coreboot-libre-fam15h-rdimm/3rdparty/chromeec/driver/accel_kionix.c

677 lines
17 KiB
C

/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* Kionix Accelerometer driver for Chrome EC
*
* Supported: KX022, KXCJ9
*/
#include "accelgyro.h"
#include "common.h"
#include "console.h"
#include "driver/accel_kionix.h"
#include "driver/accel_kx022.h"
#include "driver/accel_kxcj9.h"
#include "i2c.h"
#include "math_util.h"
#include "spi.h"
#include "task.h"
#include "util.h"
#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
/* Number of times to attempt to enable sensor before giving up. */
#define SENSOR_ENABLE_ATTEMPTS 3
#if defined(CONFIG_ACCEL_KXCJ9) && !defined(CONFIG_ACCEL_KX022)
#define V(s_) 1
#elif defined(CONFIG_ACCEL_KX022) && !defined(CONFIG_ACCEL_KXCJ9)
#define V(s_) 0
#else
#define V(s_) ((s_)->chip == MOTIONSENSE_CHIP_KXCJ9)
#endif
/* Index for which table to use. */
#if !defined(CONFIG_ACCEL_KXCJ9) || !defined(CONFIG_ACCEL_KX022)
#define T(s_) 0
#else
#define T(s_) V(s_)
#endif /* !defined(CONFIG_ACCEL_KXCJ9) || !defined(CONFIG_ACCEL_KX022) */
/* List of range values in +/-G's and their associated register values. */
static const struct accel_param_pair ranges[][3] = {
#ifdef CONFIG_ACCEL_KX022
{ {2, KX022_GSEL_2G},
{4, KX022_GSEL_4G},
{8, KX022_GSEL_8G} },
#endif /* defined(CONFIG_ACCEL_KX022) */
#ifdef CONFIG_ACCEL_KXCJ9
{ {2, KXCJ9_GSEL_2G},
{4, KXCJ9_GSEL_4G},
{8, KXCJ9_GSEL_8G_14BIT} },
#endif /* defined(CONFIG_ACCEL_KXCJ9) */
};
/* List of resolution values in bits and their associated register values. */
static const struct accel_param_pair resolutions[][2] = {
#ifdef CONFIG_ACCEL_KX022
{ {8, KX022_RES_8BIT},
{16, KX022_RES_16BIT} },
#endif /* defined(CONFIG_ACCEL_KX022) */
#ifdef CONFIG_ACCEL_KXCJ9
{ {8, KXCJ9_RES_8BIT},
{12, KXCJ9_RES_12BIT} },
#endif /* defined(CONFIG_ACCEL_KXCJ9) */
};
/* List of ODR values in mHz and their associated register values. */
static const struct accel_param_pair datarates[][13] = {
#ifdef CONFIG_ACCEL_KX022
/* One duplicate because table sizes must match. */
{ {781, KX022_OSA_0_781HZ},
{781, KX022_OSA_0_781HZ},
{1563, KX022_OSA_1_563HZ},
{3125, KX022_OSA_3_125HZ},
{6250, KX022_OSA_6_250HZ},
{12500, KX022_OSA_12_50HZ},
{25000, KX022_OSA_25_00HZ},
{50000, KX022_OSA_50_00HZ},
{100000, KX022_OSA_100_0HZ},
{200000, KX022_OSA_200_0HZ},
{400000, KX022_OSA_400_0HZ},
{800000, KX022_OSA_800_0HZ},
{1600000, KX022_OSA_1600HZ} },
#endif /* defined(CONFIG_ACCEL_KX022) */
#ifdef CONFIG_ACCEL_KXCJ9
{ {0, KXCJ9_OSA_0_000HZ},
{781, KXCJ9_OSA_0_781HZ},
{1563, KXCJ9_OSA_1_563HZ},
{3125, KXCJ9_OSA_3_125HZ},
{6250, KXCJ9_OSA_6_250HZ},
{12500, KXCJ9_OSA_12_50HZ},
{25000, KXCJ9_OSA_25_00HZ},
{50000, KXCJ9_OSA_50_00HZ},
{100000, KXCJ9_OSA_100_0HZ},
{200000, KXCJ9_OSA_200_0HZ},
{400000, KXCJ9_OSA_400_0HZ},
{800000, KXCJ9_OSA_800_0HZ},
{1600000, KXCJ9_OSA_1600_HZ} },
#endif /* defined(CONFIG_ACCEL_KXCJ9) */
};
/**
* Find index into a accel_param_pair that matches the given engineering value
* passed in. The round_up flag is used to specify whether to round up or down.
