coreboot-libre-fam15h-rdimm/3rdparty/chromeec/baseboard/grunt/baseboard.c

799 lines
20 KiB
C

/* Copyright 2018 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Grunt family-specific configuration */
#include "adc.h"
#include "adc_chip.h"
#include "button.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "charge_state_v2.h"
#include "common.h"
#include "compile_time_macros.h"
#include "console.h"
#include "cros_board_info.h"
#include "driver/accel_kionix.h"
#include "driver/accel_kx022.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/bc12/max14637.h"
#include "driver/ppc/sn5s330.h"
#include "driver/tcpm/anx7447.h"
#include "driver/tcpm/anx74xx.h"
#include "driver/tcpm/ps8xxx.h"
#include "driver/temp_sensor/sb_tsi.h"
#include "ec_commands.h"
#include "extpower.h"
#include "gpio.h"
#include "hooks.h"
#include "i2c.h"
#include "keyboard_scan.h"
#include "lid_switch.h"
#include "motion_sense.h"
#include "power.h"
#include "power_button.h"
#include "registers.h"
#include "switch.h"
#include "system.h"
#include "task.h"
#include "tcpci.h"
#include "temp_sensor.h"
#include "thermistor.h"
#include "usb_mux.h"
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
#include "usbc_ppc.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args)
const struct adc_t adc_channels[] = {
[ADC_TEMP_SENSOR_CHARGER] = {
"CHARGER", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX+1, 0
},
[ADC_TEMP_SENSOR_SOC] = {
"SOC", NPCX_ADC_CH1, ADC_MAX_VOLT, ADC_READ_MAX+1, 0
},
[ADC_VBUS] = {
"VBUS", NPCX_ADC_CH8, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0
},
[ADC_SKU_ID1] = {
"SKU1", NPCX_ADC_CH9, ADC_MAX_VOLT, ADC_READ_MAX+1, 0
},
[ADC_SKU_ID2] = {
"SKU2", NPCX_ADC_CH4, ADC_MAX_VOLT, ADC_READ_MAX+1, 0
},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/* Power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
{GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"},
{GPIO_PCH_SLP_S5_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S5_DEASSERTED"},
{GPIO_S0_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "S0_PGOOD"},
{GPIO_S5_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "S5_PGOOD"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = {
#ifdef VARIANT_GRUNT_TCPC_0_ANX3429
[USB_PD_PORT_ANX74XX] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC0,
.addr_flags = ANX74XX_I2C_ADDR1_FLAGS,
},
.drv = &anx74xx_tcpm_drv,
/* Alert is active-low, open-drain */
.flags = TCPC_FLAGS_ALERT_OD,
},
#elif defined(VARIANT_GRUNT_TCPC_0_ANX3447)
[USB_PD_PORT_ANX74XX] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC0,
.addr_flags = AN7447_TCPC0_I2C_ADDR_FLAGS,
},
.drv = &anx7447_tcpm_drv,
/* Alert is active-low, push-pull */
.flags = 0,
},
#endif
[USB_PD_PORT_PS8751] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC1,
.addr_flags = PS8751_I2C_ADDR1_FLAGS,
},
.drv = &ps8xxx_tcpm_drv,
/* Alert is active-low, push-pull */
.flags = 0,
},
};
void tcpc_alert_event(enum gpio_signal signal)
{
int port = -1;
switch (signal) {
case GPIO_USB_C0_PD_INT_ODL:
port = 0;
break;
case GPIO_USB_C1_PD_INT_ODL:
port = 1;
break;
default:
return;
}
schedule_deferred_pd_interrupt(port);
}
void board_tcpc_init(void)
{
int port;
/* Only reset TCPC if not sysjump */
if (!system_jumped_to_this_image())
board_reset_pd_mcu();
