schematic) */ } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); /* FIXME(dhendrix): Add CHIPSET_RESUME and CHIPSET_SUSPEND hooks to enable/disable sensors? */ /* Called on AP S3 -> S0 transition */ static void board_chipset_resume(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); /* Called on AP S0 -> S3 transition */ static void board_chipset_suspend(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); /* * FIXME(dhendrix): Weak symbol hack until we can get a better solution for * both Amenia and Coral. */ void chipset_do_shutdown(void) { /* Disable PMIC */ gpio_set_level(GPIO_PMIC_EN, 0); /*Disable 3.3V rail */ gpio_set_level(GPIO_EN_PP3300, 0); while (gpio_get_level(GPIO_PP3300_PG)) ; /*Disable 5V rail */ gpio_set_level(GPIO_EN_PP5000, 0); while (gpio_get_level(GPIO_PP5000_PG)) ; } void board_hibernate_late(void) { int i; const uint32_t hibernate_pins[][2] = { /* Turn off LEDs in hibernate */ {GPIO_BAT_LED_BLUE, GPIO_INPUT | GPIO_PULL_UP}, {GPIO_BAT_LED_AMBER, GPIO_INPUT | GPIO_PULL_UP}, {GPIO_LID_OPEN, GPIO_INT_RISING | GPIO_PULL_DOWN}, /* * BD99956 handles charge input automatically. We'll disable * charge output in hibernate. Charger will assert ACOK_OD * when VBUS or VCC are plugged in. */ {GPIO_USB_C0_5V_EN, GPIO_INPUT | GPIO_PULL_DOWN}, {GPIO_USB_C1_5V_EN, GPIO_INPUT | GPIO_PULL_DOWN}, }; /* Change GPIOs' state in hibernate for better power consumption */ for (i = 0; i < ARRAY_SIZE(hibernate_pins); ++i) gpio_set_flags(hibernate_pins[i][0], hibernate_pins[i][1]); gpio_config_module(MODULE_KEYBOARD_SCAN, 0); /* * Calling gpio_config_module sets disabled alternate function pins to * GPIO_INPUT. But to prevent keypresses causing leakage currents * while hibernating we want to enable GPIO_PULL_UP as well. */ gpio_set_flags_by_mask(0x2, 0x03, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags_by_mask(0x1, 0x7F, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags_by_mask(0x0, 0xE0, GPIO_INPUT | GPIO_PULL_UP); /* KBD_KSO2 needs to have a pull-down enabled instead of pull-up */ gpio_set_flags_by_mask(0x1, 0x80, GPIO_INPUT | GPIO_PULL_DOWN); } /* Motion sensors */ /* Mutexes */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* Matrix to rotate accelrator into standard reference frame */ const mat33_fp_t base_standard_ref = { { 0, FLOAT_TO_FP(-1), 0}, { FLOAT_TO_FP(1), 0, 0}, { 0, 0, FLOAT_TO_FP(1)} }; const mat33_fp_t mag_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }; /* sensor private data */ static struct kionix_accel_data g_kx022_data; static struct bmi160_drv_data_t g_bmi160_data; /* FIXME(dhendrix): Copied from Amenia, probably need to tweak for Coral */ struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_LID_ACCEL, .i2c_spi_addr_flags = KX022_ADDR1_FLAGS, .rot_standard_ref = NULL, /* Identity matrix. */ .default_range = 2, /* g, enough for laptop. */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* Sensor on for lid angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref, .default_range = 2, /* g, enough for laptop. */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor on for lid angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, }, }; unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); void board_hibernate(void) { /* * To support hibernate called from console commands, ectool commands * and key sequence, shutdown the AP before hibernating. */ chipset_do_shutdown(); /* Added delay to allow AP to settle down */ msleep(100); /* Enable both the VBUS & VCC ports before entering PG3 */ bd9995x_select_input_port(BD9995X_CHARGE_PORT_BOTH, 1); /* Turn BGATE OFF for saving the power */ bd9995x_set_power_save_mode(BD9995X_PWR_SAVE_MAX); } static void board_set_motion_sensor_count(uint8_t sku_id) { /* * There are two possible sensor configurations. Clamshell device will * not have any of the motion sensors populated, while convertible * devices have the BMI160 Accel/Gryo and Kionx KX022 lid acceleration * sensor. If a new SKU id is used that is not in the table, then the * number of motion sensors will remain as ARRAY_SIZE(motion_sensors). */ motion_sensor_count = SKU_IS_CONVERTIBLE(sku_id) ? ARRAY_SIZE(motion_sensors) : 0; CPRINTS("Motion Sensor Count = %d", motion_sensor_count); } struct { enum coral_board_version version; int thresh_mv; } const coral_board_versions[] = { /* Vin = 3.3V, Ideal voltage, R2 values listed below */ /* R1 = 51.1 kOhm */ { BOARD_VERSION_1, 200 }, /* 124 mV, 2.0 Kohm */ { BOARD_VERSION_2, 366 }, /* 278 mV, 4.7 Kohm */ { BOARD_VERSION_3, 550 }, /* 456 mV, 8.2 Kohm */ { BOARD_VERSION_4, 752 }, /* 644 mV, 12.4 Kohm */ { BOARD_VERSION_5, 927}, /* 