2069 lines
53 KiB
C
2069 lines
53 KiB
C
/*
|
|
* Copyright 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* LED controls.
|
|
*/
|
|
|
|
#ifdef LIGHTBAR_SIMULATION
|
|
#include "simulation.h"
|
|
#else
|
|
#include "battery.h"
|
|
#include "charge_state.h"
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "ec_commands.h"
|
|
#include "hooks.h"
|
|
#include "host_command.h"
|
|
#include "lb_common.h"
|
|
#include "lightbar.h"
|
|
#include "lid_switch.h"
|
|
#include "motion_sense.h"
|
|
#include "pwm.h"
|
|
#include "system.h"
|
|
#include "task.h"
|
|
#include "timer.h"
|
|
#include "util.h"
|
|
#endif
|
|
|
|
/*
|
|
* The Link lightbar had no version command, so defaulted to zero. We have
|
|
* added a couple of new commands, so we've updated the version. Any
|
|
* optional features in the current version should be marked with flags.
|
|
*/
|
|
#define LIGHTBAR_IMPLEMENTATION_VERSION 1
|
|
#define LIGHTBAR_IMPLEMENTATION_FLAGS 0
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_LIGHTBAR, outstr)
|
|
#define CPRINTS(format, args...) cprints(CC_LIGHTBAR, format, ## args)
|
|
|
|
#define FP_SCALE 10000
|
|
|
|
/******************************************************************************/
|
|
/* Here's some state that we might want to maintain across sysjumps, just to
|
|
* prevent the lightbar from flashing during normal boot as the EC jumps from
|
|
* RO to RW. */
|
|
static struct p_state {
|
|
/* What patterns are we showing? */
|
|
enum lightbar_sequence cur_seq;
|
|
enum lightbar_sequence prev_seq;
|
|
|
|
/* Quantized battery charge level: 0=low 1=med 2=high 3=full. */
|
|
int battery_level;
|
|
int battery_percent;
|
|
|
|
/* It's either charging or discharging. */
|
|
int battery_is_charging;
|
|
|
|
/* Is power-on prevented due to battery level? */
|
|
int battery_is_power_on_prevented;
|
|
|
|
/* Pattern variables for state S0. */
|
|
uint16_t w0; /* primary phase */
|
|
uint8_t ramp; /* ramp-in for S3->S0 */
|
|
|
|
uint8_t _pad0; /* next item is __packed */
|
|
|
|
/* Tweakable parameters. */
|
|
union {
|
|
struct lightbar_params_v1 p;
|
|
struct {
|
|
struct lightbar_params_v2_timing timing;
|
|
struct lightbar_params_v2_tap tap;
|
|
struct lightbar_params_v2_oscillation osc;
|
|
struct lightbar_params_v2_brightness bright;
|
|
struct lightbar_params_v2_thresholds thlds;
|
|
struct lightbar_params_v2_colors colors;
|
|
} p_v2;
|
|
};
|
|
} st;
|
|
|
|
/* Each of the parameters must be less than 120 bytes
|
|
* (crbug.com/467716)
|
|
*/
|
|
#define MAX_PARAM_SIZE 120
|
|
BUILD_ASSERT(sizeof(struct lightbar_params_v2_timing) <= MAX_PARAM_SIZE);
|
|
BUILD_ASSERT(sizeof(struct lightbar_params_v2_tap) <= MAX_PARAM_SIZE);
|
|
BUILD_ASSERT(sizeof(struct lightbar_params_v2_oscillation) <= MAX_PARAM_SIZE);
|
|
BUILD_ASSERT(sizeof(struct lightbar_params_v2_brightness) <= MAX_PARAM_SIZE);
|
|
BUILD_ASSERT(sizeof(struct lightbar_params_v2_thresholds) <= MAX_PARAM_SIZE);
|
|
BUILD_ASSERT(sizeof(struct lightbar_params_v2_colors) <= MAX_PARAM_SIZE);
|
|
#undef MAX_PARAM_SIZE
|
|
|
|
#define PRIMARY_BLUE 4
|
|
#define PRIMARY_RED 5
|
|
#define PRIMARY_YELLOW 6
|
|
#define PRIMARY_GREEN 7
|
|
|
|
static const struct lightbar_params_v1 default_params = {
|
|
.google_ramp_up = 2500,
|
|
.google_ramp_down = 10000,
|
|
.s3s0_ramp_up = 2000,
|
|
.s0_tick_delay = { 45000, 30000 }, /* battery, AC */
|
|
.s0a_tick_delay = { 5000, 3000 }, /* battery, AC */
|
|
.s0s3_ramp_down = 2000,
|
|
.s3_sleep_for = 5 * SECOND, /* between checks */
|
|
.s3_ramp_up = 2500,
|
|
.s3_ramp_down = 10000,
|
|
.s5_ramp_up = 2500,
|
|
.s5_ramp_down = 10000,
|
|
.tap_tick_delay = 5000, /* oscillation step time */
|
|
.tap_gate_delay = 200 * MSEC, /* segment gating delay */
|
|
.tap_display_time = 3 * SECOND, /* total sequence time */
|
|
|
|
/* TODO (crosbug.com/p/36996): remove unused tap_pct_red */
|
|
.tap_pct_red = 14, /* below this is red */
|
|
.tap_pct_green = 94, /* above this is green */
|
|
.tap_seg_min_on = 35, /* min intensity (%) for "on" */
|
|
.tap_seg_max_on = 100, /* max intensity (%) for "on" */
|
|
.tap_seg_osc = 50, /* amplitude for charging osc */
|
|
.tap_idx = {PRIMARY_RED, PRIMARY_YELLOW, PRIMARY_GREEN}, /* color */
|
|
|
|
.osc_min = { 0x60, 0x60 }, /* battery, AC */
|
|
.osc_max = { 0xd0, 0xd0 }, /* battery, AC */
|
|
.w_ofs = {24, 24}, /* phase offset, 256 == 2*PI */
|
|
|
|
.bright_bl_off_fixed = {0xcc, 0xff}, /* backlight off: battery, AC */
|
|
.bright_bl_on_min = {0xcc, 0xff}, /* backlight on: battery, AC */
|
|
.bright_bl_on_max = {0xcc, 0xff}, /* backlight on: battery, AC */
|
|
|
|
.battery_threshold = { 14, 40, 99 }, /* percent, lowest to highest */
|
|
.s0_idx = {
|
|
/* battery: 0 = red, other = blue */
|
|
{ PRIMARY_RED, PRIMARY_BLUE, PRIMARY_BLUE, PRIMARY_BLUE },
|
|
/* AC: always blue */
|
|
{ PRIMARY_BLUE, PRIMARY_BLUE, PRIMARY_BLUE, PRIMARY_BLUE }
|
|
},
|
|
.s3_idx = {
|
|
/* battery: 0 = red, else off */
|
|
{ PRIMARY_RED, 0xff, 0xff, 0xff },
|
|
/* AC: do nothing */
|
|
{ 0xff, 0xff, 0xff, 0xff }
|
|
},
|
|
.s5_idx = PRIMARY_RED, /* flash red */
|
|
.color = {
|
|
/*
|
|
* These values have been optically calibrated for the
|
|
* Samus LEDs to best match the official colors, described at
|
|
* https://sites.google.com/a/google.com/brandsite/the-colours
|
|
* See crosbug.com/p/33017 before making any changes.
|
|
*/
|
|
{0x34, 0x70, 0xb4}, /* 0: Google blue */
|
|
{0xbc, 0x50, 0x2c}, /* 1: Google red */
|
|
{0xd0, 0xe0, 0x00}, /* 2: Google yellow */
|
|
{0x50, 0xa0, 0x40}, /* 3: Google green */
|
|
/* These are primary colors */
|
|
{0x00, 0x00, 0xff}, /* 4: full blue */
|
|
{0xff, 0x00, 0x00}, /* 5: full red */
|
|
{0xff, 0xff, 0x00}, /* 6: full yellow */
|
|
{0x00, 0xff, 0x00}, /* 7: full green */
|
|
},
|
|
};
|
|
|
|
#define LB_SYSJUMP_TAG 0x4c42 /* "LB" */
|
|
static void lightbar_preserve_state(void)
|
|
{
|
|
system_add_jump_tag(LB_SYSJUMP_TAG, 0, sizeof(st), &st);
|
|
}
|
|
DECLARE_HOOK(HOOK_SYSJUMP, lightbar_preserve_state, HOOK_PRIO_DEFAULT);
|
|
|
|
static void lightbar_restore_state(void)
|
|
{
|
|
const uint8_t *old_state = 0;
|
|
int size;
|
|
|
|
old_state = system_get_jump_tag(LB_SYSJUMP_TAG, 0, &size);
|
|
if (old_state && size == sizeof(st)) {
|
|
memcpy(&st, old_state, size);
|
|
CPRINTS("LB state restored: %d %d - %d %d/%d",
|
|
st.cur_seq, st.prev_seq,
|
|
st.battery_is_charging,
|
|
st.battery_percent,
|
|
st.battery_level);
|
|
} else {
|
|
st.cur_seq = st.prev_seq = LIGHTBAR_S5;
|
|
st.battery_percent = 100;
|
|
st.battery_level = LB_BATTERY_LEVELS - 1;
|
|
st.w0 = 0;
|
|
st.ramp = 0;
|
|
memcpy(&st.p, &default_params, sizeof(st.p));
|
|
CPRINTS("LB state initialized");
|
|
}
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* The patterns are generally dependent on the current battery level and AC
|
|
* state. These functions obtain that information, generally by querying the
|
|
* power manager task. In demo mode, the keyboard task forces changes to the
|
|
* state by calling the demo_* functions directly. */
|
|
/******************************************************************************/
|
|
|
|
#ifdef CONFIG_PWM_KBLIGHT
|
|
static int last_backlight_level;
|
|
#endif
|
|
#ifdef CONFIG_ALS_LIGHTBAR_DIMMING
|
|
test_export_static int google_color_id;
|
|
#endif
|
|
|
|
static int demo_mode = DEMO_MODE_DEFAULT;
|
|
|
|
static int quantize_battery_level(int pct)
|
|
{
|
|
int i, bl = 0;
|
|
for (i = 0; i < LB_BATTERY_LEVELS - 1; i++)
|
|
if (pct >= st.p.battery_threshold[i])
|
|
bl++;
|
|
return bl;
|
|
}
|
|
|
|
#ifdef CONFIG_ALS_LIGHTBAR_DIMMING
|
|
test_export_static int lux_level_to_google_color(const int lux)
|
|
{
|
|
int i;
|
|
|
|
if (!lid_is_open()) {
|
|
/* The lid shades the light sensor, use full brightness. */
|
|
if (google_color_id != 0) {
|
|
google_color_id = 0;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* See if we need to decrease brightness */
|
|
for (i = google_color_id; i < lb_brightness_levels_count ; i++)
|
|
if (lux >= lb_brightness_levels[i].lux_down)
|
|
break;
|
|
if (i > google_color_id) {
|
|
google_color_id = i;
|
|
return 1;
|
|
}
|
|
/* See if we need to increase brightness */
|
|
for (i = google_color_id; i > 0; i--)
|
|
if (lux < lb_brightness_levels[i - 1].lux_up)
|
|
break;
|
|
if (i < google_color_id) {
|
|
google_color_id = i;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Update the known state.
