coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/g/flash.c

630 lines
16 KiB
C

/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* The SoC's internal flash consists of two separate "banks" of 256K bytes each
* (sometimes called "macros" because of how they're implemented in Verilog).
*
* Each flash bank contains 128 "blocks" or "pages" of 2K bytes each. These
* blocks can be erased individually, or the entire bank can be erased at once.
*
* When the flash content is erased, all its bits are set to 1.
*
* The flash content can be read directly as bytes, halfwords, or words, just
* like any memory region. However, writes can only happen through special
* operations, in units of properly aligned 32-bit words.
*
* The flash controller has a 32-word write buffer. This allows up to 32
* adjacent words (128 bytes) within a bank to be written in one operation.
*
* Multiple writes to the same flash word can be done without first erasing the
* block, however:
*
* A) writes can only change stored bits from 1 to 0, and
*
* B) the manufacturer recommends that no more than two writes be done between
* erase cycles for best results (in terms of reliability, longevity, etc.)
*
* All of this is fairly typical of most flash parts. This next thing is NOT
* typical:
*
* +--------------------------------------------------------------------------+
* + While any write or erase operation is in progress, ALL other access to +
* + that entire bank is stalled. Data reads, instruction fetches, interrupt +
* + vector lookup -- every access blocks until the flash operation finishes. +
* +--------------------------------------------------------------------------+
*
*/
#include "common.h"
#include "board_id.h"
#include "console.h"
#include "cryptoc/util.h"
#include "extension.h"
#include "flash.h"
#include "flash_log.h"
#include "registers.h"
#include "shared_mem.h"
#include "task.h"
#include "timer.h"
#include "watchdog.h"
#define CPRINTS(format, args...) cprints(CC_EXTENSION, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_EXTENSION, format, ## args)
/* Mutex to prevent concurrent accesses to flash engine. */
static struct mutex flash_mtx;
#ifdef CONFIG_FLASH_LOG
static void flash_log_space_control(int enable)
{
GWRITE_FIELD(GLOBALSEC, FLASH_REGION5_CTRL, WR_EN, !!enable);
}
#endif
int flash_pre_init(void)
{
struct g_flash_region regions[4];
int i, num_regions;
num_regions = flash_regions_to_enable(regions, ARRAY_SIZE(regions));
for (i = 0; i < num_regions; i++) {
int reg_base;
/* Region range */
reg_base = GBASE(GLOBALSEC) +
GOFFSET(GLOBALSEC, FLASH_REGION2_BASE_ADDR) +
i * 8;
REG32(reg_base) = regions[i].reg_base;
/*
* The hardware requires a value which is 1 less than the
* actual region size.
*/
REG32(reg_base + 4) = regions[i].reg_size - 1;
/* Region permissions. */
reg_base = GBASE(GLOBALSEC) +
GOFFSET(GLOBALSEC, FLASH_REGION2_CTRL) +
i * 4;
REG32(reg_base) = regions[i].reg_perms;
}
#ifdef CONFIG_FLASH_LOG
/*
* Allow access to flash elog space and register the access control
* function.