/* Enable PPC interrupts. */
gpio_enable_interrupt(GPIO_USB_C0_SWCTL_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_SWCTL_INT_ODL);
/* Enable TCPC interrupts. */
gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL);
#ifdef VARIANT_GRUNT_TCPC_0_ANX3429
/* Enable CABLE_DET interrupt for ANX3429 wake from standby */
gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET);
#endif
/*
* Initialize HPD to low; after sysjump SOC needs to see
* HPD pulse to enable video path
*/
for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) {
const struct usb_mux *mux = &usb_muxes[port];
mux->hpd_update(port, 0, 0);
}
}
DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C + 1);
uint16_t tcpc_get_alert_status(void)
{
uint16_t status = 0;
if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) {
#ifdef VARIANT_GRUNT_TCPC_0_ANX3429
if (gpio_get_level(GPIO_USB_C0_PD_RST_L))
#elif defined(VARIANT_GRUNT_TCPC_0_ANX3447)
if (!gpio_get_level(GPIO_USB_C0_PD_RST))
#endif
status |= PD_STATUS_TCPC_ALERT_0;
}
if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C1_PD_RST_L))
status |= PD_STATUS_TCPC_ALERT_1;
}
return status;
}
#ifdef VARIANT_GRUNT_TCPC_0_ANX3429
static void anx74xx_cable_det_handler(void)
{
int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET);
int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_L);
/*
* A cable_det low->high transition was detected. If following the
* debounce time, cable_det is high, and reset_n is low, then ANX3429 is
* currently in standby mode and needs to be woken up. Set the
* TCPC_RESET event which will bring the ANX3429 out of standby
* mode. Setting this event is gated on reset_n being low because the
* ANX3429 will always set cable_det when transitioning to normal mode
* and if in normal mode, then there is no need to trigger a tcpc reset.
*/
if (cable_det && !reset_n)
task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0);
}
DECLARE_DEFERRED(anx74xx_cable_det_handler);
void anx74xx_cable_det_interrupt(enum gpio_signal signal)
{
/* debounce for 2 msec */
hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC));
}
/**
* Power on (or off) a single TCPC.
* minimum on/off delays are included.
*
* @param port Port number of TCPC.
* @param mode 0: power off, 1: power on.
*/
void board_set_tcpc_power_mode(int port, int mode)
{
if (port != USB_PD_PORT_ANX74XX)
return;
switch (mode) {
case ANX74XX_NORMAL_MODE:
gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 1);
msleep(ANX74XX_PWR_H_RST_H_DELAY_MS);
gpio_set_level(GPIO_USB_C0_PD_RST_L, 1);
break;
case ANX74XX_STANDBY_MODE:
gpio_set_level(GPIO_USB_C0_PD_RST_L, 0);
msleep(ANX74XX_RST_L_PWR_L_DELAY_MS);
gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0);
msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS);
break;
default:
break;
}
}
#endif /* VARIANT_GRUNT_TCPC_0_ANX3429 */
void board_reset_pd_mcu(void)
{
#ifdef VARIANT_GRUNT_TCPC_0_ANX3429
/* Assert reset to TCPC1 (ps8751) */
gpio_set_level(GPIO_USB_C1_PD_RST_L, 0);
/* Assert reset to TCPC0 (anx3429) */
gpio_set_level(GPIO_USB_C0_PD_RST_L, 0);
/* TCPC1 (ps8751) requires 1ms reset down assertion */
msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS));
/* Deassert reset to TCPC1 */
gpio_set_level(GPIO_USB_C1_PD_RST_L, 1);
/* Disable TCPC0 power */
gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0);
/*
* anx3429 requires 10ms reset/power down assertion
*/
msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS);
board_set_tcpc_power_mode(USB_PD_PORT_ANX74XX, 1);
#elif defined(VARIANT_GRUNT_TCPC_0_ANX3447)
/* Assert reset to TCPC0 (anx3447) */
gpio_set_level(GPIO_USB_C0_PD_RST, 1);
msleep(ANX74XX_RESET_HOLD_MS);
gpio_set_level(GPIO_USB_C0_PD_RST, 0);
msleep(ANX74XX_RESET_FINISH_MS);
/* Assert reset to TCPC1 (ps8751) */
gpio_set_level(GPIO_USB_C1_PD_RST_L, 0);
msleep(PS8XXX_RESET_DELAY_MS);
gpio_set_level(GPIO_USB_C1_PD_RST_L, 1);
#endif
}
struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = {
#ifdef VARIANT_GRUNT_TCPC_0_ANX3429
[USB_PD_PORT_ANX74XX] = {
.driver = &anx74xx_tcpm_usb_mux_driver,
.hpd_update = &anx74xx_tcpc_update_hpd_status,
},
#elif defined(VARIANT_GRUNT_TCPC_0_ANX3447)
[USB_PD_PORT_ANX74XX] = {
.driver = &anx7447_usb_mux_driver,
.hpd_update = &anx7447_tcpc_update_hpd_status,
},
#endif
[USB_PD_PORT_PS8751] = {
.driver = &tcpci_tcpm_usb_mux_driver,
.hpd_update = &ps8xxx_tcpc_update_hpd_status,
}
};
struct ppc_config_t ppc_chips[] = {
{
.i2c_port = I2C_PORT_TCPC0,
.i2c_addr_flags = SN5S330_ADDR0_FLAGS,
.drv = &sn5s330_drv
},
{
.i2c_port = I2C_PORT_TCPC1,
.i2c_addr_flags = SN5S330_ADDR0_FLAGS,
.drv = &sn5s330_drv
},
};
unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips);
void ppc_interrupt(enum gpio_signal signal)
{
int port = (signal == GPIO_USB_C0_SWCTL_INT_ODL) ? 0 : 1;
sn5s330_interrupt(port);
}
int ppc_get_alert_status(int port)
{
if (port == 0)
return gpio_get_level(GPIO_USB_C0_SWCTL_INT_ODL) == 0;
else
return gpio_get_level(GPIO_USB_C1_SWCTL_INT_ODL) == 0;
}
void board_overcurrent_event(int port, int is_overcurrented)
{
enum gpio_signal signal = (port == 0) ? GPIO_USB_C0_OC_L
: GPIO_USB_C1_OC_L;
/* Note that the levels are inverted because the pin is active low. */
int lvl = is_overcurrented ? 0 : 1;
gpio_set_level(signal, lvl);
CPRINTS("p%d: overcurrent!", port);
}
/* BC 1.2 chip Configuration */
const struct max14637_config_t max14637_config[CONFIG_USB_PD_PORT_COUNT] = {
[USB_PD_PORT_ANX74XX] = {
.chip_enable_pin = GPIO_USB_C0_BC12_VBUS_ON_L,
.chg_det_pin = GPIO_USB_C0_BC12_CHG_DET,
.flags = MAX14637_FLAGS_ENABLE_ACTIVE_LOW,
},
[USB_PD_PORT_PS8751] = {
.chip_enable_pin = GPIO_USB_C1_BC12_VBUS_ON_L,
.chg_det_pin = GPIO_USB_C1_BC12_CHG_DET,
.flags = MAX14637_FLAGS_ENABLE_ACTIVE_LOW,
},
};
const int usb_port_enable[USB_PORT_COUNT] = {
GPIO_EN_USB_A0_5V,
GPIO_EN_USB_A1_5V,
};
static void baseboard_chipset_suspend(void)
{
/*
* Turn off display backlight. This ensures that the backlight stays off
* in S3, no matter what the AP has it set to. The AP also controls it.
* This is here more for legacy reasons.
*/
gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, baseboard_chipset_suspend,
HOOK_PRIO_DEFAULT);
static void baseboard_chipset_resume(void)
{
/* Allow display backlight to turn on. See above backlight comment */
gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, baseboard_chipset_resume, HOOK_PRIO_DEFAULT);
static void baseboard_chipset_startup(void)
{
/*
* Enable sensor power (lid accel, gyro) in S3 for calculating the lid
* angle (needed on convertibles to disable resume from keyboard in
* tablet mode).