|
|
* Return 1 if something changes.
|
|
*/
|
|
static int get_battery_level(void)
|
|
{
|
|
int pct = 0;
|
|
int bl, change = 0;
|
|
|
|
if (demo_mode)
|
|
return 0;
|
|
|
|
#ifdef HAS_TASK_CHARGER
|
|
st.battery_percent = pct = charge_get_percent();
|
|
st.battery_is_charging = (PWR_STATE_DISCHARGE != charge_get_state());
|
|
st.battery_is_power_on_prevented = charge_prevent_power_on(0);
|
|
#endif
|
|
|
|
/* Find the new battery level */
|
|
bl = quantize_battery_level(pct);
|
|
|
|
/* Use some hysteresis to avoid flickering */
|
|
if (bl < st.battery_level ||
|
|
(bl > st.battery_level
|
|
&& pct >= (st.p.battery_threshold[st.battery_level] + 1))) {
|
|
st.battery_level = bl;
|
|
change = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PWM_KBLIGHT
|
|
/*
|
|
* With nothing else to go on, use the keyboard backlight level to *
|
|
* set the brightness. In general, if the keyboard backlight
|
|
* is OFF (which it is when ambient is bright), use max brightness for
|
|
* lightbar. If keyboard backlight is ON, use keyboard backlight
|
|
* brightness. That fails if the keyboard backlight is off because
|
|
* someone's watching a movie in the dark, of course. Ideally we should
|
|
* just let the AP control it directly.
|
|
*/
|
|
if (pwm_get_enabled(PWM_CH_KBLIGHT)) {
|
|
pct = pwm_get_duty(PWM_CH_KBLIGHT);
|
|
pct = (255 * pct) / 100; /* 00 - FF */
|
|
if (pct > st.p.bright_bl_on_max[st.battery_is_charging])
|
|
pct = st.p.bright_bl_on_max[st.battery_is_charging];
|
|
else if (pct < st.p.bright_bl_on_min[st.battery_is_charging])
|
|
pct = st.p.bright_bl_on_min[st.battery_is_charging];
|
|
} else
|
|
pct = st.p.bright_bl_off_fixed[st.battery_is_charging];
|
|
|
|
if (pct != last_backlight_level) {
|
|
last_backlight_level = pct;
|
|
lb_set_brightness(pct);
|
|
change = 1;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_ALS_LIGHTBAR_DIMMING
|
|
/* Read last value (in lux) collected by the motion sensor. */
|
|
/* Convert lux into brightness percentage */
|
|
if (lux_level_to_google_color(MOTION_SENSE_LUX)) {
|
|
memcpy(st.p.color, lb_brightness_levels[google_color_id].color,
|
|
sizeof(lb_brightness_levels[google_color_id].color));
|
|
change = 1;
|
|
}
|
|
#endif
|
|
return change;
|
|
}
|
|
|
|
/* Forcing functions for demo mode, called by the keyboard task. */
|
|
|
|
/* Up/Down keys */
|
|
#define DEMO_CHARGE_STEP 1
|
|
void demo_battery_level(int inc)
|
|
{
|
|
if (!demo_mode)
|
|
return;
|
|
|
|
st.battery_percent += DEMO_CHARGE_STEP * inc;
|
|
|
|
if (st.battery_percent > 100)
|
|
st.battery_percent = 100;
|
|
else if (st.battery_percent < 0)
|
|
st.battery_percent = 0;
|
|
|
|
st.battery_level = quantize_battery_level(st.battery_percent);
|
|
|
|
CPRINTS("LB demo: battery_percent = %d%%, battery_level=%d",
|
|
st.battery_percent, st.battery_level);
|
|
}
|
|
|
|
/* Left/Right keys */
|
|
|
|
void demo_is_charging(int ischarge)
|
|
{
|
|
if (!demo_mode)
|
|
return;
|
|
|
|
st.battery_is_charging = ischarge;
|
|
CPRINTS("LB demo: battery_is_charging=%d",
|
|
st.battery_is_charging);
|
|
}
|
|
|
|
/* Bright/Dim keys */
|
|
void demo_brightness(int inc)
|
|
{
|
|
int b;
|
|
|
|
if (!demo_mode)
|
|
return;
|
|
|
|
b = lb_get_brightness() + (inc * 16);
|
|
if (b > 0xff)
|
|
b = 0xff;
|
|
else if (b < 0)
|
|
b = 0;
|
|
lb_set_brightness(b);
|
|
}
|
|
|
|
/* T key */
|
|
void demo_tap(void)
|
|
{
|
|
if (!demo_mode)
|
|
return;
|
|
lightbar_sequence(LIGHTBAR_TAP);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Helper functions and data. */
|
|
/******************************************************************************/
|
|
|
|
#define F(x) (x * FP_SCALE)
|
|
static const uint16_t _ramp_table[] = {
|
|
F(0.000000), F(0.002408), F(0.009607), F(0.021530), F(0.038060),
|
|
F(0.059039), F(0.084265), F(0.113495), F(0.146447), F(0.182803),
|
|
F(0.222215), F(0.264302), F(0.308658), F(0.354858), F(0.402455),
|
|
F(0.450991), F(0.500000), F(0.549009), F(0.597545), F(0.645142),
|
|
F(0.691342), F(0.735698), F(0.777785), F(0.817197), F(0.853553),
|
|
F(0.886505), F(0.915735), F(0.940961), F(0.961940), F(0.978470),
|
|
F(0.990393), F(0.997592), F(1.000000),
|
|
};
|
|
#undef F
|
|
|
|
/* This function provides a smooth ramp up from 0.0 to 1.0 and back to 0.0,
|
|
* for input from 0x00 to 0xff. */
|
|
static inline int cycle_010(uint8_t i)
|
|
{
|
|
uint8_t bucket, index;
|
|
|
|
if (i == 128)
|
|
return FP_SCALE;
|
|
else if (i > 128)
|
|
i = 256 - i;
|
|
|
|
bucket = i >> 2;
|
|
index = i & 0x3;
|
|
|
|
return _ramp_table[bucket] +
|
|
((_ramp_table[bucket + 1] - _ramp_table[bucket]) * index >> 2);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Here's where we keep messages waiting to be delivered to the lightbar task.