* Note, this function always returns a valid index. If the request is
* outside the range of values, it returns the closest valid index.
*/
static int find_param_index(const int eng_val, const int round_up,
const struct accel_param_pair *pairs,
const int size)
{
int i;
/* Linear search for index to match. */
for (i = 0; i < size - 1; i++) {
if (eng_val <= pairs[i].val)
return i;
if (eng_val < pairs[i+1].val) {
if (round_up)
return i + 1;
else
return i;
}
}
return i;
}
/**
* Read register from accelerometer.
*/
static int raw_read8(const int port,
const uint16_t i2c_spi_addr_flags,
const int reg, int *data_ptr)
{
int rv = EC_ERROR_INVAL;
if (SLAVE_IS_SPI(i2c_spi_addr_flags)) {
#ifdef CONFIG_SPI_ACCEL_PORT
uint8_t val;
uint8_t cmd = 0x80 | reg;
rv = spi_transaction(
&spi_devices[SLAVE_GET_SPI_ADDR(i2c_spi_addr_flags)],
&cmd, 1, &val, 1);
if (rv == EC_SUCCESS)
*data_ptr = val;
#endif
} else {
rv = i2c_read8(port, i2c_spi_addr_flags,
reg, data_ptr);
}
return rv;
}
/**
* Write register from accelerometer.
*/
static int raw_write8(const int port,
const uint16_t i2c_spi_addr_flags,
const int reg, int data)
{
int rv = EC_ERROR_INVAL;
if (SLAVE_IS_SPI(i2c_spi_addr_flags)) {
#ifdef CONFIG_SPI_ACCEL_PORT
uint8_t cmd[2] = { reg, data };
rv = spi_transaction(
&spi_devices[SLAVE_GET_SPI_ADDR(i2c_spi_addr_flags)],
cmd, 2, NULL, 0);
#endif
} else {
rv = i2c_write8(port, i2c_spi_addr_flags,
reg, data);
}
return rv;
}
static int raw_read_multi(const int port,
const uint16_t i2c_spi_addr_flags,
uint8_t reg, uint8_t *rxdata, int rxlen)
{
int rv = EC_ERROR_INVAL;
if (SLAVE_IS_SPI(i2c_spi_addr_flags)) {
#ifdef CONFIG_SPI_ACCEL_PORT
reg |= 0x80;
rv = spi_transaction(
&spi_devices[SLAVE_GET_SPI_ADDR(i2c_spi_addr_flags)],
&reg, 1, rxdata, rxlen);
#endif
} else {
rv = i2c_read_block(port, i2c_spi_addr_flags,
reg, rxdata, rxlen);
}
return rv;
}
/**
* Disable sensor by taking it out of operating mode. When disabled, the
* acceleration data does not change.
*
* Note: This is intended to be called in a pair with enable_sensor().
*
* @param s Pointer to motion sensor data
* @param reg_val Pointer to location to store control register after disabling
*
* @return EC_SUCCESS if successful, EC_ERROR_* otherwise
*/
static int disable_sensor(const struct motion_sensor_t *s, int *reg_val)
{
int i, ret, reg, pc1_field;
reg = KIONIX_CTRL1_REG(V(s));
pc1_field = KIONIX_PC1_FIELD(V(s));
/*
* Read the current state of the control register
* so that we can restore it later.
*/
for (i = 0; i < SENSOR_ENABLE_ATTEMPTS; i++) {
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
reg, reg_val);
if (ret != EC_SUCCESS)
continue;
*reg_val &= ~pc1_field;
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
reg, *reg_val);
if (ret == EC_SUCCESS)
return EC_SUCCESS;
}
return ret;
}
/**
* Enable sensor by placing it in operating mode.
*
* Note: This is intended to be called in a pair with disable_sensor().