*/
gpio_set_level(GPIO_EN_PP1800_SENSOR, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, baseboard_chipset_startup,
HOOK_PRIO_DEFAULT);
static void baseboard_chipset_shutdown(void)
{
/* Disable sensor power (lid accel, gyro) in S5. */
gpio_set_level(GPIO_EN_PP1800_SENSOR, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, baseboard_chipset_shutdown,
HOOK_PRIO_DEFAULT);
int board_is_i2c_port_powered(int port)
{
if (port != I2C_PORT_SENSOR)
return 1;
/* Sensor power (lid accel, gyro) is off in S5 (and G3). */
return chipset_in_state(CHIPSET_STATE_ANY_OFF) ? 0 : 1;
}
int board_set_active_charge_port(int port)
{
int i;
CPRINTS("New chg p%d", port);
if (port == CHARGE_PORT_NONE) {
/* Disable all ports. */
for (i = 0; i < ppc_cnt; i++) {
if (ppc_vbus_sink_enable(i, 0))
CPRINTS("p%d: sink disable failed.", i);
}
return EC_SUCCESS;
}
/* Check if the port is sourcing VBUS. */
if (ppc_is_sourcing_vbus(port)) {
CPRINTF("Skip enable p%d", port);
return EC_ERROR_INVAL;
}
/*
* Turn off the other ports' sink path FETs, before enabling the
* requested charge port.
*/
for (i = 0; i < ppc_cnt; i++) {
if (i == port)
continue;
if (ppc_vbus_sink_enable(i, 0))
CPRINTS("p%d: sink disable failed.", i);
}
/* Enable requested charge port. */
if (ppc_vbus_sink_enable(port, 1)) {
CPRINTS("p%d: sink enable failed.");
return EC_ERROR_UNKNOWN;
}
return EC_SUCCESS;
}
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
/*
* Limit the input current to 95% negotiated limit,
* to account for the charger chip margin.
*/
charge_ma = charge_ma * 95 / 100;
charge_set_input_current_limit(MAX(charge_ma,
CONFIG_CHARGER_INPUT_CURRENT),
charge_mv);
}
/* Keyboard scan setting */
struct keyboard_scan_config keyscan_config = {
/* Extra delay when KSO2 is tied to Cr50. */
.output_settle_us = 60,
.debounce_down_us = 6 * MSEC,
.debounce_up_us = 30 * MSEC,
.scan_period_us = 1500,
.min_post_scan_delay_us = 1000,
.poll_timeout_us = SECOND,
.actual_key_mask = {
0x3c, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff,
0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */
},
};
/*
* We use 11 as the scaling factor so that the maximum mV value below (2761)
* can be compressed to fit in a uint8_t.
*/
#define THERMISTOR_SCALING_FACTOR 11
/*
* Values are calculated from the "Resistance VS. Temperature" table on the
* Murata page for part NCP15WB473F03RC. Vdd=3.3V, R=30.9Kohm.
