coreboot-libre-fam15h-rdimm/3rdparty/chromeec/common/usb_pd_policy.c

1164 lines
30 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "atomic.h"
#include "charge_manager.h"
#include "common.h"
#include "console.h"
#include "ec_commands.h"
#include "flash.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "mkbp_event.h"
#include "registers.h"
#include "rsa.h"
#include "sha256.h"
#include "system.h"
#include "task.h"
#include "tcpm.h"
#include "timer.h"
#include "util.h"
#include "usb_api.h"
#include "usb_common.h"
#include "usb_pd.h"
#include "usbc_ppc.h"
#include "version.h"
#ifdef CONFIG_COMMON_RUNTIME
#define CPRINTS(format, args...) cprints(CC_USBPD, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBPD, format, ## args)
#else
#define CPRINTS(format, args...)
#define CPRINTF(format, args...)
#endif
static int rw_flash_changed = 1;
#ifdef CONFIG_MKBP_EVENT
static int dp_alt_mode_entry_get_next_event(uint8_t *data)
{
return EC_SUCCESS;
}
DECLARE_EVENT_SOURCE(EC_MKBP_EVENT_DP_ALT_MODE_ENTERED,
dp_alt_mode_entry_get_next_event);
void pd_notify_dp_alt_mode_entry(void)
{
CPRINTS("Notifying AP of DP Alt Mode Entry...");
mkbp_send_event(EC_MKBP_EVENT_DP_ALT_MODE_ENTERED);
}
#endif /* CONFIG_MKBP_EVENT */
int pd_check_requested_voltage(uint32_t rdo, const int port)
{
int max_ma = rdo & 0x3FF;
int op_ma = (rdo >> 10) & 0x3FF;
int idx = RDO_POS(rdo);
uint32_t pdo;
uint32_t pdo_ma;
#if defined(CONFIG_USB_PD_DYNAMIC_SRC_CAP) || \
defined(CONFIG_USB_PD_MAX_SINGLE_SOURCE_CURRENT)
const uint32_t *src_pdo;
const int pdo_cnt = charge_manager_get_source_pdo(&src_pdo, port);
#else
const uint32_t *src_pdo = pd_src_pdo;
const int pdo_cnt = pd_src_pdo_cnt;
#endif
/* Board specific check for this request */
if (pd_board_check_request(rdo, pdo_cnt))
return EC_ERROR_INVAL;
/* check current ... */
pdo = src_pdo[idx - 1];
pdo_ma = (pdo & 0x3ff);
if (op_ma > pdo_ma)
return EC_ERROR_INVAL; /* too much op current */
if (max_ma > pdo_ma && !(rdo & RDO_CAP_MISMATCH))
return EC_ERROR_INVAL; /* too much max current */
CPRINTF("Requested %d V %d mA (for %d/%d mA)\n",
((pdo >> 10) & 0x3ff) * 50, (pdo & 0x3ff) * 10,
op_ma * 10, max_ma * 10);
/* Accept the requested voltage */
return EC_SUCCESS;
}
__attribute__((weak)) int pd_board_check_request(uint32_t rdo, int pdo_cnt)
{
int idx = RDO_POS(rdo);
/* Check for invalid index */
return (!idx || idx > pdo_cnt) ?
EC_ERROR_INVAL : EC_SUCCESS;
}
#ifdef CONFIG_USB_PD_DUAL_ROLE
/* Last received source cap */
static uint32_t pd_src_caps[CONFIG_USB_PD_PORT_COUNT][PDO_MAX_OBJECTS];
static uint8_t pd_src_cap_cnt[CONFIG_USB_PD_PORT_COUNT];
/* Cap on the max voltage requested as a sink (in millivolts) */
static unsigned max_request_mv = PD_MAX_VOLTAGE_MV; /* no cap */
const uint32_t * const pd_get_src_caps(int port)
{
ASSERT(port < CONFIG_USB_PD_PORT_COUNT);
return pd_src_caps[port];
}
uint8_t pd_get_src_cap_cnt(int port)
{
ASSERT(port < CONFIG_USB_PD_PORT_COUNT);
return pd_src_cap_cnt[port];
}
uint32_t get_max_request_mv(void)
{
return max_request_mv;
}
void pd_process_source_cap(int port, int cnt, uint32_t *src_caps)
{
#ifdef CONFIG_CHARGE_MANAGER
uint32_t ma, mv, pdo;
#endif
int i;
pd_src_cap_cnt[port] = cnt;
for (i = 0; i < cnt; i++)
pd_src_caps[port][i] = *src_caps++;
#ifdef CONFIG_CHARGE_MANAGER
/* Get max power info that we could request */
pd_find_pdo_index(pd_get_src_cap_cnt(port), pd_get_src_caps(port),
PD_MAX_VOLTAGE_MV, &pdo);
pd_extract_pdo_power(pdo, &ma, &mv);
/* Set max. limit, but apply 500mA ceiling */
charge_manager_set_ceil(port, CEIL_REQUESTOR_PD, PD_MIN_MA);
pd_set_input_current_limit(port, ma, mv);
#endif
}
void pd_set_max_voltage(unsigned mv)
{
max_request_mv = mv;
}
unsigned pd_get_max_voltage(void)
{
return max_request_mv;
}
int pd_charge_from_device(uint16_t vid, uint16_t pid)
{
/* TODO: rewrite into table if we get more of these */
/*
* White-list Apple charge-through accessory since it doesn't set
* externally powered bit, but we still need to charge from it when
* we are a sink.
