coreboot-libre-fam15h-rdimm/3rdparty/chromeec/chip/npcx/system.c

1175 lines
30 KiB
C

/* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* System module for Chrome EC : NPCX hardware specific implementation */
#include "clock.h"
#include "clock_chip.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "hwtimer_chip.h"
#include "registers.h"
#include "rom_chip.h"
#include "sib_chip.h"
#include "system.h"
#include "system_chip.h"
#include "task.h"
#include "timer.h"
#include "util.h"
#include "watchdog.h"
/* Delay after writing TTC for value to latch */
#define MTC_TTC_LOAD_DELAY_US 250
#define MTC_ALARM_MASK (BIT(25) - 1)
#define MTC_WUI_GROUP MIWU_GROUP_4
#define MTC_WUI_MASK MASK_PIN7
/* ROM address of chip revision */
#define CHIP_REV_ADDR 0x00007FFC
/* Console output macros */
#define CPUTS(outstr) cputs(CC_SYSTEM, outstr)
#define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ## args)
/*****************************************************************************/
/* Internal functions */
void system_watchdog_reset(void)
{
/* Unlock & stop watchdog registers */
NPCX_WDSDM = 0x87;
NPCX_WDSDM = 0x61;
NPCX_WDSDM = 0x63;
/* Reset TWCFG */
NPCX_TWCFG = 0;
/* Select T0IN clock as watchdog prescaler clock */
SET_BIT(NPCX_TWCFG, NPCX_TWCFG_WDCT0I);
/* Clear watchdog reset status initially*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS);
/* Keep prescaler ratio timer0 clock to 1:1 */
NPCX_TWCP = 0x00;
/* Set internal counter and prescaler */
NPCX_TWDT0 = 0x00;
NPCX_WDCNT = 0x01;
/* Disable interrupt */
interrupt_disable();
/* Reload and restart Timer 0*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_RST);
/* Wait for timer is loaded and restart */
while (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_RST))
;
/* Enable interrupt */
interrupt_enable();
}
/* Return true if index is stored as a single byte in bbram */
static int bbram_is_byte_access(enum bbram_data_index index)
{
return (index >= BBRM_DATA_INDEX_VBNVCNTXT &&
index < BBRM_DATA_INDEX_RAMLOG)
|| index == BBRM_DATA_INDEX_PD0
|| index == BBRM_DATA_INDEX_PD1
|| index == BBRM_DATA_INDEX_PD2
|| index == BBRM_DATA_INDEX_PANIC_FLAGS
;
}
/* Check and clear BBRAM status on any reset */
void system_check_bbram_on_reset(void)
{
if (IS_BIT_SET(NPCX_BKUP_STS, NPCX_BKUP_STS_IBBR)) {
/*
* If the reset cause is not power-on reset and VBAT has ever
* dropped, print a warning message.
*/
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH) ||
IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_STS))
CPRINTF("VBAT drop!\n");
/*
* npcx5/npcx7m6g/npcx7m6f:
* Clear IBBR bit
* npcx7m6fb/npcx7m6fc/npcx7m7wb/npcx7m7wc:
* Clear IBBR/VSBY_STS/VCC1_STS bit
*/
NPCX_BKUP_STS = NPCX_BKUP_STS_ALL_MASK;
}
}
/* Check index is within valid BBRAM range and IBBR is not set */
static int bbram_valid(enum bbram_data_index index, int bytes)
{
/* Check index */
if (index < 0 || index + bytes > NPCX_BBRAM_SIZE)
return 0;
/* Check BBRAM is valid */
if (IS_BIT_SET(NPCX_BKUP_STS, NPCX_BKUP_STS_IBBR)) {
NPCX_BKUP_STS = BIT(NPCX_BKUP_STS_IBBR);
panic_printf("IBBR set: BBRAM corrupted!\n");
return 0;
}
return 1;
}
/**
* Read battery-backed ram (BBRAM) at specified index.
*
* @return The value of the register or 0 if invalid index.
*/
static uint32_t bbram_data_read(enum bbram_data_index index)
{
uint32_t value = 0;
int bytes = bbram_is_byte_access(index) ? 1 : 4;
if (!bbram_valid(index, bytes))
return 0;
/* Read BBRAM */
if (bytes == 4) {
value += NPCX_BBRAM(index + 3);
value = value << 8;
value += NPCX_BBRAM(index + 2);
value = value << 8;
value += NPCX_BBRAM(index + 1);
value = value << 8;
}
value += NPCX_BBRAM(index);
return value;
}
/**
* Write battery-backed ram (BBRAM) at specified index.
*
* @return nonzero if error.
