coreboot-libre-fam15h-rdimm/3rdparty/arm-trusted-firmware/drivers/marvell/ccu.c

363 lines
11 KiB
C

/*
* Copyright (C) 2018 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
/* CCU unit device driver for Marvell AP807, AP807 and AP810 SoCs */
#include <common/debug.h>
#include <drivers/marvell/ccu.h>
#include <lib/mmio.h>
#include <armada_common.h>
#include <mvebu.h>
#include <mvebu_def.h>
#if LOG_LEVEL >= LOG_LEVEL_INFO
#define DEBUG_ADDR_MAP
#endif
/* common defines */
#define WIN_ENABLE_BIT (0x1)
/* Physical address of the base of the window = {AddrLow[19:0],20'h0} */
#define ADDRESS_SHIFT (20 - 4)
#define ADDRESS_MASK (0xFFFFFFF0)
#define CCU_WIN_ALIGNMENT (0x100000)
#define IS_DRAM_TARGET(tgt) ((((tgt) == DRAM_0_TID) || \
((tgt) == DRAM_1_TID) || \
((tgt) == RAR_TID)) ? 1 : 0)
/* For storage of CR, SCR, ALR, AHR abd GCR */
static uint32_t ccu_regs_save[MVEBU_CCU_MAX_WINS * 4 + 1];
#ifdef DEBUG_ADDR_MAP
static void dump_ccu(int ap_index)
{
uint32_t win_id, win_cr, alr, ahr;
uint8_t target_id;
uint64_t start, end;
/* Dump all AP windows */
printf("\tbank target start end\n");
printf("\t----------------------------------------------------\n");
for (win_id = 0; win_id < MVEBU_CCU_MAX_WINS; win_id++) {
win_cr = mmio_read_32(CCU_WIN_CR_OFFSET(ap_index, win_id));
if (win_cr & WIN_ENABLE_BIT) {
target_id = (win_cr >> CCU_TARGET_ID_OFFSET) &
CCU_TARGET_ID_MASK;
alr = mmio_read_32(CCU_WIN_ALR_OFFSET(ap_index,
win_id));
ahr = mmio_read_32(CCU_WIN_AHR_OFFSET(ap_index,
win_id));
start = ((uint64_t)alr << ADDRESS_SHIFT);
end = (((uint64_t)ahr + 0x10) << ADDRESS_SHIFT);
printf("\tccu %02x 0x%016llx 0x%016llx\n",
target_id, start, end);
}
}
win_cr = mmio_read_32(CCU_WIN_GCR_OFFSET(ap_index));
target_id = (win_cr >> CCU_GCR_TARGET_OFFSET) & CCU_GCR_TARGET_MASK;
printf("\tccu GCR %d - all other transactions\n", target_id);
}
#endif
void ccu_win_check(struct addr_map_win *win)
{
/* check if address is aligned to 1M */
if (IS_NOT_ALIGN(win->base_addr, CCU_WIN_ALIGNMENT)) {
win->base_addr = ALIGN_UP(win->base_addr, CCU_WIN_ALIGNMENT);
NOTICE("%s: Align up the base address to 0x%llx\n",
__func__, win->base_addr);
}
/* size parameter validity check */
if (IS_NOT_ALIGN(win->win_size, CCU_WIN_ALIGNMENT)) {
win->win_size = ALIGN_UP(win->win_size, CCU_WIN_ALIGNMENT);
NOTICE("%s: Aligning size to 0x%llx\n",
__func__, win->win_size);
}
}
void ccu_enable_win(int ap_index, struct addr_map_win *win, uint32_t win_id)
{
uint32_t ccu_win_reg;
uint32_t alr, ahr;
uint64_t end_addr;
if ((win_id == 0) || (win_id > MVEBU_CCU_MAX_WINS)) {
ERROR("Enabling wrong CCU window %d!\n", win_id);
return;
}
end_addr = (win->base_addr + win->win_size - 1);
alr = (uint32_t)((win->base_addr >> ADDRESS_SHIFT) & ADDRESS_MASK);
ahr = (uint32_t)((end_addr >> ADDRESS_SHIFT) & ADDRESS_MASK);
mmio_write_32(CCU_WIN_ALR_OFFSET(ap_index, win_id), alr);
mmio_write_32(CCU_WIN_AHR_OFFSET(ap_index, win_id), ahr);
ccu_win_reg = WIN_ENABLE_BIT;
ccu_win_reg |= (win->target_id & CCU_TARGET_ID_MASK)
<< CCU_TARGET_ID_OFFSET;
mmio_write_32(CCU_WIN_CR_OFFSET(ap_index, win_id), ccu_win_reg);
}
static void ccu_disable_win(int ap_index, uint32_t win_id)
{
uint32_t win_reg;
if ((win_id == 0) || (win_id > MVEBU_CCU_MAX_WINS)) {
ERROR("Disabling wrong CCU window %d!\n", win_id);
return;
}
win_reg = mmio_read_32(CCU_WIN_CR_OFFSET(ap_index, win_id));
win_reg &= ~WIN_ENABLE_BIT;
mmio_write_32(CCU_WIN_CR_OFFSET(ap_index, win_id), win_reg);
}
/* Insert/Remove temporary window for using the out-of reset default
* CPx base address to access the CP configuration space prior to
* the further base address update in accordance with address mapping
* design.