*
* @param s Pointer to motion sensor data
* @param reg_val Value of the control register to write to sensor
*
* @return EC_SUCCESS if successful, EC_ERROR_* otherwise
*/
static int enable_sensor(const struct motion_sensor_t *s, int reg_val)
{
int i, ret, reg, pc1_field;
reg = KIONIX_CTRL1_REG(V(s));
pc1_field = KIONIX_PC1_FIELD(V(s));
for (i = 0; i < SENSOR_ENABLE_ATTEMPTS; i++) {
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
reg, &reg_val);
if (ret != EC_SUCCESS)
continue;
#ifdef CONFIG_KX022_ORIENTATION_SENSOR
/* Enable tilt orientation mode if lid sensor */
if ((s->location == MOTIONSENSE_LOC_LID) && (V(s) == 0))
reg_val |= KX022_CNTL1_TPE;
#endif
/* Enable accelerometer based on reg_val value. */
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
reg, reg_val | pc1_field);
/* On first success, we are done. */
if (ret == EC_SUCCESS)
break;
}
return ret;
}
/**
* Set a register value.
*
* @param s Pointer to motion sensor data
* @param reg Register to write to
* @param reg_val Value of the control register to write to sensor
* @param field Bitfield to modify.
*
* @return EC_SUCCESS if successful, EC_ERROR_* otherwise
*/
static int set_value(const struct motion_sensor_t *s, int reg, int val,
int field)
{
int ret, reg_val_new, reg_val;
/* Disable the sensor to allow for changing of critical parameters. */
mutex_lock(s->mutex);
ret = disable_sensor(s, &reg_val);
if (ret != EC_SUCCESS) {
mutex_unlock(s->mutex);
return ret;
}
/* Determine new value of control reg and attempt to write it. */
reg_val_new = (reg_val & ~field) | val;
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
reg, reg_val_new);
/* If successfully written, then save the range. */
if (ret == EC_SUCCESS)
/* Re-enable the sensor. */
ret = enable_sensor(s, reg_val_new);
mutex_unlock(s->mutex);
return ret;
}
static int set_range(const struct motion_sensor_t *s, int range, int rnd)
{
int ret, index, reg, range_field, range_val;
struct kionix_accel_data *data = s->drv_data;
/* Find index for interface pair matching the specified range. */
index = find_param_index(range, rnd, ranges[T(s)],
ARRAY_SIZE(ranges[T(s)]));
range_field = KIONIX_RANGE_FIELD(V(s));
reg = KIONIX_CTRL1_REG(V(s));
range_val = ranges[T(s)][index].reg;
ret = set_value(s, reg, range_val, range_field);
if (ret == EC_SUCCESS)
data->base.range = ranges[T(s)][index].val;
return ret;
}
static int get_range(const struct motion_sensor_t *s)
{
struct kionix_accel_data *data = s->drv_data;
return data->base.range;
}
static int set_resolution(const struct motion_sensor_t *s, int res, int rnd)
{
int ret, index, reg, res_field, res_val;
struct kionix_accel_data *data = s->drv_data;
/* Find index for interface pair matching the specified resolution. */
index = find_param_index(res, rnd, resolutions[T(s)],
ARRAY_SIZE(resolutions[T(s)]));
res_val = resolutions[T(s)][index].reg;
res_field = KIONIX_RES_FIELD(V(s));
reg = KIONIX_CTRL1_REG(V(s));
ret = set_value(s, reg, res_val, res_field);
if (ret == EC_SUCCESS)
data->sensor_resolution = resolutions[T(s)][index].val;
return ret;
}
static int get_resolution(const struct motion_sensor_t *s)
{
struct kionix_accel_data *data = s->drv_data;
return data->sensor_resolution;
}
static int set_data_rate(const struct motion_sensor_t *s, int rate, int rnd)
{
int ret, index, reg, odr_field, odr_val;
struct kionix_accel_data *data = s->drv_data;
/* Find index for interface pair matching the specified rate. */
index = find_param_index(rate, rnd, datarates[T(s)],
ARRAY_SIZE(datarates[T(s)]));
odr_val = datarates[T(s)][index].reg;
reg = KIONIX_ODR_REG(V(s));
odr_field = KIONIX_ODR_FIELD(V(s));
ret = set_value(s, reg, odr_val, odr_field);
if (ret == EC_SUCCESS)
data->base.odr = datarates[T(s)][index].val;
return ret;
}
static int get_data_rate(const struct motion_sensor_t *s)
{
struct kionix_accel_data *data = s->drv_data;
return data->base.odr;
}