*/
static const struct thermistor_data_pair thermistor_data[] = {
{ 2761 / THERMISTOR_SCALING_FACTOR, 0},
{ 2492 / THERMISTOR_SCALING_FACTOR, 10},
{ 2167 / THERMISTOR_SCALING_FACTOR, 20},
{ 1812 / THERMISTOR_SCALING_FACTOR, 30},
{ 1462 / THERMISTOR_SCALING_FACTOR, 40},
{ 1146 / THERMISTOR_SCALING_FACTOR, 50},
{ 878 / THERMISTOR_SCALING_FACTOR, 60},
{ 665 / THERMISTOR_SCALING_FACTOR, 70},
{ 500 / THERMISTOR_SCALING_FACTOR, 80},
{ 434 / THERMISTOR_SCALING_FACTOR, 85},
{ 376 / THERMISTOR_SCALING_FACTOR, 90},
{ 326 / THERMISTOR_SCALING_FACTOR, 95},
{ 283 / THERMISTOR_SCALING_FACTOR, 100}
};
static const struct thermistor_info thermistor_info = {
.scaling_factor = THERMISTOR_SCALING_FACTOR,
.num_pairs = ARRAY_SIZE(thermistor_data),
.data = thermistor_data,
};
static int board_get_temp(int idx, int *temp_k)
{
/* idx is the sensor index set below in temp_sensors[] */
int mv = adc_read_channel(
idx ? ADC_TEMP_SENSOR_SOC : ADC_TEMP_SENSOR_CHARGER);
int temp_c;
if (mv < 0)
return -1;
temp_c = thermistor_linear_interpolate(mv, &thermistor_info);
*temp_k = C_TO_K(temp_c);
return 0;
}
const struct temp_sensor_t temp_sensors[] = {
{"Charger", TEMP_SENSOR_TYPE_BOARD, board_get_temp, 0, 1},
{"SOC", TEMP_SENSOR_TYPE_BOARD, board_get_temp, 1, 5},
{"CPU", TEMP_SENSOR_TYPE_CPU, sb_tsi_get_val, 0, 4},
};
BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT);
#ifdef HAS_TASK_MOTIONSENSE
/* Motion sensors */
static struct mutex g_lid_mutex;
static struct mutex g_base_mutex;
mat33_fp_t grunt_base_standard_ref = {
{ FLOAT_TO_FP(1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
mat33_fp_t lid_standard_ref = {
{ FLOAT_TO_FP(1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
/* sensor private data */
static struct kionix_accel_data g_kx022_data;
static struct bmi160_drv_data_t g_bmi160_data;
/* TODO(gcc >= 5.0) Remove the casts to const pointer at rot_standard_ref */
struct motion_sensor_t motion_sensors[] = {
[LID_ACCEL] = {
.name = "Lid Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_KX022,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &kionix_accel_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_kx022_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = KX022_ADDR1_FLAGS,
.rot_standard_ref = (const mat33_fp_t *)&lid_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = KX022_ACCEL_MIN_FREQ,
.max_frequency = KX022_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
},
},
},
[BASE_ACCEL] = {
.name = "Base Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = 2, /* g, enough for laptop */
.rot_standard_ref = (const mat33_fp_t *)&grunt_base_standard_ref,
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
},
},
},
[BASE_GYRO] = {
.name = "Base Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = 1000, /* dps */
.rot_standard_ref = (const mat33_fp_t *)&grunt_base_standard_ref,
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
},
};
unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
#endif /* HAS_TASK_MOTIONSENSE */
#ifndef TEST_BUILD
void lid_angle_peripheral_enable(int enable)
{
if (board_is_convertible())
keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE);
}
#endif
static const int sku_thresh_mv[] = {
/* Vin = 3.3V, Ideal voltage, R2 values listed below */
/* R1 = 51.1 kOhm */
200, /* 124 mV, 2.0 Kohm */
366, /* 278 mV, 4.7 Kohm */
550, /* 456 mV, 8.2 Kohm */