*
* NOTE: Use the same window array for insertion and removal of
* temporary windows.
*/
void ccu_temp_win_insert(int ap_index, struct addr_map_win *win, int size)
{
uint32_t win_id;
for (int i = 0; i < size; i++) {
win_id = MVEBU_CCU_MAX_WINS - 1 - i;
ccu_win_check(win);
ccu_enable_win(ap_index, win, win_id);
win++;
}
}
/*
* NOTE: Use the same window array for insertion and removal of
* temporary windows.
*/
void ccu_temp_win_remove(int ap_index, struct addr_map_win *win, int size)
{
uint32_t win_id;
for (int i = 0; i < size; i++) {
uint64_t base;
uint32_t target;
win_id = MVEBU_CCU_MAX_WINS - 1 - i;
target = mmio_read_32(CCU_WIN_CR_OFFSET(ap_index, win_id));
target >>= CCU_TARGET_ID_OFFSET;
target &= CCU_TARGET_ID_MASK;
base = mmio_read_32(CCU_WIN_ALR_OFFSET(ap_index, win_id));
base <<= ADDRESS_SHIFT;
if ((win->target_id != target) || (win->base_addr != base)) {
ERROR("%s: Trying to remove bad window-%d!\n",
__func__, win_id);
continue;
}
ccu_disable_win(ap_index, win_id);
win++;
}
}
/* Returns current DRAM window target (DRAM_0_TID, DRAM_1_TID, RAR_TID)
* NOTE: Call only once for each AP.
* The AP0 DRAM window is located at index 2 only at the BL31 execution start.
* Then it relocated to index 1 for matching the rest of APs DRAM settings.
* Calling this function after relocation will produce wrong results on AP0
*/
static uint32_t ccu_dram_target_get(int ap_index)
{
/* On BLE stage the AP0 DRAM window is opened by the BootROM at index 2.
* All the rest of detected APs will use window at index 1.
* The AP0 DRAM window is moved from index 2 to 1 during
* init_ccu() execution.
*/
const uint32_t win_id = (ap_index == 0) ? 2 : 1;
uint32_t target;
target = mmio_read_32(CCU_WIN_CR_OFFSET(ap_index, win_id));
target >>= CCU_TARGET_ID_OFFSET;
target &= CCU_TARGET_ID_MASK;
return target;
}
void ccu_dram_target_set(int ap_index, uint32_t target)
{
/* On BLE stage the AP0 DRAM window is opened by the BootROM at index 2.
* All the rest of detected APs will use window at index 1.
* The AP0 DRAM window is moved from index 2 to 1
* during init_ccu() execution.
*/
const uint32_t win_id = (ap_index == 0) ? 2 : 1;
uint32_t dram_cr;
dram_cr = mmio_read_32(CCU_WIN_CR_OFFSET(ap_index, win_id));
dram_cr &= ~(CCU_TARGET_ID_MASK << CCU_TARGET_ID_OFFSET);
dram_cr |= (target & CCU_TARGET_ID_MASK) << CCU_TARGET_ID_OFFSET;
mmio_write_32(CCU_WIN_CR_OFFSET(ap_index, win_id), dram_cr);
}
/* Setup CCU DRAM window and enable it */
void ccu_dram_win_config(int ap_index, struct addr_map_win *win)
{
#if IMAGE_BLE /* BLE */
/* On BLE stage the AP0 DRAM window is opened by the BootROM at index 2.
* Since the BootROM is not accessing DRAM at BLE stage,
* the DRAM window can be temporarely disabled.
*/
const uint32_t win_id = (ap_index == 0) ? 2 : 1;
#else /* end of BLE */
/* At the ccu_init() execution stage, DRAM windows of all APs
* are arranged at index 1.
* The AP0 still has the old window BootROM DRAM at index 2, so
* the window-1 can be safely disabled without breaking the DRAM access.