*/
return (vid == USB_VID_APPLE && (pid == 0x1012 || pid == 0x1013));
}
#endif /* CONFIG_USB_PD_DUAL_ROLE */
static struct pd_cable cable[CONFIG_USB_PD_PORT_COUNT];
static uint8_t is_transmit_msg_sop_prime(int port)
{
if (IS_ENABLED(CONFIG_USB_PD_DECODE_SOP))
return !!(cable[port].flags & CABLE_FLAGS_SOP_PRIME_ENABLE);
return 0;
}
uint8_t is_sop_prime_ready(int port, uint8_t data_role, uint32_t pd_flags)
{
/*
* Ref: USB PD 3.0 sec 2.5.4: When an Explicit Contract is in place the
* VCONN Source (either the DFP or the UFP) can communicate with the
* Cable Plug(s) using SOP/SOP Packets
*
* Ref: USB PD 2.0 sec 2.4.4: When an Explicit Contract is in place the
* DFP (either the Source or the Sink) can communicate with the
* Cable Plug(s) using SOP/SOP” Packets.
* Sec 3.6.11 : Before communicating with a Cable Plug a Port Should
* ensure that it is the Vconn Source
*/
if (pd_flags & PD_FLAGS_VCONN_ON && (IS_ENABLED(CONFIG_USB_PD_REV30) ||
data_role == PD_ROLE_DFP))
return is_transmit_msg_sop_prime(port);
return 0;
}
void reset_pd_cable(int port)
{
if (IS_ENABLED(CONFIG_USB_PD_DECODE_SOP))
memset(&cable[port], 0, sizeof(cable[port]));
}
uint8_t get_usb_pd_mux_cable_type(int port)
{
return cable[port].type;
}
#ifdef CONFIG_USB_PD_ALT_MODE
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
static struct pd_policy pe[CONFIG_USB_PD_PORT_COUNT];
static int is_vdo_present(int cnt, int index)
{
return cnt > index;
}
static void enable_transmit_sop_prime(int port)
{
cable[port].flags |= CABLE_FLAGS_SOP_PRIME_ENABLE;
}
static void disable_transmit_sop_prime(int port)
{
cable[port].flags &= ~CABLE_FLAGS_SOP_PRIME_ENABLE;
}
void pd_dfp_pe_init(int port)
{
memset(&pe[port], 0, sizeof(struct pd_policy));
}
static void dfp_consume_identity(int port, int cnt, uint32_t *payload)
{
int ptype = PD_IDH_PTYPE(payload[VDO_I(IDH)]);
size_t identity_size = MIN(sizeof(pe[port].identity),
(cnt - 1) * sizeof(uint32_t));
pd_dfp_pe_init(port);
memcpy(&pe[port].identity, payload + 1, identity_size);
switch (ptype) {
case IDH_PTYPE_AMA:
/* Leave vbus ON if the following macro is false */
#if defined(CONFIG_USB_PD_DUAL_ROLE) && defined(CONFIG_USBC_VCONN_SWAP)
/* Adapter is requesting vconn, try to supply it */
if (PD_VDO_AMA_VCONN_REQ(payload[VDO_I(AMA)]))
pd_try_vconn_src(port);
/* Only disable vbus if vconn was requested */
if (PD_VDO_AMA_VCONN_REQ(payload[VDO_I(AMA)]) &&
!PD_VDO_AMA_VBUS_REQ(payload[VDO_I(AMA)]))
pd_power_supply_reset(port);
#endif
break;
default:
break;
}
}
static void dfp_consume_cable_response(int port, int cnt, uint32_t *payload)
{
if (cable[port].is_identified)
return;
if (is_vdo_present(cnt, VDO_INDEX_IDH)) {
cable[port].type = PD_IDH_PTYPE(payload[VDO_INDEX_IDH]);
if (is_vdo_present(cnt, VDO_INDEX_PTYPE_CABLE1))
cable[port].attr.raw_value =
payload[VDO_INDEX_PTYPE_CABLE1];
}
/*
* Ref USB PD Spec 3.0 Pg 145. For active cable there are two VDOs.
* Hence storing the second VDO.