*/
static int bbram_data_write(enum bbram_data_index index, uint32_t value)
{
int bytes = bbram_is_byte_access(index) ? 1 : 4;
if (!bbram_valid(index, bytes))
return EC_ERROR_INVAL;
/* Write BBRAM */
NPCX_BBRAM(index) = value & 0xFF;
if (bytes == 4) {
NPCX_BBRAM(index + 1) = (value >> 8) & 0xFF;
NPCX_BBRAM(index + 2) = (value >> 16) & 0xFF;
NPCX_BBRAM(index + 3) = (value >> 24) & 0xFF;
}
/* Wait for write-complete */
return EC_SUCCESS;
}
/* Map idx to a returned BBRM_DATA_INDEX_*, or return -1 on invalid idx */
static int bbram_idx_lookup(enum system_bbram_idx idx)
{
if (idx >= SYSTEM_BBRAM_IDX_VBNVBLOCK0 &&
idx <= SYSTEM_BBRAM_IDX_VBNVBLOCK15)
return BBRM_DATA_INDEX_VBNVCNTXT +
idx - SYSTEM_BBRAM_IDX_VBNVBLOCK0;
if (idx == SYSTEM_BBRAM_IDX_PD0)
return BBRM_DATA_INDEX_PD0;
if (idx == SYSTEM_BBRAM_IDX_PD1)
return BBRM_DATA_INDEX_PD1;
if (idx == SYSTEM_BBRAM_IDX_PD2)
return BBRM_DATA_INDEX_PD2;
if (idx == SYSTEM_BBRAM_IDX_TRY_SLOT)
return BBRM_DATA_INDEX_TRY_SLOT;
return -1;
}
int system_get_bbram(enum system_bbram_idx idx, uint8_t *value)
{
int bbram_idx = bbram_idx_lookup(idx);
if (bbram_idx < 0)
return EC_ERROR_INVAL;
*value = bbram_data_read(bbram_idx);
return EC_SUCCESS;
}
int system_set_bbram(enum system_bbram_idx idx, uint8_t value)
{
int bbram_idx = bbram_idx_lookup(idx);
if (bbram_idx < 0)
return EC_ERROR_INVAL;
return bbram_data_write(bbram_idx, value);
}
/* MTC functions */
uint32_t system_get_rtc_sec(void)
{
/* Get MTC counter unit:seconds */
uint32_t sec = NPCX_TTC;
return sec;
}
void system_set_rtc(uint32_t seconds)
{
/*
* Set MTC counter unit:seconds, write twice to ensure values
* latch to NVMem.
*/
NPCX_TTC = seconds;
udelay(MTC_TTC_LOAD_DELAY_US);
NPCX_TTC = seconds;
udelay(MTC_TTC_LOAD_DELAY_US);
}
#ifdef CONFIG_CHIP_PANIC_BACKUP
/*
* Following information from panic data is stored in BBRAM:
*
* index | data
* ==========|=============
* 36 | MMFS
* 40 | HFSR
* 44 | BFAR
* 48 | LREG1
* 52 | LREG3
* 56 | LREG4
* 60 | reserved
*
* Above registers are chosen to be saved in case of panic because:
* 1. MMFS, HFSR and BFAR seem to provide more information about the fault.
* 2. LREG1, LREG3 and LREG4 store exception, reason and info in case of
* software panic.
*/
#define BKUP_MMFS (BBRM_DATA_INDEX_PANIC_BKUP + 0)
#define BKUP_HFSR (BBRM_DATA_INDEX_PANIC_BKUP + 4)
#define BKUP_BFAR (BBRM_DATA_INDEX_PANIC_BKUP + 8)
#define BKUP_LREG1 (BBRM_DATA_INDEX_PANIC_BKUP + 12)
#define BKUP_LREG3 (BBRM_DATA_INDEX_PANIC_BKUP + 16)
#define BKUP_LREG4 (BBRM_DATA_INDEX_PANIC_BKUP + 20)
#define BKUP_PANIC_DATA_VALID BIT(0)
void chip_panic_data_backup(void)
{
struct panic_data *d = panic_get_data();
if (!d)
return;
bbram_data_write(BKUP_MMFS, d->cm.mmfs);
bbram_data_write(BKUP_HFSR, d->cm.hfsr);
bbram_data_write(BKUP_BFAR, d->cm.dfsr);
bbram_data_write(BKUP_LREG1, d->cm.regs[1]);
bbram_data_write(BKUP_LREG3, d->cm.regs[3]);
bbram_data_write(BKUP_LREG4, d->cm.regs[4]);
bbram_data_write(BBRM_DATA_INDEX_PANIC_FLAGS, BKUP_PANIC_DATA_VALID);
}
static void chip_panic_data_restore(void)
{
struct panic_data *d = PANIC_DATA_PTR;
/* Ensure BBRAM is valid. */
if (!bbram_valid(BKUP_MMFS, 4))
return;
/* Ensure Panic data in BBRAM is valid. */
if (!(bbram_data_read(BBRM_DATA_INDEX_PANIC_FLAGS) &
BKUP_PANIC_DATA_VALID))