*/
const uint32_t win_id = 1;
#endif
ccu_disable_win(ap_index, win_id);
/* enable write secure (and clear read secure) */
mmio_write_32(CCU_WIN_SCR_OFFSET(ap_index, win_id),
CCU_WIN_ENA_WRITE_SECURE);
ccu_win_check(win);
ccu_enable_win(ap_index, win, win_id);
}
/* Save content of CCU window + GCR */
static void ccu_save_win_range(int ap_id, int win_first,
int win_last, uint32_t *buffer)
{
int win_id, idx;
/* Save CCU */
for (idx = 0, win_id = win_first; win_id <= win_last; win_id++) {
buffer[idx++] = mmio_read_32(CCU_WIN_CR_OFFSET(ap_id, win_id));
buffer[idx++] = mmio_read_32(CCU_WIN_SCR_OFFSET(ap_id, win_id));
buffer[idx++] = mmio_read_32(CCU_WIN_ALR_OFFSET(ap_id, win_id));
buffer[idx++] = mmio_read_32(CCU_WIN_AHR_OFFSET(ap_id, win_id));
}
buffer[idx] = mmio_read_32(CCU_WIN_GCR_OFFSET(ap_id));
}
/* Restore content of CCU window + GCR */
static void ccu_restore_win_range(int ap_id, int win_first,
int win_last, uint32_t *buffer)
{
int win_id, idx;
/* Restore CCU */
for (idx = 0, win_id = win_first; win_id <= win_last; win_id++) {
mmio_write_32(CCU_WIN_CR_OFFSET(ap_id, win_id), buffer[idx++]);
mmio_write_32(CCU_WIN_SCR_OFFSET(ap_id, win_id), buffer[idx++]);
mmio_write_32(CCU_WIN_ALR_OFFSET(ap_id, win_id), buffer[idx++]);
mmio_write_32(CCU_WIN_AHR_OFFSET(ap_id, win_id), buffer[idx++]);
}
mmio_write_32(CCU_WIN_GCR_OFFSET(ap_id), buffer[idx]);
}
void ccu_save_win_all(int ap_id)
{
ccu_save_win_range(ap_id, 0, MVEBU_CCU_MAX_WINS - 1, ccu_regs_save);
}
void ccu_restore_win_all(int ap_id)
{
ccu_restore_win_range(ap_id, 0, MVEBU_CCU_MAX_WINS - 1, ccu_regs_save);
}
int init_ccu(int ap_index)
{
struct addr_map_win *win, *dram_win;
uint32_t win_id, win_reg;
uint32_t win_count, array_id;
uint32_t dram_target;
#if IMAGE_BLE
/* In BootROM context CCU Window-1
* has SRAM_TID target and should not be disabled
*/
const uint32_t win_start = 2;
#else
const uint32_t win_start = 1;
#endif
INFO("Initializing CCU Address decoding\n");
/* Get the array of the windows and fill the map data */
marvell_get_ccu_memory_map(ap_index, &win, &win_count);
if (win_count <= 0) {
INFO("No windows configurations found\n");
} else if (win_count > (MVEBU_CCU_MAX_WINS - 1)) {
ERROR("CCU mem map array > than max available windows (%d)\n",
MVEBU_CCU_MAX_WINS);
win_count = MVEBU_CCU_MAX_WINS;
}
/* Need to set GCR to DRAM before all CCU windows are disabled for
* securing the normal access to DRAM location, which the ATF is running
* from. Once all CCU windows are set, which have to include the
* dedicated DRAM window as well, the GCR can be switched to the target
* defined by the platform configuration.
*/
dram_target = ccu_dram_target_get(ap_index);
win_reg = (dram_target & CCU_GCR_TARGET_MASK) << CCU_GCR_TARGET_OFFSET;
mmio_write_32(CCU_WIN_GCR_OFFSET(ap_index), win_reg);
/* If the DRAM window was already configured at the BLE stage,
* only the window target considered valid, the address range should be
* updated according to the platform configuration.
*/
for (dram_win = win, array_id = 0; array_id < win_count;
array_id++, dram_win++) {
if (IS_DRAM_TARGET(dram_win->target_id)) {
dram_win->target_id = dram_target;
break;
}
}
/* Disable all AP CCU windows
* Window-0 is always bypassed since it already contains
* data allowing the internal configuration space access
*/
for (win_id = win_start; win_id < MVEBU_CCU_MAX_WINS; win_id++) {
ccu_disable_win(ap_index, win_id);
/* enable write secure (and clear read secure) */
mmio_write_32(CCU_WIN_SCR_OFFSET(ap_index, win_id),
CCU_WIN_ENA_WRITE_SECURE);
}
/* win_id is the index of the current ccu window
* array_id is the index of the current memory map window entry
*/
for (win_id = win_start, array_id = 0;
((win_id < MVEBU_CCU_MAX_WINS) && (array_id < win_count));
win_id++) {
ccu_win_check(win);
ccu_enable_win(ap_index, win, win_id);
win++;
array_id++;
}
/* Get & set the default target according to board topology */
win_reg = (marvell_get_ccu_gcr_target(ap_index) & CCU_GCR_TARGET_MASK)
<< CCU_GCR_TARGET_OFFSET;
mmio_write_32(CCU_WIN_GCR_OFFSET(ap_index), win_reg);
#ifdef DEBUG_ADDR_MAP
dump_ccu(ap_index);
#endif
INFO("Done CCU Address decoding Initializing\n");
return 0;
}