*/
GREG32(GLOBALSEC, FLASH_REGION5_BASE_ADDR) = CONFIG_FLASH_LOG_BASE;
GREG32(GLOBALSEC, FLASH_REGION5_SIZE) = CONFIG_FLASH_LOG_SPACE - 1;
GWRITE_FIELD(GLOBALSEC, FLASH_REGION5_CTRL, EN, 1);
GWRITE_FIELD(GLOBALSEC, FLASH_REGION5_CTRL, RD_EN, 1);
flash_log_register_flash_control_callback(flash_log_space_control);
#endif
/* Create a flash region window for INFO1 access. */
GREG32(GLOBALSEC, FLASH_REGION7_BASE_ADDR) = FLASH_INFO_MEMORY_BASE;
GREG32(GLOBALSEC, FLASH_REGION7_SIZE) = FLASH_INFO_SIZE - 1;
GWRITE_FIELD(GLOBALSEC, FLASH_REGION7_CTRL, EN, 1);
GWRITE_FIELD(GLOBALSEC, FLASH_REGION7_CTRL, RD_EN, 1);
return EC_SUCCESS;
}
int flash_physical_get_protect(int bank)
{
return 0; /* Not protected */
}
uint32_t flash_physical_get_protect_flags(void)
{
return 0; /* no flags set */
}
uint32_t flash_physical_get_valid_flags(void)
{
/* These are the flags we're going to pay attention to */
return EC_FLASH_PROTECT_RO_AT_BOOT |
EC_FLASH_PROTECT_RO_NOW |
EC_FLASH_PROTECT_ALL_NOW;
}
uint32_t flash_physical_get_writable_flags(uint32_t cur_flags)
{
return 0; /* no flags writable */
}
int flash_physical_protect_at_boot(uint32_t new_flags)
{
return EC_SUCCESS; /* yeah, I did it. */
}
int flash_physical_protect_now(int all)
{
return EC_SUCCESS; /* yeah, I did it. */
}
enum flash_op {
OP_ERASE_BLOCK,
OP_WRITE_BLOCK,
OP_READ_BLOCK,
};
static int do_flash_op(enum flash_op op, int is_info_bank,
int byte_offset, int words)
{
volatile uint32_t *fsh_pe_control;
uint32_t opcode, tmp, errors;
int retry_count, max_attempts, extra_prog_pulse, i;
int timedelay_us = 100;
uint32_t prev_error = 0;
/* Make sure the smart program/erase algorithms are enabled. */
if (!GREAD(FLASH, FSH_TIMING_PROG_SMART_ALGO_ON) ||
!GREAD(FLASH, FSH_TIMING_ERASE_SMART_ALGO_ON)) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNIMPLEMENTED;
}
/* Error status is self-clearing. Read it until it does (we hope). */
for (i = 0; i < 50; i++) {
tmp = GREAD(FLASH, FSH_ERROR);
if (!tmp)
break;
usleep(timedelay_us);
}
/* If we can't clear the error status register then something is wrong.
*/
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* We have two flash banks. Adjust offset and registers accordingly. */
if (is_info_bank) {
/* Only INFO bank operations are supported. */
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
} else if (byte_offset >= CFG_FLASH_HALF) {
byte_offset -= CFG_FLASH_HALF;
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
} else {
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL0);
}
/* What are we doing? */
switch (op) {
case OP_ERASE_BLOCK:
#ifndef CR50_RELAXED
if (is_info_bank)
/* Erasing the INFO bank from the RW section is
* unsupported. */
return EC_ERROR_INVAL;
#endif
opcode = 0x31415927;
words = 0; /* don't care, really */
/* This number is based on the TSMC spec Nme=Terase/Tsme */
max_attempts = 45;
break;
case OP_WRITE_BLOCK:
opcode = 0x27182818;
words--; /* count register is zero-based */
/* This number is based on the TSMC spec Nmp=Tprog/Tsmp */
max_attempts = 9;
break;
case OP_READ_BLOCK:
if (!is_info_bank)
/* This code path only supports reading from
* the INFO bank.
*/
return EC_ERROR_INVAL;
opcode = 0x16021765;
words = 1;
max_attempts = 9;
break;
default:
return EC_ERROR_INVAL;
}
/*
* Set the parameters. For writes, we assume the write buffer is
* already filled before we call this function.
*/
GWRITE_FIELD(FLASH, FSH_TRANS, OFFSET,
byte_offset / 4); /* word offset */
GWRITE_FIELD(FLASH, FSH_TRANS, MAINB, is_info_bank ? 1 : 0);
GWRITE_FIELD(FLASH, FSH_TRANS, SIZE, words);
/* TODO: Make sure this function isn't getting called "too often" in
* between erases.