|
|
* If more than one is sent before the task responds, we only want to deliver
|
|
* the latest one. */
|
|
static uint32_t pending_msg;
|
|
/* And here's the task event that we use to trigger delivery. */
|
|
#define PENDING_MSG TASK_EVENT_CUSTOM_BIT(0)
|
|
|
|
/* Interruptible delay. */
|
|
#define WAIT_OR_RET(A) \
|
|
do { \
|
|
uint32_t msg = task_wait_event(A); \
|
|
uint32_t p_msg = pending_msg; \
|
|
if (msg == PENDING_MSG && p_msg != st.cur_seq) \
|
|
return p_msg; \
|
|
} while (0)
|
|
|
|
/******************************************************************************/
|
|
/* Here are the preprogrammed sequences. */
|
|
/******************************************************************************/
|
|
|
|
/* Pulse google colors once, off to on to off. */
|
|
static uint32_t pulse_google_colors(void)
|
|
{
|
|
int w, i, r, g, b;
|
|
int f;
|
|
|
|
for (w = 0; w < 128; w += 2) {
|
|
f = cycle_010(w);
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = st.p.color[i].r * f / FP_SCALE;
|
|
g = st.p.color[i].g * f / FP_SCALE;
|
|
b = st.p.color[i].b * f / FP_SCALE;
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
WAIT_OR_RET(st.p.google_ramp_up);
|
|
}
|
|
for (w = 128; w <= 256; w++) {
|
|
f = cycle_010(w);
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = st.p.color[i].r * f / FP_SCALE;
|
|
g = st.p.color[i].g * f / FP_SCALE;
|
|
b = st.p.color[i].b * f / FP_SCALE;
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
WAIT_OR_RET(st.p.google_ramp_down);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is waking from sleep. */
|
|
static uint32_t sequence_S3S0(void)
|
|
{
|
|
int w, r, g, b;
|
|
int f, fmin;
|
|
int ci;
|
|
uint32_t res;
|
|
|
|
lb_init(1);
|
|
lb_on();
|
|
get_battery_level();
|
|
|
|
res = pulse_google_colors();
|
|
if (res)
|
|
return res;
|
|
|
|
#ifndef BLUE_PULSING
|
|
/* next sequence */
|
|
return LIGHTBAR_S0;
|
|
#endif
|
|
|
|
/* Ramp up to starting brightness, using S0 colors */
|
|
ci = st.p.s0_idx[st.battery_is_charging][st.battery_level];
|
|
if (ci >= ARRAY_SIZE(st.p.color))
|
|
ci = 0;
|
|
|
|
fmin = st.p.osc_min[st.battery_is_charging] * FP_SCALE / 255;
|
|
|
|
for (w = 0; w <= 128; w++) {
|
|
f = cycle_010(w) * fmin / FP_SCALE;
|
|
r = st.p.color[ci].r * f / FP_SCALE;
|
|
g = st.p.color[ci].g * f / FP_SCALE;
|
|
b = st.p.color[ci].b * f / FP_SCALE;
|
|
lb_set_rgb(NUM_LEDS, r, g, b);
|
|
WAIT_OR_RET(st.p.s3s0_ramp_up);
|
|
}
|
|
|
|
/* Initial conditions */
|
|
st.w0 = -256; /* start cycle_npn() quietly */
|
|
st.ramp = 0;
|
|
|
|
/* Ready for S0 */
|
|
return LIGHTBAR_S0;
|
|
}
|
|
|
|
#ifdef BLUE_PULSING
|
|
|
|
/* This function provides a pulsing oscillation between -0.5 and +0.5. */
|
|
static inline int cycle_npn(uint16_t i)
|
|
{
|
|
if ((i / 256) % 4)
|
|
return -FP_SCALE / 2;
|
|
return cycle_010(i) - FP_SCALE / 2;
|
|
}
|
|
|
|
/* CPU is fully on */
|
|
static uint32_t sequence_S0(void)
|
|
{
|
|
int tick, last_tick;
|
|
timestamp_t start, now;
|
|
uint8_t r, g, b;
|
|
int i, ci;
|
|
uint8_t w_ofs;
|
|
uint16_t w;
|
|
int f, fmin, fmax, base_s0, osc_s0, f_ramp;
|
|
|
|
start = get_time();
|
|
tick = last_tick = 0;
|
|
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
lb_on();
|
|
|
|
while (1) {
|
|
now = get_time();
|
|
|
|
/* Only check the battery state every few seconds. The battery
|
|
* charging task doesn't update as quickly as we do, and isn't
|
|
* always valid for a bit after jumping from RO->RW. */
|
|
tick = (now.le.lo - start.le.lo) / SECOND;
|
|
if (tick % 4 == 3 && tick != last_tick) {
|
|
get_battery_level();
|
|
last_tick = tick;
|
|
}
|
|
|
|
/* Calculate the colors */
|
|
ci = st.p.s0_idx[st.battery_is_charging][st.battery_level];
|
|
if (ci >= ARRAY_SIZE(st.p.color))
|
|
ci = 0;
|
|
w_ofs = st.p.w_ofs[st.battery_is_charging];
|
|
fmin = st.p.osc_min[st.battery_is_charging] * FP_SCALE / 255;
|
|
fmax = st.p.osc_max[st.battery_is_charging] * FP_SCALE / 255;
|
|
base_s0 = (fmax + fmin) / 2;
|
|
osc_s0 = fmax - fmin;
|
|
f_ramp = st.ramp * FP_SCALE / 255;
|
|
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
w = st.w0 - i * w_ofs * f_ramp / FP_SCALE;
|
|
f = base_s0 + osc_s0 * cycle_npn(w) / FP_SCALE;
|
|
r = st.p.color[ci].r * f / FP_SCALE;
|
|
g = st.p.color[ci].g * f / FP_SCALE;
|
|
b = st.p.color[ci].b * f / FP_SCALE;
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
|
|
/* Increment the phase */
|
|
if (st.battery_is_charging)
|
|
st.w0--;
|
|
else
|
|
st.w0++;
|
|
|
|
/* Continue ramping in if needed */
|
|
if (st.ramp < 0xff)
|
|
st.ramp++;
|
|
|
|
i = st.p.s0a_tick_delay[st.battery_is_charging];
|
|
WAIT_OR_RET(i);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else /* just simple google colors */
|
|
|
|
static uint32_t sequence_S0(void)
|
|
{
|
|
int w, i, r, g, b;
|
|
int f, change;
|
|
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
lb_on();
|
|
|
|
/* Ramp up */
|
|
for (w = 0; w < 128; w += 2) {
|
|
f = cycle_010(w);
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = st.p.color[i].r * f / FP_SCALE;
|
|
g = st.p.color[i].g * f / FP_SCALE;
|
|
b = st.p.color[i].b * f / FP_SCALE;
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
WAIT_OR_RET(st.p.google_ramp_up);
|
|
}
|
|
|
|
while (1) {
|
|
change = get_battery_level();
|
|
|
|
if (change) {
|
|
/* Not really low use google colors */
|
|
if (st.battery_level) {
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = st.p.color[i].r;
|
|
g = st.p.color[i].g;
|
|
b = st.p.color[i].b;
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
} else {
|
|
r = st.p.color[PRIMARY_RED].r;
|
|
g = st.p.color[PRIMARY_RED].g;
|
|
b = st.p.color[PRIMARY_RED].b;
|
|
lb_set_rgb(4, r, g, b);
|
|
}
|
|
}
|
|
|
|
WAIT_OR_RET(1 * SECOND);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* CPU is going to sleep. */
|
|
static uint32_t sequence_S0S3(void)
|
|
{
|
|
int w, i, r, g, b;
|
|
int f;
|
|
uint8_t drop[NUM_LEDS][3];
|
|
uint32_t res;
|
|
|
|
/* Grab current colors */
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lb_get_rgb(i, &drop[i][0], &drop[i][1], &drop[i][2]);
|
|
|
|
/* Fade down to black */
|
|
for (w = 128; w <= 256; w++) {
|
|
f = cycle_010(w);
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = drop[i][0] * f / FP_SCALE;
|
|
g = drop[i][1] * f / FP_SCALE;
|
|
b = drop[i][2] * f / FP_SCALE;
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
WAIT_OR_RET(st.p.s0s3_ramp_down);
|
|
}
|
|
|
|
/* pulse once and done */
|
|
res = pulse_google_colors();
|
|
if (res)
|
|
return res;
|
|
|
|
/* next sequence */
|
|
return LIGHTBAR_S3;
|
|
}
|
|
|
|
/* CPU is sleeping */
|
|
static uint32_t sequence_S3(void)
|
|
{
|
|
int r, g, b;
|
|
int w;
|
|
int f;
|
|
int ci;
|
|
|
|
lb_off();
|
|
lb_init(1);
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
get_battery_level();
|
|
while (1) {
|
|
WAIT_OR_RET(st.p.s3_sleep_for);
|
|
|
|
/* only pulse if we've been given a valid color index */
|
|
ci = st.p.s3_idx[st.battery_is_charging][st.battery_level];
|
|
if (ci >= ARRAY_SIZE(st.p.color))
|
|
continue;
|
|
|
|
/* pulse once */
|
|
lb_on();
|
|
|
|
for (w = 0; w < 128; w += 2) {
|
|
f = cycle_010(w);
|
|
r = st.p.color[ci].r * f / FP_SCALE;
|
|
g = st.p.color[ci].g * f / FP_SCALE;
|
|
b = st.p.color[ci].b * f / FP_SCALE;
|
|
lb_set_rgb(NUM_LEDS, r, g, b);
|
|
WAIT_OR_RET(st.p.s3_ramp_up);
|
|
}
|
|
for (w = 128; w <= 256; w++) {
|
|
f = cycle_010(w);
|
|
r = st.p.color[ci].r * f / FP_SCALE;
|
|
g = st.p.color[ci].g * f / FP_SCALE;
|
|
b = st.p.color[ci].b * f / FP_SCALE;
|
|
lb_set_rgb(NUM_LEDS, r, g, b);
|
|
WAIT_OR_RET(st.p.s3_ramp_down);
|
|
}
|
|
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
lb_off();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* CPU is powering up. We generally boot fast enough that we don't have time
|
|
* to do anything interesting in the S3 state, but go straight on to S0. */
|
|
static uint32_t sequence_S5S3(void)
|
|
{
|
|
/* The controllers need 100us after power is applied before they'll
|
|
* respond. Don't return early, because we still want to initialize the
|
|
* lightbar even if another message comes along while we're waiting. */
|
|
usleep(100);
|
|
lb_init(1);
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
lb_on();
|
|
/* next sequence */
|
|
return LIGHTBAR_S3;
|
|
}
|
|
|
|
/* Sleep to off. The S3->S5 transition takes about 10msec, so just wait. */
|
|
static uint32_t sequence_S3S5(void)
|
|
{
|
|
lb_off();
|
|
/* next sequence */
|
|
return LIGHTBAR_S5;
|
|
}
|
|
|
|
/* Pulse S5 color to indicate that the battery is so critically low that it
|
|
* must charge first before the system can power on. */
|
|
static uint32_t pulse_s5_color(void)
|
|
{
|
|
int r, g, b;
|
|
int f;
|
|
int w;
|
|
struct rgb_s *color = &st.p.color[st.p.s5_idx];
|
|
|
|
for (w = 0; w < 128; w += 2) {
|
|
f = cycle_010(w);
|
|
r = color->r * f / FP_SCALE;
|
|
g = color->g * f / FP_SCALE;
|
|
b = color->b * f / FP_SCALE;
|
|
lb_set_rgb(NUM_LEDS, r, g, b);
|
|
WAIT_OR_RET(st.p.s5_ramp_up);
|
|
}
|
|
for (w = 128; w <= 256; w++) {
|
|
f = cycle_010(w);
|
|
r = color->r * f / FP_SCALE;
|
|
g = color->g * f / FP_SCALE;
|
|
b = color->b * f / FP_SCALE;
|
|
lb_set_rgb(NUM_LEDS, r, g, b);
|
|
WAIT_OR_RET(st.p.s5_ramp_down);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is off. Pulse the lightbar if a charger is attached and the battery is
|
|
* so low that the system cannot power on. Otherwise, the lightbar loses power
|
|
* when the CPU is in S5, so there's nothing to do. We'll just wait here until
|
|
* the state changes. */
|
|
static uint32_t sequence_S5(void)
|
|
{
|
|
int initialized = 0;
|
|
uint32_t res = 0;
|
|
|
|
get_battery_level();
|
|
while (1) {
|
|
if (!st.battery_is_power_on_prevented ||
|
|
!st.battery_is_charging)
|
|
break;
|
|
|
|
if (!initialized) {
|
|
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
|
|
/* Request that lightbar power rails be turned on. */
|
|
if (lb_power(1)) {
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
}
|
|
#endif
|
|
lb_on();
|
|
initialized = 1;
|
|
}
|
|
|
|
res = pulse_s5_color();
|
|
if (res)
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
|
|
if (initialized)
|
|
/* Suggest that the lightbar power rails can be shut down. */
|
|
lb_power(0);
|
|
#endif
|
|
lb_off();
|
|
if (!res)
|
|
WAIT_OR_RET(-1);
|
|
return res;
|
|
}
|
|
|
|
/* The AP is going to poke at the lightbar directly, so we don't want the EC
|
|
* messing with it. We'll just sit here and ignore all other messages until
|
|
* we're told to continue (or until we think the AP is shutting down).