*/
if (IS_ENABLED(CONFIG_USB_PD_REV30) &&
is_vdo_present(cnt, VDO_INDEX_PTYPE_CABLE2) &&
cable[port].type == IDH_PTYPE_ACABLE) {
cable[port].rev = PD_REV30;
cable[port].attr2.raw_value = payload[VDO_INDEX_PTYPE_CABLE2];
}
cable[port].is_identified = 1;
}
static int dfp_discover_ident(uint32_t *payload)
{
payload[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_IDENT);
return 1;
}
static int dfp_discover_svids(uint32_t *payload)
{
payload[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_SVID);
return 1;
}
static void dfp_consume_svids(int port, int cnt, uint32_t *payload)
{
int i;
uint32_t *ptr = payload + 1;
int vdo = 1;
uint16_t svid0, svid1;
for (i = pe[port].svid_cnt; i < pe[port].svid_cnt + 12; i += 2) {
if (i == SVID_DISCOVERY_MAX) {
CPRINTF("ERR:SVIDCNT\n");
break;
}
/*
* Verify we're still within the valid packet (count will be one
* for the VDM header + xVDOs)
*/
if (vdo >= cnt)
break;
svid0 = PD_VDO_SVID_SVID0(*ptr);
if (!svid0)
break;
pe[port].svids[i].svid = svid0;
pe[port].svid_cnt++;
svid1 = PD_VDO_SVID_SVID1(*ptr);
if (!svid1)
break;
pe[port].svids[i + 1].svid = svid1;
pe[port].svid_cnt++;
ptr++;
vdo++;
}
/* TODO(tbroch) need to re-issue discover svids if > 12 */
if (i && ((i % 12) == 0))
CPRINTF("ERR:SVID+12\n");
}
static int dfp_discover_modes(int port, uint32_t *payload)
{
uint16_t svid = pe[port].svids[pe[port].svid_idx].svid;
if (pe[port].svid_idx >= pe[port].svid_cnt)
return 0;
payload[0] = VDO(svid, 1, CMD_DISCOVER_MODES);
return 1;
}
static void dfp_consume_modes(int port, int cnt, uint32_t *payload)
{
int idx = pe[port].svid_idx;
pe[port].svids[idx].mode_cnt = cnt - 1;
if (pe[port].svids[idx].mode_cnt < 0) {
CPRINTF("ERR:NOMODE\n");
} else {
memcpy(pe[port].svids[pe[port].svid_idx].mode_vdo, &payload[1],
sizeof(uint32_t) * pe[port].svids[idx].mode_cnt);
}
pe[port].svid_idx++;
}
static int get_mode_idx(int port, uint16_t svid)
{
int i;
for (i = 0; i < PD_AMODE_COUNT; i++) {
if (pe[port].amodes[i].fx->svid == svid)
return i;
}
return -1;
}
static struct svdm_amode_data *get_modep(int port, uint16_t svid)
{
int idx = get_mode_idx(port, svid);
return (idx == -1) ? NULL : &pe[port].amodes[idx];
}
int pd_alt_mode(int port, uint16_t svid)
{
struct svdm_amode_data *modep = get_modep(port, svid);
return (modep) ? modep->opos : -1;
}
int allocate_mode(int port, uint16_t svid)
{
int i, j;
struct svdm_amode_data *modep;
int mode_idx = get_mode_idx(port, svid);
if (mode_idx != -1)
return mode_idx;
/* There's no space to enter another mode */
if (pe[port].amode_idx == PD_AMODE_COUNT) {
CPRINTF("ERR:NO AMODE SPACE\n");
return -1;
}
/* Allocate ... if SVID == 0 enter default supported policy */
for (i = 0; i < supported_modes_cnt; i++) {
for (j = 0; j < pe[port].svid_cnt; j++) {
struct svdm_svid_data *svidp = &pe[port].svids[j];
if ((svidp->svid != supported_modes[i].svid) ||
(svid && (svidp->svid != svid)))
continue;
modep = &pe[port].amodes[pe[port].amode_idx];
modep->fx = &supported_modes[i];
modep->data = &pe[port].svids[j];
pe[port].amode_idx++;
return pe[port].amode_idx - 1;
}
}
return -1;
}
/*
* Enter default mode ( payload[0] == 0 ) or attempt to enter mode via svid &
* opos
*/
uint32_t pd_dfp_enter_mode(int port, uint16_t svid, int opos)
{
int mode_idx = allocate_mode(port, svid);
struct svdm_amode_data *modep;
uint32_t mode_caps;
if (mode_idx == -1)
return 0;
modep = &pe[port].amodes[mode_idx];
if (!opos) {
/* choose the lowest as default */
modep->opos = 1;
} else if (opos <= modep->data->mode_cnt) {
modep->opos = opos;
} else {
CPRINTF("opos error\n");
return 0;
}
mode_caps = modep->data->mode_vdo[modep->opos - 1];
if (modep->fx->enter(port, mode_caps) == -1)
return 0;
/* SVDM to send to UFP for mode entry */
return VDO(modep->fx->svid, 1, CMD_ENTER_MODE | VDO_OPOS(modep->opos));
}
static int validate_mode_request(struct svdm_amode_data *modep,
uint16_t svid, int opos)
{
if (!modep->fx)
return 0;
if (svid != modep->fx->svid) {
CPRINTF("ERR:svid r:0x%04x != c:0x%04x\n",
svid, modep->fx->svid);
return 0;
}
if (opos != modep->opos) {
CPRINTF("ERR:opos r:%d != c:%d\n",
opos, modep->opos);
return 0;
}
return 1;
}
static void dfp_consume_attention(int port, uint32_t *payload)
{
uint16_t svid = PD_VDO_VID(payload[0]);
int opos = PD_VDO_OPOS(payload[0]);
struct svdm_amode_data *modep = get_modep(port, svid);
if (!modep || !validate_mode_request(modep, svid, opos))
return;
if (modep->fx->attention)
modep->fx->attention(port, payload);
}
/*
* This algorithm defaults to choosing higher pin config over lower ones in
* order to prefer multi-function if desired.
