coreboot-libre-fam15h-rdimm/3rdparty/chromeec/common/sha256.c

298 lines
8.4 KiB
C

/* SHA-256 and SHA-512 implementation based on code by Oliver Gay
* <olivier.gay@a3.epfl.ch> under a BSD-style license. See below.
*/
/*
* FIPS 180-2 SHA-224/256/384/512 implementation
* Last update: 02/02/2007
* Issue date: 04/30/2005
*
* Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "sha256.h"
#include "util.h"
#define SHFR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define CH(x, y, z) ((x & y) ^ (~x & z))
#define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3))
#define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))
#define UNPACK32(x, str) \
{ \
*((str) + 3) = (uint8_t) ((x)); \
*((str) + 2) = (uint8_t) ((x) >> 8); \
*((str) + 1) = (uint8_t) ((x) >> 16); \
*((str) + 0) = (uint8_t) ((x) >> 24); \
}
#define PACK32(str, x) \
{ \
*(x) = ((uint32_t) *((str) + 3)) \
| ((uint32_t) *((str) + 2) << 8) \
| ((uint32_t) *((str) + 1) << 16) \
| ((uint32_t) *((str) + 0) << 24); \
}
/* Macros used for loops unrolling */
#define SHA256_SCR(i) \
{ \
w[i] = SHA256_F4(w[i - 2]) + w[i - 7] \
+ SHA256_F3(w[i - 15]) + w[i - 16]; \
}
#define SHA256_EXP(a, b, c, d, e, f, g, h, j) \
{ \
t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
+ sha256_k[j] + w[j]; \
t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
wv[d] += t1; \
wv[h] = t1 + t2; \
}
static const uint32_t sha256_h0[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
static const uint32_t sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
void SHA256_init(struct sha256_ctx *ctx)
{
int i;
for (i = 0; i < 8; i++)
ctx->h[i] = sha256_h0[i];
ctx->len = 0;
ctx->tot_len = 0;
}
static void SHA256_transform(struct sha256_ctx *ctx, const uint8_t *message,
unsigned int block_nb)
{
/* Note: this function requires a considerable amount of stack */
uint32_t w[64];
uint32_t wv[8];
uint32_t t1, t2;
const unsigned char *sub_block;
int i, j;
for (i = 0; i < (int) block_nb; i++) {
sub_block = message + (i << 6);
for (j = 0; j < 16; j++)
PACK32(&sub_block[j << 2], &w[j]);
#ifdef CONFIG_SHA256_UNROLLED
for (j = 16; j < 64; j += 8) {
SHA256_SCR(j);
SHA256_SCR(j+1);
SHA256_SCR(j+2);
SHA256_SCR(j+3);
SHA256_SCR(j+4);
SHA256_SCR(j+5);
SHA256_SCR(j+6);
SHA256_SCR(j+7);
}
#else
for (j = 16; j < 64; j++)
SHA256_SCR(j);
#endif
for (j = 0; j < 8; j++)
wv[j] = ctx->h[j];
#ifdef CONFIG_SHA256_UNROLLED
for (j = 0; j < 64; j += 8) {
SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, j);
SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, j+1);
SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, j+2);
SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, j+3);
SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, j+4);
SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, j+5);
SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, j+6);
SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, j+7);
}
#else
for (j = 0; j < 64; j++) {
t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
+ sha256_k[j] + w[j];
t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;
}
#endif
for (j = 0; j < 8; j++)
ctx->h[j] += wv[j];
}
}
void SHA256_update(struct sha256_ctx *ctx, const uint8_t *data, uint32_t len)
{
unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const uint8_t *shifted_data;
tmp_len = SHA256_BLOCK_SIZE - ctx->len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&ctx->block[ctx->len], data, rem_len);
if (ctx->len + len < SHA256_BLOCK_SIZE) {
ctx->len += len;
return;
}
new_len = len - rem_len;
block_nb = new_len / SHA256_BLOCK_SIZE;
shifted_data = data + rem_len;
SHA256_transform(ctx, ctx->block, 1);
SHA256_transform(ctx, shifted_data, block_nb);
rem_len = new_len % SHA256_BLOCK_SIZE;
memcpy(ctx->block, &shifted_data[block_nb << 6], rem_len);
ctx->len = rem_len;
ctx->tot_len += (block_nb + 1) << 6;
}
/*
* Specialized SHA256_init + SHA256_update that takes the first data block of
* size SHA256_BLOCK_SIZE as input.
*/
static void SHA256_init_1b(struct sha256_ctx *ctx, const uint8_t *data)
{
int i;
for (i = 0; i < 8; i++)
ctx->h[i] = sha256_h0[i];
SHA256_transform(ctx, data, 1);
ctx->len = 0;
ctx->tot_len = SHA256_BLOCK_SIZE;
}
uint8_t *SHA256_final(struct sha256_ctx *ctx)
{
unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
int i;
block_nb = (1 + ((SHA256_BLOCK_SIZE - 9)
< (ctx->len % SHA256_BLOCK_SIZE)));
len_b = (ctx->tot_len + ctx->len) << 3;
pm_len = block_nb << 6;
memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
ctx->block[ctx->len] = 0x80;
UNPACK32(len_b, ctx->block + pm_len - 4);
SHA256_transform(ctx, ctx->block, block_nb);
for (i = 0; i < 8; i++)
UNPACK32(ctx->h[i], &ctx->buf[i << 2]);
return ctx->buf;
}
static void hmac_SHA256_step(uint8_t *output, uint8_t mask,
const uint8_t *key, const int key_len,
const uint8_t *data, const int data_len) {
struct sha256_ctx ctx;
uint8_t *key_pad = ctx.block;
uint8_t *tmp;
int i;
/* key_pad = key (zero-padded) ^ mask */
memset(key_pad, mask, SHA256_BLOCK_SIZE);
for (i = 0; i < key_len; i++)
key_pad[i] ^= key[i];
/* tmp = hash(key_pad || message) */
SHA256_init_1b(&ctx, key_pad);
SHA256_update(&ctx, data, data_len);
tmp = SHA256_final(&ctx);
memcpy(output, tmp, SHA256_DIGEST_SIZE);
}
void hmac_SHA256(uint8_t *output, const uint8_t *key, const int key_len,
const uint8_t *message, const int message_len) {
/* This code does not support key_len > block_size. */
ASSERT(key_len <= SHA256_BLOCK_SIZE);
/*
* i_key_pad = key (zero-padded) ^ 0x36
* output = hash(i_key_pad || message)
* (Use output as temporary buffer)
*/
hmac_SHA256_step(output, 0x36, key, key_len, message, message_len);
/*
* o_key_pad = key (zero-padded) ^ 0x5c
* output = hash(o_key_pad || output)
*/
hmac_SHA256_step(output, 0x5c,
key, key_len, output, SHA256_DIGEST_SIZE);
}