|
|
*/
|
|
static uint32_t sequence_STOP(void)
|
|
{
|
|
uint32_t msg;
|
|
|
|
do {
|
|
msg = task_wait_event(-1);
|
|
CPRINTS("LB %s() got pending_msg %d", __func__, pending_msg);
|
|
} while (msg != PENDING_MSG || (
|
|
pending_msg != LIGHTBAR_RUN &&
|
|
pending_msg != LIGHTBAR_S0S3 &&
|
|
pending_msg != LIGHTBAR_S3 &&
|
|
pending_msg != LIGHTBAR_S3S5 &&
|
|
pending_msg != LIGHTBAR_S5));
|
|
return 0;
|
|
}
|
|
|
|
/* Telling us to run when we're already running should do nothing. */
|
|
static uint32_t sequence_RUN(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* We shouldn't come here, but if we do it shouldn't hurt anything. This
|
|
* sequence is to indicate an internal error in the lightbar logic, not an
|
|
* error with the Chromebook itself.
|
|
*/
|
|
static uint32_t sequence_ERROR(void)
|
|
{
|
|
lb_init(1);
|
|
lb_on();
|
|
|
|
lb_set_rgb(0, 255, 255, 255);
|
|
lb_set_rgb(1, 255, 0, 255);
|
|
lb_set_rgb(2, 0, 255, 255);
|
|
lb_set_rgb(3, 255, 255, 255);
|
|
|
|
WAIT_OR_RET(10 * SECOND);
|
|
return 0;
|
|
}
|
|
|
|
static const struct {
|
|
uint8_t led;
|
|
uint8_t r, g, b;
|
|
unsigned int delay;
|
|
} konami[] = {
|
|
|
|
{1, 0xff, 0xff, 0x00, 0},
|
|
{2, 0xff, 0xff, 0x00, 100000},
|
|
{1, 0x00, 0x00, 0x00, 0},
|
|
{2, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{1, 0xff, 0xff, 0x00, 0},
|
|
{2, 0xff, 0xff, 0x00, 100000},
|
|
{1, 0x00, 0x00, 0x00, 0},
|
|
{2, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0x00, 0x00, 0xff, 0},
|
|
{3, 0x00, 0x00, 0xff, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0x00, 0x00, 0xff, 0},
|
|
{3, 0x00, 0x00, 0xff, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0xff, 0x00, 0x00, 0},
|
|
{1, 0xff, 0x00, 0x00, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{1, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{2, 0x00, 0xff, 0x00, 0},
|
|
{3, 0x00, 0xff, 0x00, 100000},
|
|
{2, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0xff, 0x00, 0x00, 0},
|
|
{1, 0xff, 0x00, 0x00, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{1, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{2, 0x00, 0xff, 0x00, 0},
|
|
{3, 0x00, 0xff, 0x00, 100000},
|
|
{2, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{0, 0x00, 0xff, 0xff, 0},
|
|
{2, 0x00, 0xff, 0xff, 100000},
|
|
{0, 0x00, 0x00, 0x00, 0},
|
|
{2, 0x00, 0x00, 0x00, 150000},
|
|
|
|
{1, 0xff, 0x00, 0xff, 0},
|
|
{3, 0xff, 0x00, 0xff, 100000},
|
|
{1, 0x00, 0x00, 0x00, 0},
|
|
{3, 0x00, 0x00, 0x00, 250000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
|
|
{4, 0xff, 0xff, 0xff, 100000},
|
|
{4, 0x00, 0x00, 0x00, 100000},
|
|
};
|
|
|
|
static uint32_t sequence_KONAMI_inner(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(konami); i++) {
|
|
lb_set_rgb(konami[i].led,
|
|
konami[i].r, konami[i].g, konami[i].b);
|
|
if (konami[i].delay)
|
|
WAIT_OR_RET(konami[i].delay);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t sequence_KONAMI(void)
|
|
{
|
|
int tmp;
|
|
uint32_t r;
|
|
|
|
/* First clear all segments */
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
|
|
/* Force brightness to max, then restore it */
|
|
tmp = lb_get_brightness();
|
|
lb_set_brightness(255);
|
|
r = sequence_KONAMI_inner();
|
|
lb_set_brightness(tmp);
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
|
|
/* Returns 0.0 to 1.0 for val in [min, min + ofs] */
|
|
static int range(int val, int min, int ofs)
|
|
{
|
|
if (val <= min)
|
|
return 0;
|
|
if (val >= min+ofs)
|
|
return FP_SCALE;
|
|
return (val - min) * FP_SCALE / ofs;
|
|
}
|
|
#endif
|
|
|
|
/* Handy constant */
|
|
#define CUT (100 / NUM_LEDS)
|
|
|
|
static uint32_t sequence_TAP_inner(int dir)
|
|
{
|
|
enum { RED, YELLOW, GREEN } base_color;
|
|
timestamp_t start, now;
|
|
uint32_t elapsed_time = 0;
|
|
int i, l, ci, max_led;
|
|
int f_osc, f_mult;
|
|
int gi, gr, gate[NUM_LEDS] = {0, 0, 0, 0};
|
|
uint8_t w = 0;
|
|
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
|
|
int f_min, f_delta, f_power;
|
|
|
|
f_min = st.p.tap_seg_min_on * FP_SCALE / 100;
|
|
f_delta = (st.p.tap_seg_max_on - st.p.tap_seg_min_on) * FP_SCALE / 100;
|
|
#endif
|
|
f_osc = st.p.tap_seg_osc * FP_SCALE / 100;
|
|
|
|
get_battery_level();
|
|
|
|
if (st.battery_level == 0)
|
|
base_color = RED;
|
|
else if (st.battery_percent > st.p.tap_pct_green)
|
|
base_color = GREEN;
|
|
else
|
|
base_color = YELLOW;
|
|
|
|
ci = st.p.tap_idx[base_color];
|
|
max_led = st.battery_percent / CUT;
|
|
|
|
start = get_time();
|
|
while (1) {
|
|
/* Enable the segments gradually */
|
|
gi = elapsed_time / st.p.tap_gate_delay;
|
|
gr = elapsed_time % st.p.tap_gate_delay;
|
|
if (gi < NUM_LEDS)
|
|
gate[gi] = FP_SCALE * gr / st.p.tap_gate_delay;
|
|
if (gi && gi <= NUM_LEDS)
|
|
gate[gi - 1] = FP_SCALE;
|
|
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
|
|
#ifdef CONFIG_LIGHTBAR_TAP_DIM_LAST_SEGMENT
|
|
if (max_led > i) {
|
|
f_mult = FP_SCALE;
|
|
} else if (max_led < i) {
|
|
f_mult = 0;
|
|
} else {
|
|
switch (base_color) {
|
|
case RED:
|
|
f_power = range(st.battery_percent, 0,
|
|
st.p.battery_threshold[0] - 1);
|
|
break;
|
|
case YELLOW:
|
|
f_power = range(st.battery_percent,
|
|
i * CUT, CUT - 1);
|
|
break;
|
|
case GREEN:
|
|
/* green is always full on */
|
|
f_power = FP_SCALE;
|
|
}
|
|
f_mult = f_min + f_power * f_delta / FP_SCALE;
|
|
}
|
|
#else
|
|
if (max_led >= i)
|
|
f_mult = FP_SCALE;
|
|
else if (max_led < i)
|
|
f_mult = 0;
|
|
#endif
|
|
|
|
f_mult = f_mult * gate[i] / FP_SCALE;
|
|
|
|
/* Pulse when charging and not yet full */
|
|
if (st.battery_is_charging &&
|
|
st.battery_percent <= st.p.tap_pct_green) {
|
|
int scale = (FP_SCALE -
|
|
f_osc * cycle_010(w++) / FP_SCALE);
|
|
f_mult = f_mult * scale / FP_SCALE;
|
|
}
|
|
|
|
l = dir ? i : NUM_LEDS - 1 - i;
|
|
lb_set_rgb(l, f_mult * st.p.color[ci].r / FP_SCALE,
|
|
f_mult * st.p.color[ci].g / FP_SCALE,
|
|
f_mult * st.p.color[ci].b / FP_SCALE);
|
|
}
|
|
|
|
WAIT_OR_RET(st.p.tap_tick_delay);
|
|
|
|
/* Return after some time has elapsed */
|
|
now = get_time();
|
|
elapsed_time = now.le.lo - start.le.lo;
|
|
if (elapsed_time > st.p.tap_display_time)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Override the tap direction for testing. -1 means ask the PD MCU. */
|
|
static int force_dir = -1;
|
|
|
|
/* Return 0 (left or none) or 1 (right) */
|
|
static int get_tap_direction(void)
|
|
{
|
|
static int last_dir;
|
|
int dir = 0;
|
|
|
|
if (force_dir >= 0)
|
|
dir = force_dir;
|
|
#ifdef HAS_TASK_PDCMD
|
|
else
|
|
dir = pd_get_active_charge_port();