*
* NAME | SIGNALING | OUTPUT TYPE | MULTI-FUNCTION | PIN CONFIG
* -------------------------------------------------------------
* A | USB G2 | ? | no | 00_0001
* B | USB G2 | ? | yes | 00_0010
* C | DP | CONVERTED | no | 00_0100
* D | PD | CONVERTED | yes | 00_1000
* E | DP | DP | no | 01_0000
* F | PD | DP | yes | 10_0000
*
* if UFP has NOT asserted multi-function preferred code masks away B/D/F
* leaving only A/C/E. For single-output dongles that should leave only one
* possible pin config depending on whether its a converter DP->(VGA|HDMI) or DP
* output. If UFP is a USB-C receptacle it may assert C/D/E/F. The DFP USB-C
* receptacle must always choose C/D in those cases.
*/
int pd_dfp_dp_get_pin_mode(int port, uint32_t status)
{
struct svdm_amode_data *modep = get_modep(port, USB_SID_DISPLAYPORT);
uint32_t mode_caps;
uint32_t pin_caps;
if (!modep)
return 0;
mode_caps = modep->data->mode_vdo[modep->opos - 1];
/* TODO(crosbug.com/p/39656) revisit with DFP that can be a sink */
pin_caps = PD_DP_PIN_CAPS(mode_caps);
/* if don't want multi-function then ignore those pin configs */
if (!PD_VDO_DPSTS_MF_PREF(status))
pin_caps &= ~MODE_DP_PIN_MF_MASK;
/* TODO(crosbug.com/p/39656) revisit if DFP drives USB Gen 2 signals */
pin_caps &= ~MODE_DP_PIN_BR2_MASK;
/* if C/D present they have precedence over E/F for USB-C->USB-C */
if (pin_caps & (MODE_DP_PIN_C | MODE_DP_PIN_D))
pin_caps &= ~(MODE_DP_PIN_E | MODE_DP_PIN_F);
/* get_next_bit returns undefined for zero */
if (!pin_caps)
return 0;
return 1 << get_next_bit(&pin_caps);
}
int pd_dfp_exit_mode(int port, uint16_t svid, int opos)
{
struct svdm_amode_data *modep;
int idx;
/*
* Empty svid signals we should reset DFP VDM state by exiting all
* entered modes then clearing state. This occurs when we've
* disconnected or for hard reset.
*/
if (!svid) {
for (idx = 0; idx < PD_AMODE_COUNT; idx++)
if (pe[port].amodes[idx].fx)
pe[port].amodes[idx].fx->exit(port);
pd_dfp_pe_init(port);
return 0;
}
/*
* TODO(crosbug.com/p/33946) : below needs revisited to allow multiple
* mode exit. Additionally it should honor OPOS == 7 as DFP's request
* to exit all modes. We currently don't have any UFPs that support
* multiple modes on one SVID.
