coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/stm32/usb_power.c

734 lines
19 KiB
C

/* Copyright 2016 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "common.h"
#include "dma.h"
#include "hooks.h"
#include "i2c.h"
#include "link_defs.h"
#include "registers.h"
#include "timer.h"
#include "usb_descriptor.h"
#include "usb_power.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_I2C, format, ## args)
static int usb_power_init_inas(struct usb_power_config const *config);
static int usb_power_read(struct usb_power_config const *config);
static int usb_power_write_line(struct usb_power_config const *config);
void usb_power_deferred_rx(struct usb_power_config const *config)
{
int rx_count = rx_ep_pending(config->endpoint);
/* Handle an incoming command if available */
if (rx_count)
usb_power_read(config);
}
void usb_power_deferred_tx(struct usb_power_config const *config)
{
struct usb_power_state *state = config->state;
if (!tx_ep_is_ready(config->endpoint))
return;
/* We've replied, set up the next read. */
if (!rx_ep_is_active(config->endpoint)) {
/* Remove any active dma region from output buffer */
state->reports_xmit_active = state->reports_tail;
/* Wait for the next command */
usb_read_ep(config->endpoint,
config->ep->out_databuffer_max,
config->ep->out_databuffer);
return;
}
}
/* Reset stream */
void usb_power_event(struct usb_power_config const *config,
enum usb_ep_event evt)
{
if (evt != USB_EVENT_RESET)
return;
config->ep->out_databuffer = config->state->rx_buf;
config->ep->out_databuffer_max = sizeof(config->state->rx_buf);
config->ep->in_databuffer = config->state->tx_buf;
config->ep->in_databuffer_max = sizeof(config->state->tx_buf);
epN_reset(config->endpoint);
/* Flush any queued data */
hook_call_deferred(config->ep->rx_deferred, 0);
hook_call_deferred(config->ep->tx_deferred, 0);
}
/* Write one or more power records to USB */
static int usb_power_write_line(struct usb_power_config const *config)
{
struct usb_power_state *state = config->state;
struct usb_power_report *r = (struct usb_power_report *)(
state->reports_data_area +
(USB_POWER_RECORD_SIZE(state->ina_count)
* state->reports_tail));
/* status + size + timestamps + power list */
size_t bytes = USB_POWER_RECORD_SIZE(state->ina_count);
/* Check if queue has active data. */
if (config->state->reports_head != config->state->reports_tail) {
int recordcount = 1;
/* We'll concatenate all the upcoming recrds. */
if (config->state->reports_tail < config->state->reports_head)
recordcount = config->state->reports_head -
config->state->reports_tail;
else
recordcount = state->max_cached -
config->state->reports_tail;
state->reports_xmit_active = state->reports_tail;
state->reports_tail = (state->reports_tail + recordcount) %
state->max_cached;
usb_write_ep(config->endpoint, bytes * recordcount, r);
return bytes;
}
return 0;
}
static int usb_power_state_reset(struct usb_power_config const *config)
{
struct usb_power_state *state = config->state;
state->state = USB_POWER_STATE_OFF;
state->reports_head = 0;
state->reports_tail = 0;
state->reports_xmit_active = 0;
CPRINTS("[RESET] STATE -> OFF");
return USB_POWER_SUCCESS;
}
static int usb_power_state_stop(struct usb_power_config const *config)
{
struct usb_power_state *state = config->state;
/* Only a valid transition from CAPTURING */
if (state->state != USB_POWER_STATE_CAPTURING) {
CPRINTS("[STOP] Error not capturing.");
return USB_POWER_ERROR_NOT_CAPTURING;
}
state->state = USB_POWER_STATE_OFF;
state->reports_head = 0;
state->reports_tail = 0;
state->reports_xmit_active = 0;
state->stride_bytes = 0;
CPRINTS("[STOP] STATE: CAPTURING -> OFF");
return USB_POWER_SUCCESS;
}
static int usb_power_state_start(struct usb_power_config const *config,
union usb_power_command_data *cmd, int count)
{