|
|
#endif
|
|
if (dir < 0)
|
|
dir = last_dir;
|
|
else if (dir != 1)
|
|
dir = 0;
|
|
|
|
CPRINTS("LB tap direction %d", dir);
|
|
last_dir = dir;
|
|
return dir;
|
|
}
|
|
|
|
static uint32_t sequence_TAP(void)
|
|
{
|
|
int i;
|
|
uint32_t r;
|
|
uint8_t br, save[NUM_LEDS][3];
|
|
int dir;
|
|
|
|
/*
|
|
* There's a lot of unavoidable glitchiness on the AC_PRESENT interrupt
|
|
* each time the EC boots, resulting in fights between the TAP sequence
|
|
* and the S5S3->S3->S3S0->S0 sequences. This delay prevents the lights
|
|
* from flickering without reducing the responsiveness to manual taps.
|
|
*/
|
|
WAIT_OR_RET(100 * MSEC);
|
|
|
|
/* Which direction should the power meter go? */
|
|
dir = get_tap_direction();
|
|
|
|
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
|
|
/* Request that the lightbar power rails be turned on. */
|
|
if (lb_power(1)) {
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
}
|
|
#endif
|
|
/* First clear all segments */
|
|
lb_set_rgb(NUM_LEDS, 0, 0, 0);
|
|
|
|
lb_on();
|
|
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lb_get_rgb(i, &save[i][0], &save[i][1], &save[i][2]);
|
|
br = lb_get_brightness();
|
|
lb_set_brightness(255);
|
|
|
|
r = sequence_TAP_inner(dir);
|
|
|
|
lb_set_brightness(br);
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lb_set_rgb(i, save[i][0], save[i][1], save[i][2]);
|
|
|
|
#ifdef CONFIG_LIGHTBAR_POWER_RAILS
|
|
/* Suggest that the lightbar power rails can be shut down again. */
|
|
lb_power(0);
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* Lightbar bytecode interpreter: Lightbyte. */
|
|
/****************************************************************************/
|
|
|
|
/* When a program halts, return this. */
|
|
#define PROGRAM_FINISHED 2
|
|
|
|
static struct lightbar_program cur_prog;
|
|
static struct lightbar_program next_prog;
|
|
static uint8_t pc;
|
|
|
|
static uint8_t led_desc[NUM_LEDS][LB_CONT_MAX][3];
|
|
static uint32_t lb_wait_delay;
|
|
static uint32_t lb_ramp_delay;
|
|
/* Get one byte of data pointed to by the pc and advance
|
|
* the pc forward.
|
|
*/
|
|
static inline uint32_t decode_8(uint8_t *dest)
|
|
{
|
|
if (pc >= cur_prog.size) {
|
|
CPRINTS("pc 0x%02x out of bounds", pc);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
*dest = cur_prog.data[pc++];
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* Get four bytes of data pointed to by the pc and advance
|
|
* the pc forward that amount.
|
|
*/
|
|
static inline uint32_t decode_32(uint32_t *dest)
|
|
{
|
|
if (pc >= cur_prog.size - 3) {
|
|
CPRINTS("pc 0x%02x near or out of bounds", pc);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
*dest = cur_prog.data[pc++] << 24;
|
|
*dest |= cur_prog.data[pc++] << 16;
|
|
*dest |= cur_prog.data[pc++] << 8;
|
|
*dest |= cur_prog.data[pc++];
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* ON - turn on lightbar */
|
|
static uint32_t lightbyte_ON(void)
|
|
{
|
|
lb_on();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* OFF - turn off lightbar */
|
|
static uint32_t lightbyte_OFF(void)
|
|
{
|
|
lb_off();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* JUMP xx - jump to immediate location
|
|
* Changes the pc to the one-byte immediate argument.
|
|
*/
|
|
static uint32_t lightbyte_JUMP(void)
|
|
{
|
|
return decode_8(&pc);
|
|
}
|
|
|
|
/* JUMP_BATTERY aa bb - switch on battery level
|
|
* If the battery is low, changes pc to aa.
|
|
* If the battery is high, changes pc to bb.
|
|
* Otherwise, continues execution as normal.
|
|
*/
|
|
static uint32_t lightbyte_JUMP_BATTERY(void)
|
|
{
|
|
uint8_t low_pc, high_pc;
|
|
if (decode_8(&low_pc) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
if (decode_8(&high_pc) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
get_battery_level();
|
|
if (st.battery_level == 0)
|
|
pc = low_pc;
|
|
else if (st.battery_level == 3)
|
|
pc = high_pc;
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* JUMP_IF_CHARGING xx - conditional jump to location
|
|
* Changes the pc to xx if the device is charging.
|
|
*/
|
|
static uint32_t lightbyte_JUMP_IF_CHARGING(void)
|
|
{
|
|
uint8_t charge_pc;
|
|
if (decode_8(&charge_pc) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
if (st.battery_is_charging)
|
|
pc = charge_pc;
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* SET_WAIT_DELAY xx xx xx xx - set up to yield processor
|
|
* Sets the wait delay to the given four-byte immediate, in
|
|
* microseconds. Future WAIT instructions will wait for this
|
|
* much time.
|
|
*/
|
|
static uint32_t lightbyte_SET_WAIT_DELAY(void)
|
|
{
|
|
return decode_32(&lb_wait_delay);
|
|
}
|
|
|
|
/* SET_RAMP_DELAY xx xx xx xx - change ramp speed
|
|
* This sets the length of time between ramp/cycle steps to
|
|
* the four-byte immediate argument, which represents a duration
|
|
* in milliseconds.
|
|
*/
|
|
static uint32_t lightbyte_SET_RAMP_DELAY(void)
|
|
{
|
|
return decode_32(&lb_ramp_delay);
|
|
}
|
|
|
|
/* WAIT - yield processor for some time
|
|
* Yields the processor for some amount of time set by the most
|
|
* recent SET_WAIT_DELAY instruction.
|
|
*/
|
|
static uint32_t lightbyte_WAIT(void)
|
|
{
|
|
if (lb_wait_delay != 0)
|
|
WAIT_OR_RET(lb_wait_delay);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* SET_BRIGHTNESS xx
|
|
* Sets the current brightness to the given one-byte
|
|
* immediate argument.
|
|
*/
|
|
static uint32_t lightbyte_SET_BRIGHTNESS(void)
|
|
{
|
|
uint8_t val;
|
|
if (decode_8(&val) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
lb_set_brightness(val);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* SET_COLOR_SINGLE cc xx
|
|
* SET_COLOR_RGB cc rr gg bb
|
|
* Stores a color value in the led_desc structure.
|
|
* cc is a bit-packed location to perform the action on.
|
|
*
|
|
* The high four bits are a bitset for which LEDs to operate on.
|
|
* LED 0 is the lowest of the four bits.
|
|
*
|
|
* The next two bits are the control bits. This should be a value
|
|
* in lb_control that is not LB_CONT_MAX, and the corresponding
|
|
* color will be the one the action is performed on.
|
|
*
|
|
* The last two bits are the color bits if this instruction is
|
|
* SET_COLOR_SINGLE. They correspond to a LB_COL value for the
|
|
* channel to set the color for using the next immediate byte.
|
|
* In SET_COLOR_RGB, these bits are don't-cares, as there should
|
|
* always be three bytes that follow, which correspond to a
|
|
* complete RGB specification.
