/* Copyright 2012 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "adc.h" #include "adc_chip.h" #include "clock.h" #include "common.h" #include "console.h" #include "dma.h" #include "hooks.h" #include "registers.h" #include "task.h" #include "timer.h" #include "util.h" #define ADC_SINGLE_READ_TIMEOUT 3000 /* 3 ms */ #define SMPR1_EXPAND(v) ((v) | ((v) << 3) | ((v) << 6) | ((v) << 9) | \ ((v) << 12) | ((v) << 15) | ((v) << 18) | \ ((v) << 21)) #define SMPR2_EXPAND(v) (SMPR1_EXPAND(v) | ((v) << 24) | ((v) << 27)) /* Default ADC sample time = 13.5 cycles */ #ifndef CONFIG_ADC_SAMPLE_TIME #define CONFIG_ADC_SAMPLE_TIME 2 #endif struct mutex adc_lock; static int watchdog_ain_id; static inline void adc_set_channel(int sample_id, int channel) { uint32_t mask, val; volatile uint32_t *sqr_reg; if (sample_id < 6) { mask = 0x1f << (sample_id * 5); val = channel << (sample_id * 5); sqr_reg = &STM32_ADC_SQR3; } else if (sample_id < 12) { mask = 0x1f << ((sample_id - 6) * 5); val = channel << ((sample_id - 6) * 5); sqr_reg = &STM32_ADC_SQR2; } else { mask = 0x1f << ((sample_id - 12) * 5); val = channel << ((sample_id - 12) * 5); sqr_reg = &STM32_ADC_SQR1; } *sqr_reg = (*sqr_reg & ~mask) | val; } static void adc_configure(int ain_id) { /* Set ADC channel */ adc_set_channel(0, ain_id); /* Disable DMA */ STM32_ADC_CR2 &= ~BIT(8); /* Disable scan mode */ STM32_ADC_CR1 &= ~BIT(8); } static void __attribute__((unused)) adc_configure_all(void) { int i; /* Set ADC channels */ STM32_ADC_SQR1 = (ADC_CH_COUNT - 1) << 20; for (i = 0; i < ADC_CH_COUNT; ++i) adc_set_channel(i, adc_channels[i].channel); /* Enable DMA */ STM32_ADC_CR2 |= BIT(8); /* Enable scan mode */ STM32_ADC_CR1 |= BIT(8); } static inline int adc_powered(void) { return STM32_ADC_CR2 & BIT(0); } static inline int adc_conversion_ended(void) { return STM32_ADC_SR & BIT(1); } static int adc_watchdog_enabled(void) { return STM32_ADC_CR1 & BIT(23); } static int adc_enable_watchdog_no_lock(void) { /* Fail if watchdog already enabled */ if (adc_watchdog_enabled()) return EC_ERROR_UNKNOWN; /* Set channel */ STM32_ADC_SQR3 = watchdog_ain_id; STM32_ADC_SQR1 = 0; STM32_ADC_CR1 = (STM32_ADC_CR1 & ~0x1f) | watchdog_ain_id; /* Clear interrupt bit */ STM32_ADC_SR &= ~0x1; /* AWDSGL=1, SCAN=1, AWDIE=1, AWDEN=1 */ STM32_ADC_CR1 |= BIT(9) | BIT(8) | BIT(6) | BIT(23); /* Disable DMA */ STM32_ADC_CR2 &= ~BIT(8); /* CONT=1 */ STM32_ADC_CR2 |= BIT(1); /* Start conversion */ STM32_ADC_CR2 |= BIT(0); return EC_SUCCESS; } int adc_enable_watchdog(int ain_id, int high, int low) { int ret; if (!adc_powered()) return EC_ERROR_UNKNOWN; mutex_lock(&adc_lock); watchdog_ain_id = ain_id; /* Set thresholds */ STM32_ADC_HTR = high & 0xfff; STM32_ADC_LTR = low & 0xfff; ret = adc_enable_watchdog_no_lock(); mutex_unlock(&adc_lock); return ret; } static int adc_disable_watchdog_no_lock(void) { /* Fail if watchdog not running */ if (!adc_watchdog_enabled()) return EC_ERROR_UNKNOWN; /* AWDEN=0, AWDIE=0 */ STM32_ADC_CR1 &= ~BIT(23) & ~BIT(6); /* CONT=0 */ STM32_ADC_CR2 &= ~BIT(1); return EC_SUCCESS; } int adc_disable_watchdog(void) { int ret; if (!adc_powered()) return EC_ERROR_UNKNOWN; mutex_lock(&adc_lock); ret = adc_disable_watchdog_no_lock(); mutex_unlock(&adc_lock); return ret; } int adc_read_channel(enum adc_channel ch) { const struct adc_t *adc = adc_channels + ch; int value; int restore_watchdog = 0; timestamp_t deadline; if (!adc_powered()) return EC_ERROR_UNKNOWN; mutex_lock(&adc_lock); if (adc_watchdog_enabled()) { restore_watchdog = 1; adc_disable_watchdog_no_lock(); } adc_configure(adc->channel); /* Clear EOC bit */ STM32_ADC_SR &= ~BIT(1); /* Start conversion (Note: For now only confirmed on F4) */ #if defined(CHIP_FAMILY_STM32F4) STM32_ADC_CR2 |= STM32_ADC_CR2_ADON | STM32_ADC_CR2_SWSTART; #else STM32_ADC_CR2 |= STM32_ADC_CR2_ADON; #endif /* Wait for EOC bit set */ deadline.val = get_time().val + ADC_SINGLE_READ_TIMEOUT; value = ADC_READ_ERROR; do { if (adc_conversion_ended()) { value = STM32_ADC_DR & ADC_READ_MAX; break; } } while (!timestamp_expired(deadline, NULL)); if (restore_watchdog) adc_enable_watchdog_no_lock(); mutex_unlock(&adc_lock); return (value == ADC_READ_ERROR) ? ADC_READ_ERROR : value * adc->factor_mul / adc->factor_div + adc->shift; } static void adc_init(void) { /* * Enable ADC clock. * APB2 clock is 16MHz. ADC clock prescaler is /2. * So the ADC clock is 8MHz. */ clock_enable_module(MODULE_ADC, 1); /* * ADC clock is divided with respect to AHB, so no delay needed * here. If ADC clock is the same as AHB, a dummy read on ADC * register is needed here. */ if (!adc_powered()) { /* Power on ADC module */ STM32_ADC_CR2 |= STM32_ADC_CR2_ADON; /* Reset calibration */ STM32_ADC_CR2 |= STM32_ADC_CR2_RSTCAL; while (STM32_ADC_CR2 & STM32_ADC_CR2_RSTCAL) ; /* A/D Calibrate */ STM32_ADC_CR2 |= STM32_ADC_CR2_CAL; while (STM32_ADC_CR2 & STM32_ADC_CR2_CAL) ; } /* Set right alignment */ STM32_ADC_CR2 &= ~STM32_ADC_CR2_ALIGN; /* Set sample time of all channels */ STM32_ADC_SMPR1 = SMPR1_EXPAND(CONFIG_ADC_SAMPLE_TIME); STM32_ADC_SMPR2 = SMPR2_EXPAND(CONFIG_ADC_SAMPLE_TIME); } DECLARE_HOOK(HOOK_INIT, adc_init, HOOK_PRIO_INIT_ADC);