*/
extra_prog_pulse = 0;
for (retry_count = 0; retry_count < max_attempts; retry_count++) {
/* Kick it off */
GWRITE(FLASH, FSH_PE_EN, 0xb11924e1);
*fsh_pe_control = opcode;
/* Wait for completion. 150ms should be enough
* (crosbug.com/p/45366).
*/
for (i = 0; i < 1500; i++) {
tmp = *fsh_pe_control;
if (!tmp)
break;
usleep(timedelay_us);
}
/* Timed out waiting for control register to clear */
if (tmp) {
/* Stop the failed operation. */
*fsh_pe_control = 0;
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* Check error status */
errors = GREAD(FLASH, FSH_ERROR);
if (errors && (errors != prev_error)) {
prev_error = errors;
CPRINTF("%s:%d errors %x fsh_pe_control %p\n",
__func__, __LINE__, errors, fsh_pe_control);
}
/* Error status is self-clearing. Read it until it does
* (we hope).
*/
for (i = 0; i < 50; i++) {
tmp = GREAD(FLASH, FSH_ERROR);
if (!tmp)
break;
usleep(timedelay_us);
}
/* If we can't clear the error status register then something
* is wrong.
*/
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* The operation was successful. */
if (!errors) {
/* From the spec:
* "In addition, one more program pulse is needed after
* program verification is passed."
*/
if (op == OP_WRITE_BLOCK && !extra_prog_pulse) {
extra_prog_pulse = 1;
max_attempts++;
continue;
}
return EC_SUCCESS;
}
/* If there were errors after completion retry. */
watchdog_reload();
}
CPRINTF("%s:%d, retry count %d\n", __func__, __LINE__, retry_count);
return EC_ERROR_UNKNOWN;
}
/* Write up to CONFIG_FLASH_WRITE_IDEAL_SIZE bytes at once */
static int write_batch(int byte_offset, int is_info_bank,
int words, const uint8_t *data)
{
volatile uint32_t *fsh_wr_data = GREG32_ADDR(FLASH, FSH_WR_DATA0);
uint32_t val;
int i;
int rv;
mutex_lock(&flash_mtx);
/* Load the write buffer. */
for (i = 0; i < words; i++) {
/*
* We have to write 32-bit values, but we can't guarantee
* alignment for the data. We'll just assemble the word
* manually to avoid alignment faults. Note that we're assuming
* little-endian order here.
*/
val = ((data[3] << 24) | (data[2] << 16) |
(data[1] << 8) | data[0]);
*fsh_wr_data = val;
data += 4;
fsh_wr_data++;
}
rv = do_flash_op(OP_WRITE_BLOCK, is_info_bank, byte_offset, words);
mutex_unlock(&flash_mtx);
return rv;
}
static int flash_physical_write_internal(int byte_offset, int is_info_bank,
int num_bytes, const char *data)
{
int num, ret;
/* The offset and size must be a multiple of CONFIG_FLASH_WRITE_SIZE */
if (byte_offset % CONFIG_FLASH_WRITE_SIZE ||
num_bytes % CONFIG_FLASH_WRITE_SIZE)
return EC_ERROR_INVAL;
while (num_bytes) {
num = MIN(num_bytes, CONFIG_FLASH_WRITE_IDEAL_SIZE);
/*
* Make sure that the write operation will not go
* past a CONFIG_FLASH_ROW_SIZE boundary.