static int set_offset(const struct motion_sensor_t *s, const int16_t *offset,
int16_t temp)
{
/* temperature is ignored */
struct kionix_accel_data *data = s->drv_data;
data->offset[X] = offset[X];
data->offset[Y] = offset[Y];
data->offset[Z] = offset[Z];
return EC_SUCCESS;
}
static int get_offset(const struct motion_sensor_t *s, int16_t *offset,
int16_t *temp)
{
struct kionix_accel_data *data = s->drv_data;
offset[X] = data->offset[X];
offset[Y] = data->offset[Y];
offset[Z] = data->offset[Z];
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
#ifdef CONFIG_KX022_ORIENTATION_SENSOR
static enum motionsensor_orientation kx022_convert_orientation(
const struct motion_sensor_t *s,
int orientation)
{
enum motionsensor_orientation res = MOTIONSENSE_ORIENTATION_UNKNOWN;
switch (orientation) {
case KX022_ORIENT_PORTRAIT:
res = MOTIONSENSE_ORIENTATION_PORTRAIT;
break;
case KX022_ORIENT_INVERT_PORTRAIT:
res = MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT;
break;
case KX022_ORIENT_LANDSCAPE:
res = MOTIONSENSE_ORIENTATION_LANDSCAPE;
break;
case KX022_ORIENT_INVERT_LANDSCAPE:
res = MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE;
break;
default:
break;
}
res = motion_sense_remap_orientation(s, res);
return res;
}
static int check_orientation_locked(const struct motion_sensor_t *s)
{
struct kionix_accel_data *data = s->drv_data;
int orientation, raw_orientation;
int ret;
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
KX022_TSCP, &raw_orientation);
if (ret != EC_SUCCESS)
return ret;
/* mask off up and down events, we don't care about those */
raw_orientation &= KX022_ORIENT_MASK;
if (raw_orientation && (raw_orientation != data->raw_orientation)) {
data->raw_orientation = raw_orientation;
orientation = kx022_convert_orientation(s, raw_orientation);
SET_ORIENTATION(s, orientation);
}
return ret;
}
#endif
static int read(const struct motion_sensor_t *s, intv3_t v)
{
uint8_t acc[6];
uint8_t reg;
int ret, i, range, resolution;
struct kionix_accel_data *data = s->drv_data;
/* Read 6 bytes starting at XOUT_L. */
reg = KIONIX_XOUT_L(V(s));
mutex_lock(s->mutex);
ret = raw_read_multi(s->port, s->i2c_spi_addr_flags, reg, acc, 6);
#ifdef CONFIG_KX022_ORIENTATION_SENSOR
if ((s->location == MOTIONSENSE_LOC_LID) && (V(s) == 0) &&
(ret == EC_SUCCESS))
ret = check_orientation_locked(s);
#endif
mutex_unlock(s->mutex);
if (ret != EC_SUCCESS)
return ret;
/*
* Convert acceleration to a signed 16-bit number. Note, based on
* the order of the registers:
*
* acc[0] = XOUT_L
* acc[1] = XOUT_H
* acc[2] = YOUT_L
* acc[3] = YOUT_H
* acc[4] = ZOUT_L
* acc[5] = ZOUT_H
*
* Add calibration offset before returning the data.
*/
resolution = get_resolution(s);
for (i = X; i <= Z; i++) {
if (V(s)) {
v[i] = (((int8_t)acc[i * 2 + 1]) << 4) |
(acc[i * 2] >> 4);
v[i] <<= 16 - resolution;
} else {
if (resolution == 8)
acc[i * 2] = 0;
v[i] = (((int8_t)acc[i * 2 + 1]) << 8) | acc[i * 2];
}
}
rotate(v, *s->rot_standard_ref, v);
/* apply offset in the device coordinates */
range = get_range(s);
for (i = X; i <= Z; i++)
v[i] += (data->offset[i] << 5) / range;
return EC_SUCCESS;
}
static int init(const struct motion_sensor_t *s)
{
int ret, val, reg, reset_field;
uint8_t timeout;
mutex_lock(s->mutex);
if (V(s)) {
/* The chip can take up to 10ms to boot */
reg = KIONIX_WHO_AM_I(V(s));
timeout = 0;
do {
msleep(1);
/* Read WHO_AM_I to be sure the device has booted */
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
reg, &val);
if (ret == EC_SUCCESS)
break;
/* Check for timeout. */
if (timeout++ > 20) {
ret = EC_ERROR_TIMEOUT;
break;
}
} while (1);
} else {
/* Write 0x00 to the internal register for KX022 */
reg = KX022_INTERNAL;
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
reg, 0x0);
if (ret != EC_SUCCESS) {
/*
* For I2C communication, if ACK was not received
* from the first address, resend the command using
* the second address.