|
|
*/
|
|
static uint32_t lightbyte_SET_COLOR_SINGLE(void)
|
|
{
|
|
|
|
uint8_t packed_loc, led, control, color, value;
|
|
int i;
|
|
if (decode_8(&packed_loc) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
if (decode_8(&value) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
led = packed_loc >> 4;
|
|
control = (packed_loc >> 2) & 0x3;
|
|
color = packed_loc & 0x3;
|
|
|
|
if (control >= LB_CONT_MAX)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
if (led & BIT(i))
|
|
led_desc[i][control][color] = value;
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
static uint32_t lightbyte_SET_COLOR_RGB(void)
|
|
{
|
|
uint8_t packed_loc, r, g, b, led, control;
|
|
int i;
|
|
|
|
/* gross */
|
|
if (decode_8(&packed_loc) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
if (decode_8(&r) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
if (decode_8(&g) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
if (decode_8(&b) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
led = packed_loc >> 4;
|
|
control = (packed_loc >> 2) & 0x3;
|
|
|
|
if (control >= LB_CONT_MAX)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
if (led & BIT(i)) {
|
|
led_desc[i][control][LB_COL_RED] = r;
|
|
led_desc[i][control][LB_COL_GREEN] = g;
|
|
led_desc[i][control][LB_COL_BLUE] = b;
|
|
}
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* GET_COLORS - take current colors and push them to the state
|
|
* Gets the current state of the LEDs and puts them in COLOR0.
|
|
* Good for the beginning of a program if you need to fade in.
|
|
*/
|
|
static uint32_t lightbyte_GET_COLORS(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lb_get_rgb(i, &led_desc[i][LB_CONT_COLOR0][LB_COL_RED],
|
|
&led_desc[i][LB_CONT_COLOR0][LB_COL_GREEN],
|
|
&led_desc[i][LB_CONT_COLOR0][LB_COL_BLUE]);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* SWAP_COLORS - swaps beginning and end colors in state
|
|
* Exchanges COLOR0 and COLOR1 on all LEDs.
|
|
*/
|
|
static uint32_t lightbyte_SWAP_COLORS(void)
|
|
{
|
|
int i, j, tmp;
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
for (j = 0; j < 3; j++) {
|
|
tmp = led_desc[i][LB_CONT_COLOR0][j];
|
|
led_desc[i][LB_CONT_COLOR0][j] =
|
|
led_desc[i][LB_CONT_COLOR1][j];
|
|
led_desc[i][LB_CONT_COLOR1][j] = tmp;
|
|
}
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
static inline int get_interp_value(int led, int color, int interp)
|
|
{
|
|
int base = led_desc[led][LB_CONT_COLOR0][color];
|
|
int delta = led_desc[led][LB_CONT_COLOR1][color] - base;
|
|
return base + (delta * interp / FP_SCALE);
|
|
}
|
|
|
|
static void set_all_leds(int color)
|
|
{
|
|
int i, r, g, b;
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = led_desc[i][color][LB_COL_RED];
|
|
g = led_desc[i][color][LB_COL_GREEN];
|
|
b = led_desc[i][color][LB_COL_BLUE];
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
}
|
|
|
|
static uint32_t ramp_all_leds(int stop_at)
|
|
{
|
|
int w, i, r, g, b, f;
|
|
for (w = 0; w < stop_at; w++) {
|
|
f = cycle_010(w);
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = get_interp_value(i, LB_COL_RED, f);
|
|
g = get_interp_value(i, LB_COL_GREEN, f);
|
|
b = get_interp_value(i, LB_COL_BLUE, f);
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
WAIT_OR_RET(lb_ramp_delay);
|
|
}
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* RAMP_ONCE - simple gradient or color set
|
|
* If the ramp delay is set to zero, then this sets the color of
|
|
* all LEDs to their respective COLOR1.
|
|
* If the ramp delay is nonzero, then this sets their color to
|
|
* their respective COLOR0, and takes them via interpolation to
|
|
* COLOR1, with the delay time passing in between each step.
|
|
*/
|
|
static uint32_t lightbyte_RAMP_ONCE(void)
|
|
{
|
|
/* special case for instantaneous set */
|
|
if (lb_ramp_delay == 0) {
|
|
set_all_leds(LB_CONT_COLOR1);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
return ramp_all_leds(128);
|
|
}
|
|
|
|
/* CYCLE_ONCE - simple cycle or color set
|
|
* If the ramp delay is zero, then this sets the color of all LEDs
|
|
* to their respective COLOR0.
|
|
* If the ramp delay is nonzero, this sets the color of all LEDs
|
|
* to COLOR0, then performs a ramp (as in RAMP_ONCE) to COLOR1,
|
|
* and finally back to COLOR0.
|
|
*/
|
|
static uint32_t lightbyte_CYCLE_ONCE(void)
|
|
{
|
|
/* special case for instantaneous set */
|
|
if (lb_ramp_delay == 0) {
|
|
set_all_leds(LB_CONT_COLOR0);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
return ramp_all_leds(256);
|
|
}
|
|
|
|
/* CYCLE - repeating cycle
|
|
* Indefinitely ramps from COLOR0 to COLOR1, taking into
|
|
* account the PHASE of each component of each color when
|
|
* interpolating. (Different LEDs and different color channels
|
|
* on a single LED can start at different places in the cycle,
|
|
* though they will advance at the same rate.)
|
|
*
|
|
* If the ramp delay is zero, this instruction will error out.
|
|
*/
|
|
static uint32_t lightbyte_CYCLE(void)
|
|
{
|
|
int w, i, r, g, b;
|
|
|
|
/* what does it mean to cycle indefinitely with 0 delay? */
|
|
if (lb_ramp_delay == 0)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
for (w = 0;; w++) {
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
r = get_interp_value(i, LB_COL_RED,
|
|
cycle_010((w & 0xff) +
|
|
led_desc[i][LB_CONT_PHASE][LB_COL_RED]));
|
|
g = get_interp_value(i, LB_COL_GREEN,
|
|
cycle_010((w & 0xff) +
|
|
led_desc[i][LB_CONT_PHASE][LB_COL_GREEN]));
|
|
b = get_interp_value(i, LB_COL_BLUE,
|
|
cycle_010((w & 0xff) +
|
|
led_desc[i][LB_CONT_PHASE][LB_COL_BLUE]));
|
|
lb_set_rgb(i, r, g, b);
|
|
}
|
|
WAIT_OR_RET(lb_ramp_delay);
|
|
}
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* HALT - return with success
|
|
* Show's over. Go back to what you were doing before.
|
|
*/
|
|
static uint32_t lightbyte_HALT(void)
|
|
{
|
|
return PROGRAM_FINISHED;
|
|
}
|
|
|
|
#undef GET_INTERP_VALUE
|
|
|
|
#define OP(NAME, BYTES, MNEMONIC) NAME,
|
|
#include "lightbar_opcode_list.h"
|
|
enum lightbyte_opcode {
|
|
LIGHTBAR_OPCODE_TABLE
|
|
MAX_OPCODE
|
|
};
|
|
#undef OP
|
|
|
|
#define OP(NAME, BYTES, MNEMONIC) lightbyte_ ## NAME,
|
|
#include "lightbar_opcode_list.h"
|
|
static uint32_t (*lightbyte_dispatch[])(void) = {
|
|
LIGHTBAR_OPCODE_TABLE
|
|
};
|
|
#undef OP
|
|
|
|
#define OP(NAME, BYTES, MNEMONIC) MNEMONIC,
|
|
#include "lightbar_opcode_list.h"
|
|
static const char * const lightbyte_names[] = {
|
|
LIGHTBAR_OPCODE_TABLE
|
|
};
|
|
#undef OP
|
|
|
|
static uint32_t sequence_PROGRAM(void)
|
|
{
|
|
uint8_t saved_brightness;
|
|
uint8_t next_inst;
|
|
uint32_t rc;
|
|
uint8_t old_pc;
|
|
|
|
/* load next program */
|
|
memcpy(&cur_prog, &next_prog, sizeof(struct lightbar_program));
|
|
|
|
/* reset program state */
|
|
saved_brightness = lb_get_brightness();
|
|
pc = 0;
|
|
memset(led_desc, 0, sizeof(led_desc));
|
|
lb_wait_delay = 0;
|
|
lb_ramp_delay = 0;
|
|
|
|
lb_on();
|
|
lb_set_brightness(255);
|
|
|
|
/* decode-execute loop */
|
|
for (;;) {
|
|
old_pc = pc;
|
|
if (decode_8(&next_inst) != EC_SUCCESS)
|
|
return EC_RES_INVALID_PARAM;
|
|
|
|
if (next_inst >= MAX_OPCODE) {
|
|
CPRINTS("LB PROGRAM pc: 0x%02x, "
|
|
"found invalid opcode 0x%02x",
|
|
old_pc, next_inst);
|
|
lb_set_brightness(saved_brightness);
|
|
return EC_RES_INVALID_PARAM;
|
|
} else {
|
|
CPRINTS("LB PROGRAM pc: 0x%02x, opcode 0x%02x -> %s",
|
|
old_pc, next_inst, lightbyte_names[next_inst]);