*/
modep = get_modep(port, svid);
if (!modep || !validate_mode_request(modep, svid, opos))
return 0;
/* call DFPs exit function */
modep->fx->exit(port);
/* exit the mode */
modep->opos = 0;
return 1;
}
uint16_t pd_get_identity_vid(int port)
{
return PD_IDH_VID(pe[port].identity[0]);
}
uint16_t pd_get_identity_pid(int port)
{
return PD_PRODUCT_PID(pe[port].identity[2]);
}
#ifdef CONFIG_CMD_USB_PD_PE
static void dump_pe(int port)
{
const char * const idh_ptype_names[] = {
"UNDEF", "Hub", "Periph", "PCable", "ACable", "AMA",
"RSV6", "RSV7"};
int i, j, idh_ptype;
struct svdm_amode_data *modep;
uint32_t mode_caps;
if (pe[port].identity[0] == 0) {
ccprintf("No identity discovered yet.\n");
return;
}
idh_ptype = PD_IDH_PTYPE(pe[port].identity[0]);
ccprintf("IDENT:\n");
ccprintf("\t[ID Header] %08x :: %s, VID:%04x\n", pe[port].identity[0],
idh_ptype_names[idh_ptype], pd_get_identity_vid(port));
ccprintf("\t[Cert Stat] %08x\n", pe[port].identity[1]);
for (i = 2; i < ARRAY_SIZE(pe[port].identity); i++) {
ccprintf("\t");
if (pe[port].identity[i])
ccprintf("[%d] %08x ", i, pe[port].identity[i]);
}
ccprintf("\n");
if (pe[port].svid_cnt < 1) {
ccprintf("No SVIDS discovered yet.\n");
return;
}
for (i = 0; i < pe[port].svid_cnt; i++) {
ccprintf("SVID[%d]: %04x MODES:", i, pe[port].svids[i].svid);
for (j = 0; j < pe[port].svids[j].mode_cnt; j++)
ccprintf(" [%d] %08x", j + 1,
pe[port].svids[i].mode_vdo[j]);
ccprintf("\n");
modep = get_modep(port, pe[port].svids[i].svid);
if (modep) {
mode_caps = modep->data->mode_vdo[modep->opos - 1];
ccprintf("MODE[%d]: svid:%04x caps:%08x\n", modep->opos,
modep->fx->svid, mode_caps);
}
}
}
static int command_pe(int argc, char **argv)
{
int port;
char *e;
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
/* command: pe <port> <subcmd> <args> */
port = strtoi(argv[1], &e, 10);
if (*e || port >= CONFIG_USB_PD_PORT_COUNT)
return EC_ERROR_PARAM2;
if (!strncasecmp(argv[2], "dump", 4))
dump_pe(port);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(pe, command_pe,
"<port> dump",
"USB PE");
#endif /* CONFIG_CMD_USB_PD_PE */
#endif /* CONFIG_USB_PD_ALT_MODE_DFP */
int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload)
{
int cmd = PD_VDO_CMD(payload[0]);
int cmd_type = PD_VDO_CMDT(payload[0]);
int (*func)(int port, uint32_t *payload) = NULL;
int rsize = 1; /* VDM header at a minimum */
payload[0] &= ~VDO_CMDT_MASK;
*rpayload = payload;
if (cmd_type == CMDT_INIT) {
switch (cmd) {
case CMD_DISCOVER_IDENT:
func = svdm_rsp.identity;
break;
case CMD_DISCOVER_SVID:
func = svdm_rsp.svids;
break;
case CMD_DISCOVER_MODES:
func = svdm_rsp.modes;
break;
case CMD_ENTER_MODE:
func = svdm_rsp.enter_mode;
break;
case CMD_DP_STATUS:
if (svdm_rsp.amode)
func = svdm_rsp.amode->status;
break;
case CMD_DP_CONFIG:
if (svdm_rsp.amode)
func = svdm_rsp.amode->config;
break;
case CMD_EXIT_MODE:
func = svdm_rsp.exit_mode;
break;
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
case CMD_ATTENTION:
/*
* attention is only SVDM with no response
* (just goodCRC) return zero here.
*/
dfp_consume_attention(port, payload);
return 0;
#endif
default:
CPRINTF("ERR:CMD:%d\n", cmd);
rsize = 0;
}
if (func)
rsize = func(port, payload);
else /* not supported : NACK it */
rsize = 0;
if (rsize >= 1)
payload[0] |= VDO_CMDT(CMDT_RSP_ACK);
else if (!rsize) {
payload[0] |= VDO_CMDT(CMDT_RSP_NAK);
rsize = 1;
} else {
payload[0] |= VDO_CMDT(CMDT_RSP_BUSY);
rsize = 1;
}
payload[0] |= VDO_SVDM_VERS(pd_get_vdo_ver(port));
} else if (cmd_type == CMDT_RSP_ACK) {
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
struct svdm_amode_data *modep;
modep = get_modep(port, PD_VDO_VID(payload[0]));
#endif
switch (cmd) {
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
case CMD_DISCOVER_IDENT:
/* Received a SOP Prime Discover Ident msg */
if (is_transmit_msg_sop_prime(port)) {
/* Store cable type */
dfp_consume_cable_response(port, cnt, payload);
disable_transmit_sop_prime(port);
rsize = dfp_discover_svids(payload);
/* Received a SOP Discover Ident Message */
} else if (IS_ENABLED(CONFIG_USB_PD_DECODE_SOP)) {