struct usb_power_state *state = config->state;
int integration_us = cmd->start.integration_us;
int ret;
if (state->state != USB_POWER_STATE_SETUP) {
CPRINTS("[START] Error not setup.");
return USB_POWER_ERROR_NOT_SETUP;
}
if (count != sizeof(struct usb_power_command_start)) {
CPRINTS("[START] Error count %d is not %d", (int)count,
sizeof(struct usb_power_command_start));
return USB_POWER_ERROR_READ_SIZE;
}
if (integration_us == 0) {
CPRINTS("[START] integration_us cannot be 0");
return USB_POWER_ERROR_UNKNOWN;
}
/* Calculate the reports array */
state->stride_bytes = USB_POWER_RECORD_SIZE(state->ina_count);
state->max_cached = USB_POWER_MAX_CACHED(state->ina_count);
state->integration_us = integration_us;
ret = usb_power_init_inas(config);
if (ret)
return USB_POWER_ERROR_INVAL;
state->state = USB_POWER_STATE_CAPTURING;
CPRINTS("[START] STATE: SETUP -> CAPTURING %dus", integration_us);
/* Find our starting time. */
config->state->base_time = get_time().val;
hook_call_deferred(config->deferred_cap, state->integration_us);
return USB_POWER_SUCCESS;
}
static int usb_power_state_settime(struct usb_power_config const *config,
union usb_power_command_data *cmd, int count)
{
if (count != sizeof(struct usb_power_command_settime)) {
CPRINTS("[SETTIME] Error: count %d is not %d",
(int)count, sizeof(struct usb_power_command_settime));
return USB_POWER_ERROR_READ_SIZE;
}
/* Find the offset between microcontroller clock and host clock. */
if (cmd->settime.time)
config->state->wall_offset = cmd->settime.time - get_time().val;
else
config->state->wall_offset = 0;
return USB_POWER_SUCCESS;
}
static int usb_power_state_addina(struct usb_power_config const *config,
union usb_power_command_data *cmd, int count)
{
struct usb_power_state *state = config->state;
struct usb_power_ina_cfg *ina;
int i;
/* Only valid from OFF or SETUP */
if ((state->state != USB_POWER_STATE_OFF) &&
(state->state != USB_POWER_STATE_SETUP)) {
CPRINTS("[ADDINA] Error incorrect state.");
return USB_POWER_ERROR_NOT_SETUP;
}
if (count != sizeof(struct usb_power_command_addina)) {
CPRINTS("[ADDINA] Error count %d is not %d",
(int)count, sizeof(struct usb_power_command_addina));
return USB_POWER_ERROR_READ_SIZE;
}
if (state->ina_count >= USB_POWER_MAX_READ_COUNT) {
CPRINTS("[ADDINA] Error INA list full");
return USB_POWER_ERROR_FULL;
}
/* Transition to SETUP state if necessary and clear INA data */
if (state->state == USB_POWER_STATE_OFF) {
state->state = USB_POWER_STATE_SETUP;
state->ina_count = 0;
}
if ((cmd->addina.type < USBP_INA231_POWER) ||
(cmd->addina.type > USBP_INA231_SHUNTV)) {
CPRINTS("[ADDINA] Error INA type 0x%x invalid",
(int)(cmd->addina.type));
return USB_POWER_ERROR_INVAL;
}
if (cmd->addina.rs == 0) {
CPRINTS("[ADDINA] Error INA resistance cannot be zero!");
return USB_POWER_ERROR_INVAL;
}
/* Select INA to configure */
ina = state->ina_cfg + state->ina_count;
ina->port = cmd->addina.port;
ina->addr_flags = cmd->addina.addr_flags;
ina->rs = cmd->addina.rs;
ina->type = cmd->addina.type;
/*
* INAs can be shared, in that they will have various values
* (and therefore registers) read from them each cycle, including
* power, voltage, current. If only a single value is read,
* we an use i2c_readagain for faster transactions as we don't
* have to respecify the address.
*/
ina->shared = 0;
#ifdef USB_POWER_VERBOSE
ina->shared = 1;
#endif
/* Check if shared with previously configured INAs. */
for (i = 0; i < state->ina_count; i++) {
struct usb_power_ina_cfg *tmp = state->ina_cfg + i;
if ((tmp->port == ina->port) &&
(tmp->addr_flags == ina->addr_flags)) {
ina->shared = 1;
tmp->shared = 1;
}
}
state->ina_count += 1;
return USB_POWER_SUCCESS;
}
static int usb_power_read(struct usb_power_config const *config)
{
/*
* If there is a USB packet waiting we process it and generate a
* response.