*/
if (!SLAVE_IS_SPI(s->i2c_spi_addr_flags)) {
const uint16_t i2c_alt_addr_flags =
I2C_GET_ADDR(
s->i2c_spi_addr_flags)
& ~2;
ret = raw_write8(s->port,
i2c_alt_addr_flags,
reg, 0x0);
}
}
}
if (ret != EC_SUCCESS)
goto reset_failed;
/* Issue a software reset. */
reg = KIONIX_CTRL2_REG(V(s));
reset_field = KIONIX_RESET_FIELD(V(s));
if (V(s)) {
/* Place the sensor in standby mode to make changes. */
ret = disable_sensor(s, &val);
if (ret != EC_SUCCESS)
goto reset_failed;
ret = raw_read8(s->port, s->i2c_spi_addr_flags, reg, &val);
if (ret != EC_SUCCESS)
goto reset_failed;
val |= reset_field;
} else {
/* Write 0 to CTRL2 for KX022 */
ret = raw_write8(s->port, s->i2c_spi_addr_flags, reg, 0x0);
if (ret != EC_SUCCESS)
goto reset_failed;
val = reset_field;
}
ret = raw_write8(s->port, s->i2c_spi_addr_flags, reg, val);
if (ret != EC_SUCCESS)
goto reset_failed;
if (V(s)) {
/* The SRST will be cleared when reset is complete. */
timeout = 0;
do {
msleep(1);
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
reg, &val);
/* Reset complete. */
if ((ret == EC_SUCCESS) && !(val & reset_field))
break;
/* Check for timeout. */
if (timeout++ > 20) {
ret = EC_ERROR_TIMEOUT;
goto reset_failed;
}
} while (1);
} else {
/* Wait 2 milliseconds for completion of the software reset. */
msleep(2);
reg = KX022_COTR;
ret = raw_read8(s->port, s->i2c_spi_addr_flags, reg, &val);
if (val != KX022_COTR_VAL_DEFAULT) {
CPRINTF("[%s: the software reset failed]\n", s->name);
ret = EC_ERROR_HW_INTERNAL;
goto reset_failed;
}
}
reg = KIONIX_WHO_AM_I(V(s));
ret = raw_read8(s->port, s->i2c_spi_addr_flags, reg, &val);
if (ret != EC_SUCCESS || val != KIONIX_WHO_AM_I_VAL(V(s))) {
ret = EC_ERROR_HW_INTERNAL;
goto reset_failed;
}
mutex_unlock(s->mutex);
/* Initialize with the desired parameters. */
if (V(s))
ret = set_resolution(s, 12, 1);
else
ret = set_resolution(s, 16, 1);
if (ret != EC_SUCCESS)
return ret;
return sensor_init_done(s);
reset_failed:
mutex_unlock(s->mutex);
return ret;
}
const struct accelgyro_drv kionix_accel_drv = {
.init = init,
.read = read,
.set_range = set_range,
.get_range = get_range,
.set_resolution = set_resolution,
.get_resolution = get_resolution,
.set_data_rate = set_data_rate,
.get_data_rate = get_data_rate,
.set_offset = set_offset,
.get_offset = get_offset,
};
#ifdef CONFIG_CMD_I2C_STRESS_TEST_ACCEL
struct i2c_stress_test_dev kionix_i2c_stress_test_dev = {
.reg_info = {
.read_reg = KIONIX_WHO_AM_I(V(s)),
.read_val = KIONIX_WHO_AM_I_VAL(V(s)),
.write_reg = KIONIX_ODR_REG(V(s)),
},
.i2c_read = &raw_read8,
.i2c_write = &raw_write8,
};
#endif /* CONFIG_CMD_I2C_STRESS_TEST_ACCEL */