dfp_consume_identity(port, cnt, payload);
/* Send SOP' Discover Ident message */
if (!cable[port].is_identified) {
rsize = dfp_discover_ident(payload);
enable_transmit_sop_prime(port);
}
} else {
dfp_consume_identity(port, cnt, payload);
rsize = dfp_discover_svids(payload);
}
#ifdef CONFIG_CHARGE_MANAGER
if (pd_charge_from_device(pd_get_identity_vid(port),
pd_get_identity_pid(port)))
charge_manager_update_dualrole(port,
CAP_DEDICATED);
#endif
break;
case CMD_DISCOVER_SVID:
dfp_consume_svids(port, cnt, payload);
rsize = dfp_discover_modes(port, payload);
break;
case CMD_DISCOVER_MODES:
dfp_consume_modes(port, cnt, payload);
rsize = dfp_discover_modes(port, payload);
/* enter the default mode for DFP */
if (!rsize) {
payload[0] = pd_dfp_enter_mode(port, 0, 0);
if (payload[0])
rsize = 1;
}
break;
case CMD_ENTER_MODE:
if (!modep) {
rsize = 0;
} else {
if (!modep->opos)
pd_dfp_enter_mode(port, 0, 0);
if (modep->opos) {
rsize = modep->fx->status(port,
payload);
payload[0] |= PD_VDO_OPOS(modep->opos);
}
}
break;
case CMD_DP_STATUS:
/* DP status response & UFP's DP attention have same
payload */
dfp_consume_attention(port, payload);
if (modep && modep->opos)
rsize = modep->fx->config(port, payload);
else
rsize = 0;
break;
case CMD_DP_CONFIG:
if (modep && modep->opos && modep->fx->post_config)
modep->fx->post_config(port);
/* no response after DFPs ack */
rsize = 0;
break;
case CMD_EXIT_MODE:
/* no response after DFPs ack */
rsize = 0;
break;
#endif
case CMD_ATTENTION:
/* no response after DFPs ack */
rsize = 0;
break;
default:
CPRINTF("ERR:CMD:%d\n", cmd);
rsize = 0;
}
payload[0] |= VDO_CMDT(CMDT_INIT);
payload[0] |= VDO_SVDM_VERS(pd_get_vdo_ver(port));
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
} else if (cmd_type == CMDT_RSP_BUSY) {
switch (cmd) {
case CMD_DISCOVER_IDENT:
case CMD_DISCOVER_SVID:
case CMD_DISCOVER_MODES:
/* resend if its discovery */
rsize = 1;
break;
case CMD_ENTER_MODE:
/* Error */
CPRINTF("ERR:ENTBUSY\n");
rsize = 0;
break;
case CMD_EXIT_MODE:
rsize = 0;
break;
default:
rsize = 0;
}
} else if (cmd_type == CMDT_RSP_NAK) {
rsize = 0;
/* Send SOP' Discover Ident message, if not already received. */
if (IS_ENABLED(CONFIG_USB_PD_DECODE_SOP) &&
!cable[port].is_identified && (cmd == CMD_DISCOVER_IDENT)) {
rsize = dfp_discover_ident(payload);
enable_transmit_sop_prime(port);
}
#endif /* CONFIG_USB_PD_ALT_MODE_DFP */
} else {
CPRINTF("ERR:CMDT:%d\n", cmd);
/* do not answer */
rsize = 0;
}
return rsize;
}
#else
int pd_svdm(int port, int cnt, uint32_t *payload, uint32_t **rpayload)
{
return 0;
}
#endif /* CONFIG_USB_PD_ALT_MODE */
#ifdef CONFIG_CMD_USB_PD_CABLE
static const char * const cable_type[] = {
[IDH_PTYPE_PCABLE] = "Passive",
[IDH_PTYPE_ACABLE] = "Active",
};
static const char * const cable_curr[] = {
[CABLE_CURRENT_3A] = "3A",
[CABLE_CURRENT_5A] = "5A",
};
static const char * const cable_ss_support[] = {
[USB_SS_U2_ONLY] = "Not supported",
[USB_SS_U31_GEN1] = "Gen 1",
[USB_SS_U31_GEN2] = "Gen 1 and Gen 2",
};
static const char * const vbus_max[] = {
[CABLE_VBUS_20V] = "20V",
[CABLE_VBUS_30V] = "30V",
[CABLE_VBUS_40V] = "40V",
[CABLE_VBUS_50V] = "50V",
};
static const char * const conn_type[] = {
[CONNECTOR_ATYPE] = "Type A",
[CONNECTOR_BTYPE] = "Type B",
[CONNECTOR_CTYPE] = "Type C",
[CONNECTOR_CAPTIVE] = "Captive",
};
static int command_cable(int argc, char **argv)
{
int port;
char *e;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
port = strtoi(argv[1], &e, 0);
if (*e || port >= CONFIG_USB_PD_PORT_COUNT)
return EC_ERROR_PARAM2;
if (!cable[port].is_identified) {
ccprintf("Cable not identified.\n");
return EC_SUCCESS;
}
ccprintf("Cable Type: ");
if (cable[port].type != IDH_PTYPE_PCABLE &&
cable[port].type != IDH_PTYPE_ACABLE) {
ccprintf("Not Emark Cable\n");
return EC_SUCCESS;
}
ccprintf("%s\n", cable_type[cable[port].type]);
/*
* For rev 2.0, rev 3.0 active and passive cables have same bits for
* connector type (Bit 19:18) and current handling capability bit 6:5
*/
ccprintf("Connector Type: %s\n",
cable[port].attr.rev20.connector > ARRAY_SIZE(conn_type) ?