*/
uint8_t count = rx_ep_pending(config->endpoint);
uint8_t result = USB_POWER_SUCCESS;
union usb_power_command_data *cmd =
(union usb_power_command_data *)config->ep->out_databuffer;
struct usb_power_state *state = config->state;
struct dwc_usb_ep *ep = config->ep;
/* Bytes to return */
int in_msgsize = 1;
if (count < 2)
return EC_ERROR_INVAL;
/* State machine. */
switch (cmd->command) {
case USB_POWER_CMD_RESET:
result = usb_power_state_reset(config);
break;
case USB_POWER_CMD_STOP:
result = usb_power_state_stop(config);
break;
case USB_POWER_CMD_START:
result = usb_power_state_start(config, cmd, count);
if (result == USB_POWER_SUCCESS) {
/* Send back actual integration time. */
ep->in_databuffer[1] =
(state->integration_us >> 0) & 0xff;
ep->in_databuffer[2] =
(state->integration_us >> 8) & 0xff;
ep->in_databuffer[3] =
(state->integration_us >> 16) & 0xff;
ep->in_databuffer[4] =
(state->integration_us >> 24) & 0xff;
in_msgsize += 4;
}
break;
case USB_POWER_CMD_ADDINA:
result = usb_power_state_addina(config, cmd, count);
break;
case USB_POWER_CMD_SETTIME:
result = usb_power_state_settime(config, cmd, count);
break;
case USB_POWER_CMD_NEXT:
if (state->state == USB_POWER_STATE_CAPTURING) {
int ret;
ret = usb_power_write_line(config);
if (ret)
return EC_SUCCESS;
result = USB_POWER_ERROR_BUSY;
} else {
CPRINTS("[STOP] Error not capturing.");
result = USB_POWER_ERROR_NOT_CAPTURING;
}
break;
default:
CPRINTS("[ERROR] Unknown command 0x%04x", (int)cmd->command);
result = USB_POWER_ERROR_UNKNOWN;
break;
}
/* Return result code if applicable. */
ep->in_databuffer[0] = result;
usb_write_ep(config->endpoint, in_msgsize, ep->in_databuffer);
return EC_SUCCESS;
}
/******************************************************************************
* INA231 interface.
* List the registers and fields here.
* TODO(nsanders): combine with the currently incompatible common INA drivers.
*/
#define INA231_REG_CONF 0
#define INA231_REG_RSHV 1
#define INA231_REG_BUSV 2
#define INA231_REG_PWR 3
#define INA231_REG_CURR 4
#define INA231_REG_CAL 5
#define INA231_REG_EN 6
#define INA231_CONF_AVG(val) (((int)(val & 0x7)) << 9)
#define INA231_CONF_BUS_TIME(val) (((int)(val & 0x7)) << 6)
#define INA231_CONF_SHUNT_TIME(val) (((int)(val & 0x7)) << 3)
#define INA231_CONF_MODE(val) (((int)(val & 0x7)) << 0)
#define INA231_MODE_OFF 0x0
#define INA231_MODE_SHUNT 0x5
#define INA231_MODE_BUS 0x6
#define INA231_MODE_BOTH 0x7
int reg_type_mapping(enum usb_power_ina_type ina_type)
{
switch (ina_type) {
case USBP_INA231_POWER:
return INA231_REG_PWR;
case USBP_INA231_BUSV:
return INA231_REG_BUSV;
case USBP_INA231_CURRENT:
return INA231_REG_CURR;
case USBP_INA231_SHUNTV:
return INA231_REG_RSHV;
default:
return INA231_REG_CONF;
}
}
uint16_t ina2xx_readagain(uint8_t port, uint16_t slave_addr_flags)
{
int res;
uint16_t val;
res = i2c_xfer(port, slave_addr_flags,
NULL, 0, (uint8_t *)&val, sizeof(uint16_t));
if (res) {
CPRINTS("INA2XX I2C readagain failed p:%d a:%02x",
(int)port, (int)I2C_GET_ADDR(slave_addr_flags));
return 0x0bad;
}
return (val >> 8) | ((val & 0xff) << 8);
}
uint16_t ina2xx_read(uint8_t port, uint16_t slave_addr_flags,
uint8_t reg)
{
int res;
int val;
res = i2c_read16(port, slave_addr_flags, reg, &val);
if (res) {
CPRINTS("INA2XX I2C read failed p:%d a:%02x, r:%02x",
(int)port, (int)I2C_GET_ADDR(slave_addr_flags),
(int)reg);
return 0x0bad;
}
return (val >> 8) | ((val & 0xff) << 8);
}
int ina2xx_write(uint8_t port, uint16_t slave_addr_flags,
uint8_t reg, uint16_t val)
{
int res;
uint16_t be_val = (val >> 8) | ((val & 0xff) << 8);
res = i2c_write16(port, slave_addr_flags, reg, be_val);
if (res)
CPRINTS("INA2XX I2C write failed");
return res;
}
/******************************************************************************
* Background tasks
*
* Here we setup the INAs and read them at the specified interval.