|
|
rc = lightbyte_dispatch[next_inst]();
|
|
if (rc) {
|
|
lb_set_brightness(saved_brightness);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* yield processor in case we are stuck in a tight loop */
|
|
WAIT_OR_RET(100);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* The main lightbar task. It just cycles between various pretty patterns. */
|
|
/****************************************************************************/
|
|
|
|
/* Distinguish "normal" sequences from one-shot sequences */
|
|
static inline int is_normal_sequence(enum lightbar_sequence seq)
|
|
{
|
|
return (seq >= LIGHTBAR_S5 && seq <= LIGHTBAR_S3S5);
|
|
}
|
|
|
|
/* Link each sequence with a command to invoke it. */
|
|
struct lightbar_cmd_t {
|
|
const char * const string;
|
|
uint32_t (*sequence)(void);
|
|
};
|
|
|
|
#define LBMSG(state) { #state, sequence_##state }
|
|
#include "lightbar_msg_list.h"
|
|
static struct lightbar_cmd_t lightbar_cmds[] = {
|
|
LIGHTBAR_MSG_LIST
|
|
};
|
|
#undef LBMSG
|
|
|
|
void lightbar_task(void)
|
|
{
|
|
uint32_t next_seq;
|
|
|
|
CPRINTS("LB task starting");
|
|
|
|
lightbar_restore_state();
|
|
|
|
while (1) {
|
|
CPRINTS("LB running cur_seq %d %s. prev_seq %d %s",
|
|
st.cur_seq, lightbar_cmds[st.cur_seq].string,
|
|
st.prev_seq, lightbar_cmds[st.prev_seq].string);
|
|
next_seq = lightbar_cmds[st.cur_seq].sequence();
|
|
if (next_seq) {
|
|
CPRINTS("LB cur_seq %d %s returned pending msg %d %s",
|
|
st.cur_seq, lightbar_cmds[st.cur_seq].string,
|
|
next_seq, lightbar_cmds[next_seq].string);
|
|
if (st.cur_seq != next_seq) {
|
|
if (is_normal_sequence(st.cur_seq))
|
|
st.prev_seq = st.cur_seq;
|
|
st.cur_seq = next_seq;
|
|
}
|
|
} else {
|
|
CPRINTS("LB cur_seq %d %s returned value 0",
|
|
st.cur_seq, lightbar_cmds[st.cur_seq].string);
|
|
switch (st.cur_seq) {
|
|
case LIGHTBAR_S5S3:
|
|
st.cur_seq = LIGHTBAR_S3;
|
|
break;
|
|
case LIGHTBAR_S3S0:
|
|
st.cur_seq = LIGHTBAR_S0;
|
|
break;
|
|
case LIGHTBAR_S0S3:
|
|
st.cur_seq = LIGHTBAR_S3;
|
|
break;
|
|
case LIGHTBAR_S3S5:
|
|
st.cur_seq = LIGHTBAR_S5;
|
|
break;
|
|
case LIGHTBAR_STOP:
|
|
case LIGHTBAR_RUN:
|
|
case LIGHTBAR_ERROR:
|
|
case LIGHTBAR_KONAMI:
|
|
case LIGHTBAR_TAP:
|
|
case LIGHTBAR_PROGRAM:
|
|
st.cur_seq = st.prev_seq;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function to request a preset sequence from the lightbar task. */
|
|
void lightbar_sequence_f(enum lightbar_sequence num, const char *f)
|
|
{
|
|
if (num > 0 && num < LIGHTBAR_NUM_SEQUENCES) {
|
|
CPRINTS("LB %s() requests %d %s", f, num,
|
|
lightbar_cmds[num].string);
|
|
pending_msg = num;
|
|
task_set_event(TASK_ID_LIGHTBAR, PENDING_MSG, 0);
|
|
} else
|
|
CPRINTS("LB %s() requests %d - ignored", f, num);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* Get notifications from other parts of the system */
|
|
|
|
static uint8_t manual_suspend_control;
|
|
|
|
static void lightbar_startup(void)
|
|
{
|
|
manual_suspend_control = 0;
|
|
lightbar_sequence(LIGHTBAR_S5S3);
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, lightbar_startup, HOOK_PRIO_DEFAULT);
|
|
|
|
static void lightbar_resume(void)
|
|
{
|
|
if (!manual_suspend_control)
|
|
lightbar_sequence(LIGHTBAR_S3S0);
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_RESUME, lightbar_resume, HOOK_PRIO_DEFAULT);
|
|
|
|
static void lightbar_suspend(void)
|
|
{
|
|
if (!manual_suspend_control)
|
|
lightbar_sequence(LIGHTBAR_S0S3);
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, lightbar_suspend, HOOK_PRIO_DEFAULT);
|
|
|
|
static void lightbar_shutdown(void)
|
|
{
|
|
lightbar_sequence(LIGHTBAR_S3S5);
|
|
}
|
|
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, lightbar_shutdown, HOOK_PRIO_DEFAULT);
|
|
|
|
/****************************************************************************/
|
|
/* Host commands via LPC bus */
|
|
/****************************************************************************/
|
|
|
|
static enum ec_status lpc_cmd_lightbar(struct host_cmd_handler_args *args)
|
|
{
|
|
const struct ec_params_lightbar *in = args->params;
|
|
struct ec_response_lightbar *out = args->response;
|
|
int rv;
|
|
|
|
switch (in->cmd) {
|
|
case LIGHTBAR_CMD_DUMP:
|
|
lb_hc_cmd_dump(out);
|
|
args->response_size = sizeof(out->dump);
|
|
break;
|
|
case LIGHTBAR_CMD_OFF:
|
|
lb_off();
|
|
break;
|
|
case LIGHTBAR_CMD_ON:
|
|
lb_on();
|
|
break;
|
|
case LIGHTBAR_CMD_INIT:
|
|
lb_init(1);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_BRIGHTNESS:
|
|
lb_set_brightness(in->set_brightness.num);
|
|
break;
|
|
case LIGHTBAR_CMD_GET_BRIGHTNESS:
|
|
out->get_brightness.num = lb_get_brightness();
|
|
args->response_size = sizeof(out->get_brightness);
|
|
break;
|
|
case LIGHTBAR_CMD_SEQ:
|
|
lightbar_sequence(in->seq.num);
|
|
break;
|
|
case LIGHTBAR_CMD_REG:
|
|
lb_hc_cmd_reg(in);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_RGB:
|
|
lb_set_rgb(in->set_rgb.led,
|
|
in->set_rgb.red,
|
|
in->set_rgb.green,
|
|
in->set_rgb.blue);
|
|
break;
|
|
case LIGHTBAR_CMD_GET_RGB:
|
|
rv = lb_get_rgb(in->get_rgb.led,
|
|
&out->get_rgb.red,
|
|
&out->get_rgb.green,
|
|
&out->get_rgb.blue);
|
|
if (rv == EC_RES_SUCCESS)
|
|
args->response_size = sizeof(out->get_rgb);
|
|
return rv;
|
|
case LIGHTBAR_CMD_GET_SEQ:
|
|
out->get_seq.num = st.cur_seq;
|
|
args->response_size = sizeof(out->get_seq);
|
|
break;
|
|
case LIGHTBAR_CMD_DEMO:
|
|
demo_mode = in->demo.num ? 1 : 0;
|
|
CPRINTS("LB_demo %d", demo_mode);
|
|
break;
|
|
case LIGHTBAR_CMD_GET_DEMO:
|
|
out->get_demo.num = demo_mode;
|
|
args->response_size = sizeof(out->get_demo);
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V0:
|
|
CPRINTS("LB_get_params_v0 not supported");
|
|
return EC_RES_INVALID_VERSION;
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V0:
|
|
CPRINTS("LB_set_params_v0 not supported");
|
|
return EC_RES_INVALID_VERSION;
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V1:
|
|
CPRINTS("LB_get_params_v1");
|
|
memcpy(&out->get_params_v1, &st.p, sizeof(st.p));
|
|
args->response_size = sizeof(out->get_params_v1);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V1:
|
|
CPRINTS("LB_set_params_v1");
|
|
memcpy(&st.p, &in->set_params_v1, sizeof(st.p));
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PROGRAM:
|
|
CPRINTS("LB_set_program");
|
|
memcpy(&next_prog,
|
|
&in->set_program,
|
|
sizeof(struct lightbar_program));
|
|
break;
|
|
case LIGHTBAR_CMD_VERSION:
|
|
CPRINTS("LB_version");
|
|
out->version.num = LIGHTBAR_IMPLEMENTATION_VERSION;
|
|
out->version.flags = LIGHTBAR_IMPLEMENTATION_FLAGS;
|
|
args->response_size = sizeof(out->version);
|
|
break;
|
|
case LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL:
|
|
CPRINTS("LB_manual_suspend_ctrl");
|
|
manual_suspend_control = in->manual_suspend_ctrl.enable;
|
|
break;
|
|
case LIGHTBAR_CMD_SUSPEND:
|
|
CPRINTS("LB_suspend");
|
|
lightbar_sequence(LIGHTBAR_S0S3);
|
|
break;
|
|
case LIGHTBAR_CMD_RESUME:
|
|
CPRINTS("LB_resume");
|
|
lightbar_sequence(LIGHTBAR_S3S0);
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V2_TIMING:
|
|
CPRINTS("LB_get_params_v2_timing");
|
|
memcpy(&out->get_params_v2_timing,
|
|
&st.p_v2.timing,
|
|
sizeof(st.p_v2.timing));
|
|
args->response_size = sizeof(out->get_params_v2_timing);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V2_TIMING:
|
|
CPRINTS("LB_set_params_v2_timing");
|
|
memcpy(&st.p_v2.timing,
|
|
&in->set_v2par_timing,
|
|