"Invalid" : conn_type[cable[port].attr.rev20.connector]);
if (cable[port].attr.rev20.current) {
ccprintf("Cable Current: %s\n",
cable[port].attr.rev20.current > ARRAY_SIZE(cable_curr) ?
"Invalid" : cable_curr[cable[port].attr.rev20.current]);
} else
ccprintf("Cable Current: Invalid\n");
/*
* For Rev 3.0 passive cables and Rev 2.0 active and passive cables,
* USB Superspeed Signaling support have same bits 2:0
*/
if (cable[port].type == IDH_PTYPE_PCABLE) {
ccprintf("USB Superspeed Signaling support: %s\n",
cable[port].attr.rev20.ss >
ARRAY_SIZE(cable_ss_support) ? "Invalid" :
cable_ss_support[cable[port].attr.p_rev30.ss]);
}
/*
* For Rev 3.0 active cables and Rev 2.0 active and passive cables,
* SOP" controller preset have same bit 3
*/
if (cable[port].type == IDH_PTYPE_ACABLE) {
ccprintf("SOP' ' Controller: %s present\n",
cable[port].attr.rev20.controller ? "" : "Not");
}
if (cable[port].rev == PD_REV30) {
/*
* For Rev 3.0 active and passive cables, Max Vbus vtg have
* same bits 10:9.
*/
ccprintf("Max vbus voltage: %s\n",
cable[port].attr.p_rev30.vbus_max >
ARRAY_SIZE(vbus_max) ? "Invaild" :
vbus_max[cable[port].attr.p_rev30.vbus_max]);
/* For Rev 3.0 Active cables */
if (cable[port].type == IDH_PTYPE_ACABLE) {
ccprintf("SS signaling: USB_SS_GEN%u\n",
cable[port].attr2.a2_rev30.sss ? 2 : 1);
ccprintf("Number of SS lanes supported: %u\n",
cable[port].attr2.a2_rev30.lanes);
}
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(pdcable, command_cable,
"<port>",
"Cable Characteristics");
#endif /* CONFIG_CMD_USB_PD_CABLE */
static void pd_usb_billboard_deferred(void)
{
#if defined(CONFIG_USB_PD_ALT_MODE) && !defined(CONFIG_USB_PD_ALT_MODE_DFP) \
&& !defined(CONFIG_USB_PD_SIMPLE_DFP) && defined(CONFIG_USB_BOS)
/*
* TODO(tbroch)
* 1. Will we have multiple type-C port UFPs
* 2. Will there be other modes applicable to DFPs besides DP
*/
if (!pd_alt_mode(0, USB_SID_DISPLAYPORT))
usb_connect();
#endif
}
DECLARE_DEFERRED(pd_usb_billboard_deferred);
#ifdef CONFIG_USB_PD_ALT_MODE_DFP
static enum ec_status hc_remote_pd_discovery(struct host_cmd_handler_args *args)
{
const uint8_t *port = args->params;
struct ec_params_usb_pd_discovery_entry *r = args->response;
if (*port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
r->vid = pd_get_identity_vid(*port);
r->ptype = PD_IDH_PTYPE(pe[*port].identity[0]);
/* pid only included if vid is assigned */
if (r->vid)
r->pid = PD_PRODUCT_PID(pe[*port].identity[2]);
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_DISCOVERY,
hc_remote_pd_discovery,
EC_VER_MASK(0));
static enum ec_status hc_remote_pd_get_amode(struct host_cmd_handler_args *args)
{
struct svdm_amode_data *modep;
const struct ec_params_usb_pd_get_mode_request *p = args->params;
struct ec_params_usb_pd_get_mode_response *r = args->response;
if (p->port >= CONFIG_USB_PD_PORT_COUNT)
return EC_RES_INVALID_PARAM;
/* no more to send */
if (p->svid_idx >= pe[p->port].svid_cnt) {
r->svid = 0;
args->response_size = sizeof(r->svid);
return EC_RES_SUCCESS;
}
r->svid = pe[p->port].svids[p->svid_idx].svid;
r->opos = 0;
memcpy(r->vdo, pe[p->port].svids[p->svid_idx].mode_vdo, 24);
modep = get_modep(p->port, r->svid);
if (modep)
r->opos = pd_alt_mode(p->port, r->svid);
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_USB_PD_GET_AMODE,
hc_remote_pd_get_amode,