752, /* 644 mV, 12.4 Kohm */
927, /* 860 mV, 18.0 Kohm */
1073, /* 993 mV, 22.0 Kohm */
1235, /* 1152 mV, 27.4 Kohm */
1386, /* 1318 mV, 34.0 Kohm */
1552, /* 1453 mV, 40.2 Kohm */
/* R1 = 10.0 kOhm */
1739, /* 1650 mV, 10.0 Kohm */
1976, /* 1827 mV, 12.4 Kohm */
2197, /* 2121 mV, 18.0 Kohm */
2344, /* 2269 mV, 22.0 Kohm */
2484, /* 2418 mV, 27.4 Kohm */
2636, /* 2550 mV, 34.0 Kohm */
2823, /* 2721 mV, 47.0 Kohm */
};
static int board_read_sku_adc(enum adc_channel chan)
{
int mv;
int i;
mv = adc_read_channel(chan);
if (mv == ADC_READ_ERROR)
return -1;
for (i = 0; i < ARRAY_SIZE(sku_thresh_mv); i++)
if (mv < sku_thresh_mv[i])
return i;
return -1;
}
static uint32_t board_get_adc_sku_id(void)
{
int sku_id1, sku_id2;
sku_id1 = board_read_sku_adc(ADC_SKU_ID1);
sku_id2 = board_read_sku_adc(ADC_SKU_ID2);
if (sku_id1 < 0 || sku_id2 < 0)
return 0;
return (sku_id2 << 4) | sku_id1;
}
static int board_get_gpio_board_version(void)
{
return
(!!gpio_get_level(GPIO_BOARD_VERSION1) << 0) |
(!!gpio_get_level(GPIO_BOARD_VERSION2) << 1) |
(!!gpio_get_level(GPIO_BOARD_VERSION3) << 2);
}
static int board_version;
static uint32_t sku_id;
static void cbi_init(void)
{
board_version = board_get_gpio_board_version();
sku_id = board_get_adc_sku_id();
/*
* Use board version and SKU ID from CBI EEPROM if the board supports
* it and the SKU ID set via resistors + ADC is not valid.
*/
#ifdef CONFIG_CROS_BOARD_INFO
if (sku_id == 0 || sku_id == 0xff) {
uint32_t val;
if (cbi_get_board_version(&val) == EC_SUCCESS)
board_version = val;
if (cbi_get_sku_id(&val) == EC_SUCCESS)
sku_id = val;
}
#endif
#ifdef HAS_TASK_MOTIONSENSE
board_update_sensor_config_from_sku();
#endif
ccprints("Board Version: %d (0x%x)", board_version, board_version);
ccprints("SKU: %d (0x%x)", sku_id, sku_id);
}
/*
* Reading the SKU resistors requires the ADC module. If we are using EEPROM
* then we also need the I2C module, but that is available before ADC.
*/
DECLARE_HOOK(HOOK_INIT, cbi_init, HOOK_PRIO_INIT_ADC + 1);
uint32_t system_get_sku_id(void)
{
return sku_id;
}
int board_get_version(void)
{
return board_version;
}
/*
* Returns 1 for boards that are convertible into tablet mode, and zero for
* clamshells.
*/
int board_is_convertible(void)
{
/* Grunt: 6 */
/* Kasumi360: 82 */
/* Treeya360: a8-af */
return (sku_id == 6 || sku_id == 82 ||
((sku_id >= 0xa8) && (sku_id <= 0xaf)));
}
int board_is_lid_angle_tablet_mode(void)
{
return board_is_convertible();
}
uint32_t board_override_feature_flags0(uint32_t flags0)
{
/*
* Remove keyboard backlight feature for devices that don't support it.
* All Treeya and Treeya360 models do not support keyboard backlight.
*/
if (sku_id == 16 || sku_id == 17 ||
sku_id == 20 || sku_id == 21 ||
sku_id == 32 || sku_id == 33 ||
sku_id == 40 || sku_id == 41 ||
((sku_id >= 0xa0) && (sku_id <= 0xaf)))
return (flags0 & ~EC_FEATURE_MASK_0(EC_FEATURE_PWM_KEYB));
else
return flags0;
}
uint32_t board_override_feature_flags1(uint32_t flags1)
{
return flags1;
}
void board_hibernate(void)
{
/*
* Some versions of some boards keep the port 0 PPC powered on while
* the EC hibernates (so Closed Case Debugging keeps working).
* Make sure the source FET is off and turn on the sink FET, so that
* plugging in AC will wake the EC. This matches the dead-battery
* behavior of the powered off PPC.
*/
ppc_vbus_source_enable(0, 0);
ppc_vbus_sink_enable(0, 1);
}