*/
num = MIN(num, CONFIG_FLASH_ROW_SIZE -
byte_offset % CONFIG_FLASH_ROW_SIZE);
ret = write_batch(byte_offset,
is_info_bank,
num / 4, /* word count */
(const uint8_t *)data);
if (ret)
return ret;
num_bytes -= num;
byte_offset += num;
data += num;
}
return EC_SUCCESS;
}
int flash_physical_write(int byte_offset, int num_bytes, const char *data)
{
return flash_physical_write_internal(byte_offset, 0, num_bytes, data);
}
int flash_physical_info_read_word(int byte_offset, uint32_t *dst)
{
int ret;
if (byte_offset % CONFIG_FLASH_WRITE_SIZE)
return EC_ERROR_INVAL;
mutex_lock(&flash_mtx);
ret = do_flash_op(OP_READ_BLOCK, 1, byte_offset, 1);
if (ret == EC_SUCCESS)
*dst = GREG32(FLASH, FSH_DOUT_VAL1);
mutex_unlock(&flash_mtx);
return ret;
}
void flash_info_write_enable(void)
{
GWRITE_FIELD(GLOBALSEC, FLASH_REGION7_CTRL, WR_EN, 1);
}
void flash_info_write_disable(void)
{
GWRITE_FIELD(GLOBALSEC, FLASH_REGION7_CTRL, WR_EN, 0);
}
int flash_info_physical_write(int byte_offset, int num_bytes, const char *data)
{
if (byte_offset < 0 || num_bytes < 0 ||
byte_offset + num_bytes > FLASH_INFO_SIZE ||
(byte_offset | num_bytes) & (CONFIG_FLASH_WRITE_SIZE - 1))
return EC_ERROR_INVAL;
return flash_physical_write_internal(byte_offset, 1, num_bytes, data);
}
int flash_physical_erase(int byte_offset, int num_bytes)
{
int ret;
/* Offset and size must be a multiple of CONFIG_FLASH_ERASE_SIZE */
if (byte_offset % CONFIG_FLASH_ERASE_SIZE ||
num_bytes % CONFIG_FLASH_ERASE_SIZE)
return EC_ERROR_INVAL;
while (num_bytes) {
mutex_lock(&flash_mtx);
/* We may be asked to erase multiple banks */
ret = do_flash_op(OP_ERASE_BLOCK,
0, /* not the INFO bank */
byte_offset,
num_bytes / 4); /* word count */
mutex_unlock(&flash_mtx);
if (ret) {
CPRINTF("Failed to erase block at %x\n", byte_offset);
return ret;
}
num_bytes -= CONFIG_FLASH_ERASE_SIZE;
byte_offset += CONFIG_FLASH_ERASE_SIZE;
}
return EC_SUCCESS;
}
/* Enable write access to the backup RO section. */
void flash_open_ro_window(uint32_t offset, size_t size_b)
{
GREG32(GLOBALSEC, FLASH_REGION6_BASE_ADDR) =
offset + CONFIG_PROGRAM_MEMORY_BASE;
GREG32(GLOBALSEC, FLASH_REGION6_SIZE) = size_b - 1;
GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, EN, 1);
GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, RD_EN, 1);
GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, WR_EN, 1);
}
#ifdef CR50_DEV
/*
* The seed is the first 32 bytes of the manufacture state space. That is all
* we care about. We can ignore the rest of the manufacture state.
*/
#define ENDORSEMENT_SEED_SIZE 32
static enum vendor_cmd_rc vc_endorsement_seed(enum vendor_cmd_cc code,
void *buf,
size_t input_size,
size_t *response_size)
{
uint8_t endorsement_seed[ENDORSEMENT_SEED_SIZE];
int rv = VENDOR_RC_SUCCESS;
int is_erased = 1;
int set_seed = input_size == ENDORSEMENT_SEED_SIZE;
int i;
uint32_t *p;
int offset;
*response_size = 0;
if (input_size && !set_seed) {
CPRINTS("%s: invalid seed", __func__);
return VENDOR_RC_BOGUS_ARGS;
}
/* Read the endorsement key seed. */
p = (uint32_t *)endorsement_seed;
for (i = 0; i < (ENDORSEMENT_SEED_SIZE / sizeof(*p)); i++) {
offset = FLASH_INFO_MANUFACTURE_STATE_OFFSET + i * sizeof(*p);