EC_VER_MASK(0));
#endif
#define FW_RW_END (CONFIG_EC_WRITABLE_STORAGE_OFF + \
CONFIG_RW_STORAGE_OFF + CONFIG_RW_SIZE)
uint8_t *flash_hash_rw(void)
{
static struct sha256_ctx ctx;
/* re-calculate RW hash when changed as its time consuming */
if (rw_flash_changed) {
rw_flash_changed = 0;
SHA256_init(&ctx);
SHA256_update(&ctx, (void *)CONFIG_PROGRAM_MEMORY_BASE +
CONFIG_RW_MEM_OFF,
CONFIG_RW_SIZE - RSANUMBYTES);
return SHA256_final(&ctx);
} else {
return ctx.buf;
}
}
void pd_get_info(uint32_t *info_data)
{
void *rw_hash = flash_hash_rw();
/* copy first 20 bytes of RW hash */
memcpy(info_data, rw_hash, 5 * sizeof(uint32_t));
/* copy other info into data msg */
#if defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR) && \
defined(CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR)
info_data[5] = VDO_INFO(CONFIG_USB_PD_HW_DEV_ID_BOARD_MAJOR,
CONFIG_USB_PD_HW_DEV_ID_BOARD_MINOR,
ver_get_num_commits(system_get_image_copy()),
(system_get_image_copy() != SYSTEM_IMAGE_RO));
#else
info_data[5] = 0;
#endif
}
int pd_custom_flash_vdm(int port, int cnt, uint32_t *payload)
{
static int flash_offset;
int rsize = 1; /* default is just VDM header returned */
switch (PD_VDO_CMD(payload[0])) {
case VDO_CMD_VERSION:
memcpy(payload + 1, &current_image_data.version, 24);
rsize = 7;
break;
case VDO_CMD_REBOOT:
/* ensure the power supply is in a safe state */
pd_power_supply_reset(0);
system_reset(0);
break;
case VDO_CMD_READ_INFO:
/* copy info into response */
pd_get_info(payload + 1);
rsize = 7;
break;
case VDO_CMD_FLASH_ERASE:
/* do not kill the code under our feet */
if (system_get_image_copy() != SYSTEM_IMAGE_RO)
break;
pd_log_event(PD_EVENT_ACC_RW_ERASE, 0, 0, NULL);
flash_offset = CONFIG_EC_WRITABLE_STORAGE_OFF +
CONFIG_RW_STORAGE_OFF;
flash_physical_erase(CONFIG_EC_WRITABLE_STORAGE_OFF +
CONFIG_RW_STORAGE_OFF, CONFIG_RW_SIZE);
rw_flash_changed = 1;
break;
case VDO_CMD_FLASH_WRITE:
/* do not kill the code under our feet */
if ((system_get_image_copy() != SYSTEM_IMAGE_RO) ||
(flash_offset < CONFIG_EC_WRITABLE_STORAGE_OFF +
CONFIG_RW_STORAGE_OFF))
break;
flash_physical_write(flash_offset, 4*(cnt - 1),
(const char *)(payload+1));
flash_offset += 4*(cnt - 1);
rw_flash_changed = 1;
break;
case VDO_CMD_ERASE_SIG:
/* this is not touching the code area */
{
uint32_t zero = 0;
int offset;
/* zeroes the area containing the RSA signature */
for (offset = FW_RW_END - RSANUMBYTES;
offset < FW_RW_END; offset += 4)
flash_physical_write(offset, 4,
(const char *)&zero);
}
break;
default:
/* Unknown : do not answer */
return 0;
}
return rsize;
}
#ifdef CONFIG_USB_PD_DISCHARGE
void pd_set_vbus_discharge(int port, int enable)
{
static struct mutex discharge_lock[CONFIG_USB_PD_PORT_COUNT];
mutex_lock(&discharge_lock[port]);
enable &= !board_vbus_source_enabled(port);
#ifdef CONFIG_USB_PD_DISCHARGE_GPIO
if (!port)
gpio_set_level(GPIO_USB_C0_DISCHARGE, enable);
#if CONFIG_USB_PD_PORT_COUNT > 1
else
gpio_set_level(GPIO_USB_C1_DISCHARGE, enable);
#endif /* CONFIG_USB_PD_PORT_COUNT */
#elif defined(CONFIG_USB_PD_DISCHARGE_TCPC)
tcpc_discharge_vbus(port, enable);
#elif defined(CONFIG_USB_PD_DISCHARGE_PPC)
ppc_discharge_vbus(port, enable);
#else
#error "PD discharge implementation not defined"
#endif
mutex_unlock(&discharge_lock[port]);
}
#endif /* CONFIG_USB_PD_DISCHARGE */