* INA samples are stored in a ringbuffer that can be fetched using the
* USB commands.
*/
/* INA231 integration and averaging time presets, indexed by register value */
#define NELEMS(x) (sizeof(x) / sizeof((x)[0]))
static const int average_settings[] = {
1, 4, 16, 64, 128, 256, 512, 1024};
static const int conversion_time_us[] = {
140, 204, 332, 588, 1100, 2116, 4156, 8244};
static int usb_power_init_inas(struct usb_power_config const *config)
{
struct usb_power_state *state = config->state;
int i;
int shunt_time = 0;
int avg = 0;
int target_us = state->integration_us;
if (state->state != USB_POWER_STATE_SETUP) {
CPRINTS("[ERROR] usb_power_init_inas while not SETUP");
return -1;
}
/* Find an INA preset integration time less than specified */
while (shunt_time < (NELEMS(conversion_time_us) - 1)) {
if (conversion_time_us[shunt_time + 1] > target_us)
break;
shunt_time++;
}
/* Find an averaging setting from the INA presets that fits. */
while (avg < (NELEMS(average_settings) - 1)) {
if ((conversion_time_us[shunt_time] *
average_settings[avg + 1])
> target_us)
break;
avg++;
}
state->integration_us =
conversion_time_us[shunt_time] * average_settings[avg];
for (i = 0; i < state->ina_count; i++) {
int value;
int ret;
struct usb_power_ina_cfg *ina = state->ina_cfg + i;
#ifdef USB_POWER_VERBOSE
{
int conf, cal;
conf = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_CONF);
cal = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_CAL);
CPRINTS("[CAP] %d (%d,0x%02x): conf:%x, cal:%x",
i, ina->port, I2C_GET_ADDR(ina->addr_flags),
conf, cal);
}
#endif
/*
* Calculate INA231 Calibration register
* CurrentLSB = uA per div = 80mV / (Rsh * 2^15)
* CurrentLSB 100x uA = 100x 80000000nV / (Rsh mOhm * 0x8000)
*/
/* TODO: allow voltage readings if no sense resistor. */
if (ina->rs == 0)
return -1;
ina->scale = (100 * (80000000 / 0x8000)) / ina->rs;
/*
* CAL = .00512 / (CurrentLSB * Rsh)
* CAL = 5120000 / (uA * mOhm)
*/
if (ina->scale == 0)
return -1;
value = (5120000 * 100) / (ina->scale * ina->rs);
ret = ina2xx_write(ina->port, ina->addr_flags,
INA231_REG_CAL, value);
if (ret != EC_SUCCESS) {
CPRINTS("[CAP] usb_power_init_inas CAL FAIL: %d", ret);
return ret;
}
#ifdef USB_POWER_VERBOSE
{
int actual;
actual = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_CAL);
CPRINTS("[CAP] scale: %d uA/div, %d uW/div, cal:%x act:%x",
ina->scale / 100, ina->scale*25/100, value, actual);
}
#endif
/* Conversion time, shunt + bus, set average. */
value = INA231_CONF_MODE(INA231_MODE_BOTH) |
INA231_CONF_SHUNT_TIME(shunt_time) |
INA231_CONF_BUS_TIME(shunt_time) |
INA231_CONF_AVG(avg);
ret = ina2xx_write(ina->port, ina->addr_flags,
INA231_REG_CONF, value);
if (ret != EC_SUCCESS) {
CPRINTS("[CAP] usb_power_init_inas CONF FAIL: %d", ret);
return ret;
}
#ifdef USB_POWER_VERBOSE
{
int actual;
actual = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_CONF);
CPRINTS("[CAP] %d (%d,0x%02x): conf:%x, act:%x",
i, ina->port, I2C_GET_ADDR(ina->addr_flags),
value, actual);
}
#endif
#ifdef USB_POWER_VERBOSE
{
int busv_mv =
(ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_BUSV)
* 125) / 100;
CPRINTS("[CAP] %d (%d,0x%02x): busv:%dmv",
i, ina->port, I2C_GET_ADDR(ina->addr_flags),
busv_mv);
}
#endif
/* Initialize read from power register. This register address
* will be cached and all ina2xx_readagain() calls will read
* from the same address.