860 mV, 18.0 Kohm */ { BOARD_VERSION_6, 1073 }, /* 993 mV, 22.0 Kohm */ { BOARD_VERSION_7, 1235 }, /* 1152 mV, 27.4 Kohm */ { BOARD_VERSION_8, 1386 }, /* 1318 mV, 34.0 Kohm */ { BOARD_VERSION_9, 1552 }, /* 1453 mV, 40.2 Kohm */ /* R1 = 10.0 kOhm */ { BOARD_VERSION_10, 1739 }, /* 1650 mV, 10.0 Kohm */ { BOARD_VERSION_11, 1976 }, /* 1827 mV, 12.4 Kohm */ { BOARD_VERSION_12, 2197 }, /* 2121 mV, 18.0 Kohm */ { BOARD_VERSION_13, 2344 }, /* 2269 mV, 22.0 Kohm */ { BOARD_VERSION_14, 2484 }, /* 2418 mV, 27.4 Kohm */ { BOARD_VERSION_15, 2636 }, /* 2550 mV, 34.0 Kohm */ { BOARD_VERSION_16, 2823 }, /* 2721 mV, 47.0 Kohm */ }; BUILD_ASSERT(ARRAY_SIZE(coral_board_versions) == BOARD_VERSION_COUNT); static int board_read_version(enum adc_channel chan) { int mv; int i; /* ID/SKU enable is active high */ gpio_set_flags(GPIO_EC_BRD_ID_EN, GPIO_OUT_HIGH); /* Wait to allow cap charge */ msleep(1); mv = adc_read_channel(chan); CPRINTS("ID/SKU ADC %d = %d mV", chan, mv); /* Disable ID/SKU circuit */ gpio_set_flags(GPIO_EC_BRD_ID_EN, GPIO_INPUT); if (mv == ADC_READ_ERROR) return BOARD_VERSION_UNKNOWN; for (i = 0; i < BOARD_VERSION_COUNT; i++) if (mv < coral_board_versions[i].thresh_mv) return coral_board_versions[i].version; return BOARD_VERSION_UNKNOWN; } int board_get_version(void) { static int version = BOARD_VERSION_UNKNOWN; if (version != BOARD_VERSION_UNKNOWN) return version; version = board_read_version(ADC_BOARD_ID); CPRINTS("Board version: %d", version); return version; } static void board_get_sku_id(void) { int sku_id_lower; int sku_id_higher; if (sku_id == BOARD_VERSION_UNKNOWN) { sku_id_lower = board_read_version(ADC_BOARD_SKU_0); sku_id_higher = board_read_version(ADC_BOARD_SKU_1); if ((sku_id_lower != BOARD_VERSION_UNKNOWN) && (sku_id_higher != BOARD_VERSION_UNKNOWN)) sku_id = (sku_id_higher << 4) | sku_id_lower; CPRINTS("SKU ID: %d", sku_id); /* Use sku_id to set motion sensor count */ board_set_motion_sensor_count(sku_id); if (0 == SKU_IS_CONVERTIBLE(sku_id)) { CPRINTS("Disable tablet mode interrupt"); gpio_disable_interrupt(GPIO_TABLET_MODE_L); /* Enfore device in laptop mode */ tablet_set_mode(0); } } } /* This can't run until after the ADC module has been initialized */ DECLARE_HOOK(HOOK_INIT, board_get_sku_id, HOOK_PRIO_INIT_ADC + 1); static void print_form_factor_list(int low, int high) { int id; int count = 0; if (high > 255) high = 255; for (id = low; id <= high; id++) { ccprintf("SKU ID %03d: %s\n", id, SKU_IS_CONVERTIBLE(id) ? "Convertible" : "Clamshell"); /* Don't print too many lines at once */ if (!(++count % 5)) msleep(20); } } static int command_sku(int argc, char **argv) { enum adc_channel chan; if (argc < 2) { system_get_sku_id(); ccprintf("SKU ID: %d\n", sku_id); return EC_SUCCESS; } if (!strcasecmp(argv[1], "form")) { if (argc >= 4) { char *e; int low, high; low = strtoi(argv[2], &e, 10); if (*e) return EC_ERROR_PARAM1; high = strtoi(argv[3], &e, 10); if (*e) return EC_ERROR_PARAM2; print_form_factor_list(low, high); return EC_SUCCESS; } else { return EC_ERROR_PARAM_COUNT; } } if (!strcasecmp(argv[1], "board")) chan = ADC_BOARD_ID; else if (!strcasecmp(argv[1], "line0")) chan = ADC_BOARD_SKU_0; else if (!strcasecmp(argv[1], "line1")) chan = ADC_BOARD_SKU_1; else return EC_ERROR_PARAM1; ccprintf("sku: %s = %d, adc %d\n", argv[1], board_read_version(chan), chan); return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(sku, command_sku, "", "Get board id, sku, form factor"); uint32_t system_get_sku_id(void) { if (sku_id == BOARD_VERSION_UNKNOWN) board_get_sku_id(); return (uint32_t)sku_id; } /* Keyboard scan setting */ struct keyboard_scan_config keyscan_config = { /* * F3 key scan cycle completed but scan input is not * charging to logic high when EC start scan next * column for "T" key, so we set .output_settle_us * to 80us from 50us. */ .output_settle_us = 80, .debounce_down_us = 9 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 3 * MSEC, .min_post_scan_delay_us = 1000, .poll_timeout_us = 100 * MSEC, .actual_key_mask = { 0x14, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */ }, }; uint32_t board_override_feature_flags0(uint32_t flags0) { uint32_t sku = system_get_sku_id(); /* * We always compile in backlight support for coral, but only some * models come with the hardware. Therefore, check if the current * device is one of them and return the default value - with backlight * here. */ if (sku == 8 || sku == 11) return flags0; // Report that there is no keyboard backlight flags0 &= ~EC_FEATURE_MASK_0(EC_FEATURE_PWM_KEYB); return flags0; } uint32_t board_override_feature_flags1(uint32_t flags1) { return flags1; }