sizeof(struct lightbar_params_v2_timing));
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V2_TAP:
|
|
CPRINTS("LB_get_params_v2_tap");
|
|
memcpy(&out->get_params_v2_tap,
|
|
&st.p_v2.tap,
|
|
sizeof(struct lightbar_params_v2_tap));
|
|
args->response_size = sizeof(out->get_params_v2_tap);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V2_TAP:
|
|
CPRINTS("LB_set_params_v2_tap");
|
|
memcpy(&st.p_v2.tap,
|
|
&in->set_v2par_tap,
|
|
sizeof(struct lightbar_params_v2_tap));
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION:
|
|
CPRINTS("LB_get_params_v2_oscillation");
|
|
memcpy(&out->get_params_v2_osc, &st.p_v2.osc,
|
|
sizeof(struct lightbar_params_v2_oscillation));
|
|
args->response_size = sizeof(out->get_params_v2_osc);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION:
|
|
CPRINTS("LB_set_params_v2_oscillation");
|
|
memcpy(&st.p_v2.osc,
|
|
&in->set_v2par_osc,
|
|
sizeof(struct lightbar_params_v2_oscillation));
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS:
|
|
CPRINTS("LB_get_params_v2_brightness");
|
|
memcpy(&out->get_params_v2_bright,
|
|
&st.p_v2.bright,
|
|
sizeof(struct lightbar_params_v2_brightness));
|
|
args->response_size = sizeof(out->get_params_v2_bright);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS:
|
|
CPRINTS("LB_set_params_v2_brightness");
|
|
memcpy(&st.p_v2.bright,
|
|
&in->set_v2par_bright,
|
|
sizeof(struct lightbar_params_v2_brightness));
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS:
|
|
CPRINTS("LB_get_params_v2_thlds");
|
|
memcpy(&out->get_params_v2_thlds,
|
|
&st.p_v2.thlds,
|
|
sizeof(struct lightbar_params_v2_thresholds));
|
|
args->response_size = sizeof(out->get_params_v2_thlds);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS:
|
|
CPRINTS("LB_set_params_v2_thlds");
|
|
memcpy(&st.p_v2.thlds,
|
|
&in->set_v2par_thlds,
|
|
sizeof(struct lightbar_params_v2_thresholds));
|
|
break;
|
|
case LIGHTBAR_CMD_GET_PARAMS_V2_COLORS:
|
|
CPRINTS("LB_get_params_v2_colors");
|
|
memcpy(&out->get_params_v2_colors,
|
|
&st.p_v2.colors,
|
|
sizeof(struct lightbar_params_v2_colors));
|
|
args->response_size = sizeof(out->get_params_v2_colors);
|
|
break;
|
|
case LIGHTBAR_CMD_SET_PARAMS_V2_COLORS:
|
|
CPRINTS("LB_set_params_v2_colors");
|
|
memcpy(&st.p_v2.colors,
|
|
&in->set_v2par_colors,
|
|
sizeof(struct lightbar_params_v2_colors));
|
|
break;
|
|
default:
|
|
CPRINTS("LB bad cmd 0x%x", in->cmd);
|
|
return EC_RES_INVALID_PARAM;
|
|
}
|
|
|
|
return EC_RES_SUCCESS;
|
|
}
|
|
|
|
DECLARE_HOST_COMMAND(EC_CMD_LIGHTBAR_CMD,
|
|
lpc_cmd_lightbar,
|
|
EC_VER_MASK(0));
|
|
|
|
/****************************************************************************/
|
|
/* EC console commands */
|
|
/****************************************************************************/
|
|
|
|
#ifdef CONFIG_CONSOLE_CMDHELP
|
|
static int help(const char *cmd)
|
|
{
|
|
ccprintf("Usage:\n");
|
|
ccprintf(" %s - dump all regs\n", cmd);
|
|
ccprintf(" %s off - enter standby\n", cmd);
|
|
ccprintf(" %s on - leave standby\n", cmd);
|
|
ccprintf(" %s init - load default vals\n", cmd);
|
|
ccprintf(" %s brightness [NUM] - set intensity (0-ff)\n", cmd);
|
|
ccprintf(" %s seq [NUM|SEQUENCE] - run given pattern"
|
|
" (no arg for list)\n", cmd);
|
|
ccprintf(" %s CTRL REG VAL - set LED controller regs\n", cmd);
|
|
ccprintf(" %s LED RED GREEN BLUE - set color manually"
|
|
" (LED=%d for all)\n", cmd, NUM_LEDS);
|
|
ccprintf(" %s LED - get current LED color\n", cmd);
|
|
ccprintf(" %s demo [0|1] - turn demo mode on & off\n", cmd);
|
|
#ifdef LIGHTBAR_SIMULATION
|
|
ccprintf(" %s program filename - load lightbyte program\n", cmd);
|
|
#endif
|
|
ccprintf(" %s version - show current version\n", cmd);
|
|
return EC_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
static uint8_t find_msg_by_name(const char *str)
|
|
{
|
|
uint8_t i;
|
|
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
|
|
if (!strcasecmp(str, lightbar_cmds[i].string))
|
|
return i;
|
|
|
|
return LIGHTBAR_NUM_SEQUENCES;
|
|
}
|
|
|
|
static void show_msg_names(void)
|
|
{
|
|
int i;
|
|
ccprintf("Sequences:");
|
|
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
|
|
ccprintf(" %s", lightbar_cmds[i].string);
|
|
ccprintf("\nCurrent = 0x%x %s\n", st.cur_seq,
|
|
lightbar_cmds[st.cur_seq].string);
|
|
}
|
|
|
|
static int command_lightbar(int argc, char **argv)
|
|
{
|
|
int i;
|
|
uint8_t num, led, r = 0, g = 0, b = 0;
|
|
struct ec_response_lightbar out;
|
|
char *e;
|
|
|
|
if (argc == 1) { /* no args = dump 'em all */
|
|
lb_hc_cmd_dump(&out);
|
|
for (i = 0; i < ARRAY_SIZE(out.dump.vals); i++)
|
|
ccprintf(" %02x %02x %02x\n",
|
|
out.dump.vals[i].reg,
|
|
out.dump.vals[i].ic0,
|
|
out.dump.vals[i].ic1);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "init")) {
|
|
lb_init(1);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "off")) {
|
|
lb_off();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "on")) {
|
|
lb_on();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "version")) {
|
|
ccprintf("version %d flags 0x%x\n",
|
|
LIGHTBAR_IMPLEMENTATION_VERSION,
|
|
LIGHTBAR_IMPLEMENTATION_FLAGS);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "brightness")) {
|
|
if (argc > 2) {
|
|
num = 0xff & strtoi(argv[2], &e, 16);
|
|
lb_set_brightness(num);
|
|
}
|
|
ccprintf("brightness is %02x\n", lb_get_brightness());
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "demo")) {
|
|
if (argc > 2) {
|
|
if (!strcasecmp(argv[2], "on") ||
|
|
argv[2][0] == '1')
|
|
demo_mode = 1;
|
|
else if (!strcasecmp(argv[2], "off") ||
|
|
argv[2][0] == '0')
|
|
demo_mode = 0;
|
|
else
|
|
return EC_ERROR_PARAM1;
|
|
}
|
|
ccprintf("demo mode is %s\n", demo_mode ? "on" : "off");
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "seq")) {
|
|
if (argc == 2) {
|
|
show_msg_names();
|
|
return 0;
|
|
}
|
|
num = 0xff & strtoi(argv[2], &e, 16);
|
|
if (*e)
|
|
num = find_msg_by_name(argv[2]);
|
|
if (num >= LIGHTBAR_NUM_SEQUENCES)
|
|
return EC_ERROR_PARAM2;
|
|
if (argc > 3) /* for testing TAP direction */
|
|
force_dir = strtoi(argv[3], 0, 0);
|
|
lightbar_sequence(num);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
#ifdef LIGHTBAR_SIMULATION
|
|
/* Load a program. */
|
|
if (argc >= 3 && !strcasecmp(argv[1], "program")) {
|
|
return lb_load_program(argv[2], &next_prog);
|
|
}
|
|
#endif
|
|
|
|
if (argc == 4) {
|
|
struct ec_params_lightbar in;
|
|
in.reg.ctrl = strtoi(argv[1], &e, 16);
|
|
in.reg.reg = strtoi(argv[2], &e, 16);
|
|
in.reg.value = strtoi(argv[3], &e, 16);
|
|
lb_hc_cmd_reg(&in);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (argc == 5) {
|
|
led = strtoi(argv[1], &e, 16);
|
|
r = strtoi(argv[2], &e, 16);
|
|
g = strtoi(argv[3], &e, 16);
|
|
b = strtoi(argv[4], &e, 16);
|
|
lb_set_rgb(led, r, g, b);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
/* Only thing left is to try to read an LED value */
|
|
num = strtoi(argv[1], &e, 16);
|
|
if (!(e && *e)) {
|
|
if (num >= NUM_LEDS) {
|
|
for (i = 0; i < NUM_LEDS; i++) {
|
|
lb_get_rgb(i, &r, &g, &b);
|
|
ccprintf("%x: %02x %02x %02x\n", i, r, g, b);
|
|
}
|
|
} else {
|
|
lb_get_rgb(num, &r, &g, &b);
|
|
ccprintf("%02x %02x %02x\n", r, g, b);
|
|
}
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_CONSOLE_CMDHELP
|
|
help(argv[0]);
|
|
#endif
|
|
|
|
return EC_ERROR_INVAL;
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar,
|
|
"[help | COMMAND [ARGS]]",
|
|
"Get/set lightbar state");
|