if (flash_physical_info_read_word(offset, p + i) !=
EC_SUCCESS) {
CPRINTS("%s: failed read", __func__);
return VENDOR_RC_INTERNAL_ERROR;
}
if (p[i] != 0xffffffff)
is_erased = 0;
}
if (set_seed && !is_erased) {
CPRINTS("%s: seed already set!", __func__);
return VENDOR_RC_NOT_ALLOWED;
}
if (!input_size) {
*response_size = ENDORSEMENT_SEED_SIZE;
memcpy(buf, endorsement_seed, *response_size);
return VENDOR_RC_SUCCESS;
}
flash_info_write_enable();
if (flash_info_physical_write(FLASH_INFO_MANUFACTURE_STATE_OFFSET,
input_size,
(char *)buf) != EC_SUCCESS) {
CPRINTS("%s: failed write", __func__);
rv = VENDOR_RC_INTERNAL_ERROR;
}
flash_info_write_disable();
return rv;
}
DECLARE_VENDOR_COMMAND(VENDOR_CC_ENDORSEMENT_SEED, vc_endorsement_seed);
#endif
#ifdef CR50_RELAXED
static int command_erase_flash_info(int argc, char **argv)
{
int i;
int rv;
struct info1_layout *info1;
uint32_t *p;
rv = shared_mem_acquire(sizeof(*info1), (char **)&info1);
if (rv != EC_SUCCESS) {
ccprintf("Failed to allocate memory for info1!\n");
return rv;
}
/* Read the entire info1. */
p = (uint32_t *)info1;
for (i = 0; i < (sizeof(*info1) / sizeof(*p)); i++) {
if (flash_physical_info_read_word(i * sizeof(*p), p + i) !=
EC_SUCCESS) {
ccprintf("Failed to read word %d!\n", i);
goto exit;
}
}
#ifdef CR50_SQA
/*
* SQA images erase INFO1 RW mask, but do not allow erasing board ID.
*
* If compiled with CR50_SQA=1, board ID flags will set to zero, if
* compiled with CR50_SQA=2 or greater, board ID flags can be set to
* an arbitrary value passed in on the command line, but guaranteeing
* not to lock out the currently running image.
*/
{
uint32_t flags = 0;
#if CR50_SQA > 1
if (argc > 1) {
char *e;
flags = strtoi(argv[1], &e, 0);
if (*e) {
rv = EC_ERROR_PARAM1;
goto exit;
}
}
#endif
if (board_id_is_blank(&info1->board_space.bid)) {
ccprintf("BID is erased. Not modifying flags\n");
} else {
ccprintf("setting BID flags to %x\n", flags);
info1->board_space.bid.flags = flags;
}
if (check_board_id_vs_header(&info1->board_space.bid,
get_current_image_header())) {
ccprintf("Flags %x would lock out current image\n",
flags);
rv = EC_ERROR_PARAM1;
goto exit;
}
}
#else /* CR50_SQA ^^^^^^ defined vvvvvvv Not defined. */
/*
* This must be CR50_DEV=1 image, just erase the board information
* space.
*/
memset(&info1->board_space, 0xff, sizeof(info1->board_space));
#endif /* CR50_SQA Not defined. */
memset(info1->rw_info_map, 0xff, sizeof(info1->rw_info_map));
mutex_lock(&flash_mtx);
flash_info_write_enable();
rv = do_flash_op(OP_ERASE_BLOCK, 1, 0, 512);
mutex_unlock(&flash_mtx);
if (rv != EC_SUCCESS) {
ccprintf("Failed to erase info space!\n");
goto exit;
}
rv = flash_info_physical_write(0, sizeof(*info1), (char *)info1);
if (rv != EC_SUCCESS)
ccprintf("Failed write back info1 contents!\n");
exit:
flash_info_write_disable();
always_memset(info1, 0, sizeof(*info1));
shared_mem_release(info1);
return rv;
}
DECLARE_SAFE_CONSOLE_COMMAND(eraseflashinfo, command_erase_flash_info,
#if defined(CR50_SQA) && (CR50_SQA > 1)
"[bid flags]",
"Erase INFO1 flash space and set Board ID flags");
#else
"", "Erase INFO1 flash space");
#endif
#endif