*/
ina2xx_read(ina->port, ina->addr_flags,
reg_type_mapping(ina->type));
#ifdef USB_POWER_VERBOSE
CPRINTS("[CAP] %d (%d,0x%02x): type:%d", (int)(ina->type));
#endif
}
return EC_SUCCESS;
}
/*
* Read each INA's power integration measurement.
*
* INAs recall the most recent address, so no register access write is
* necessary, simply read 16 bits from each INA and fill the result into
* the power record.
*
* If the power record ringbuffer is full, fail with USB_POWER_ERROR_OVERFLOW.
*/
static int usb_power_get_samples(struct usb_power_config const *config)
{
uint64_t time = get_time().val;
struct usb_power_state *state = config->state;
struct usb_power_report *r = (struct usb_power_report *)(
state->reports_data_area +
(USB_POWER_RECORD_SIZE(state->ina_count)
* state->reports_head));
struct usb_power_ina_cfg *inas = state->ina_cfg;
int i;
/* TODO(nsanders): Would we prefer to evict oldest? */
if (((state->reports_head + 1) % USB_POWER_MAX_CACHED(state->ina_count))
== state->reports_xmit_active) {
CPRINTS("Overflow! h:%d a:%d t:%d (%d)",
state->reports_head, state->reports_xmit_active,
state->reports_tail,
USB_POWER_MAX_CACHED(state->ina_count));
return USB_POWER_ERROR_OVERFLOW;
}
r->status = USB_POWER_SUCCESS;
r->size = state->ina_count;
if (config->state->wall_offset)
time = time + config->state->wall_offset;
else
time -= config->state->base_time;
r->timestamp = time;
for (i = 0; i < state->ina_count; i++) {
int regval;
struct usb_power_ina_cfg *ina = inas + i;
/* Read INA231.
* ina2xx_read(ina->port, ina->addr, INA231_REG_PWR);
* Readagain cached this address so we'll save an I2C
* transaction.
*/
if (ina->shared)
regval = ina2xx_read(ina->port, ina->addr_flags,
reg_type_mapping(ina->type));
else
regval = ina2xx_readagain(ina->port,
ina->addr_flags);
r->power[i] = regval;
#ifdef USB_POWER_VERBOSE
{
int current;
int power;
int voltage;
int bvoltage;
voltage = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_RSHV);
bvoltage = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_BUSV);
current = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_CURR);
power = ina2xx_read(ina->port, ina->addr_flags,
INA231_REG_PWR);
{
int uV = ((int)voltage * 25) / 10;
int mV = ((int)bvoltage * 125) / 100;
int uA = (uV * 1000) / ina->rs;
int CuA = (((int)current * ina->scale) / 100);
int uW = (((int)power * ina->scale*25)/100);
CPRINTS("[CAP] %d (%d,0x%02x): %dmV / %dmO = %dmA",
i, ina->port, I2C_GET_ADDR(ina->addr_flags),
uV/1000, ina->rs, uA/1000);
CPRINTS("[CAP] %duV %dmV %duA %dCuA "
"%duW v:%04x, b:%04x, p:%04x",
uV, mV, uA, CuA, uW, voltage, bvoltage, power);
}
}
#endif
}
/* Mark this slot as used. */
state->reports_head = (state->reports_head + 1) %
USB_POWER_MAX_CACHED(state->ina_count);
return EC_SUCCESS;
}
/*
* This function is called every [interval] uS, and reads the accumulated
* values of the INAs, and reschedules itself for the next interval.
*
* It will stop collecting frames if a ringbuffer overflow is
* detected, or a stop request is seen..
*/
void usb_power_deferred_cap(struct usb_power_config const *config)
{
int ret;
uint64_t timeout = get_time().val + config->state->integration_us;
uint64_t timein;
/* Exit if we have stopped capturing in the meantime. */
if (config->state->state != USB_POWER_STATE_CAPTURING)
return;
/* Get samples for this timeslice */
ret = usb_power_get_samples(config);
if (ret == USB_POWER_ERROR_OVERFLOW) {
CPRINTS("[CAP] usb_power_deferred_cap: OVERFLOW");
return;
}
/* Calculate time remaining until next slice. */
timein = get_time().val;
if (timeout > timein)
timeout = timeout - timein;
else
timeout = 0;
/* Double check if we are still capturing. */
if (config->state->state == USB_POWER_STATE_CAPTURING)
hook_call_deferred(config->deferred_cap, timeout);
}