return;
memset(d, 0, sizeof(*d));
d->magic = PANIC_DATA_MAGIC;
d->struct_size = sizeof(*d);
d->struct_version = 2;
d->arch = PANIC_ARCH_CORTEX_M;
d->cm.mmfs = bbram_data_read(BKUP_MMFS);
d->cm.hfsr = bbram_data_read(BKUP_HFSR);
d->cm.dfsr = bbram_data_read(BKUP_BFAR);
d->cm.regs[1] = bbram_data_read(BKUP_LREG1);
d->cm.regs[3] = bbram_data_read(BKUP_LREG3);
d->cm.regs[4] = bbram_data_read(BKUP_LREG4);
/* Reset panic data in BBRAM. */
bbram_data_write(BBRM_DATA_INDEX_PANIC_FLAGS, 0);
}
#endif /* CONFIG_CHIP_PANIC_BACKUP */
void chip_save_reset_flags(uint32_t flags)
{
bbram_data_write(BBRM_DATA_INDEX_SAVED_RESET_FLAGS, flags);
}
uint32_t chip_read_reset_flags(void)
{
return bbram_data_read(BBRM_DATA_INDEX_SAVED_RESET_FLAGS);
}
#ifdef CONFIG_POWER_BUTTON_INIT_IDLE
/*
* Set/clear AP_OFF flag. It's set when the system gracefully shuts down and
* it's cleared when the system boots up. The result is the system tries to
* go back to the previous state upon AC plug-in. If the system uncleanly
* shuts down, it boots immediately. If the system shuts down gracefully,
* it'll stay at S5 and wait for power button press.
*/
static void board_chipset_startup(void)
{
uint32_t flags = bbram_data_read(BBRM_DATA_INDEX_SAVED_RESET_FLAGS);
flags &= ~EC_RESET_FLAG_AP_OFF;
chip_save_reset_flags(flags);
system_clear_reset_flags(EC_RESET_FLAG_AP_OFF);
CPRINTS("Cleared AP_OFF flag");
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT);
static void board_chipset_shutdown(void)
{
uint32_t flags = bbram_data_read(BBRM_DATA_INDEX_SAVED_RESET_FLAGS);
flags |= EC_RESET_FLAG_AP_OFF;
chip_save_reset_flags(flags);
system_set_reset_flags(EC_RESET_FLAG_AP_OFF);
CPRINTS("Set AP_OFF flag");
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown,
/* Slightly higher than handle_pending_reboot because
* it may clear AP_OFF flag. */
HOOK_PRIO_DEFAULT - 1);
#endif
static void check_reset_cause(void)
{
uint32_t hib_wake_flags = bbram_data_read(BBRM_DATA_INDEX_WAKE);
uint32_t flags = bbram_data_read(BBRM_DATA_INDEX_SAVED_RESET_FLAGS);
/* Clear saved reset flags in bbram */
#ifdef CONFIG_POWER_BUTTON_INIT_IDLE
/* We'll clear AP_OFF on S5->S3 transition */
chip_save_reset_flags(flags & EC_RESET_FLAG_AP_OFF);
#else
chip_save_reset_flags(0);
#endif
/* Clear saved hibernate wake flag in bbram , too */
bbram_data_write(BBRM_DATA_INDEX_WAKE, 0);
/* Use scratch bit to check power on reset or VCC1_RST reset */
if (!IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH)) {
#ifdef CONFIG_BOARD_FORCE_RESET_PIN
/* Treat all resets as RESET_PIN */
flags |= EC_RESET_FLAG_RESET_PIN;
#else
/* Check for VCC1 reset */
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_STS))
flags |= EC_RESET_FLAG_RESET_PIN;
else
flags |= EC_RESET_FLAG_POWER_ON;
#endif
}
/*
* Set scratch bit to distinguish VCC1RST# is asserted again
* or not. This bit will be clear automatically when VCC1RST#
* is asserted or power-on reset occurs
*/
SET_BIT(NPCX_RSTCTL, NPCX_RSTCTL_VCC1_RST_SCRATCH);
/* Software debugger reset */
if (IS_BIT_SET(NPCX_RSTCTL, NPCX_RSTCTL_DBGRST_STS)) {
flags |= EC_RESET_FLAG_SOFT;
/* Clear debugger reset status initially*/
SET_BIT(NPCX_RSTCTL, NPCX_RSTCTL_DBGRST_STS);
}
/* Reset by hibernate */
if (hib_wake_flags & HIBERNATE_WAKE_PIN)
flags |= EC_RESET_FLAG_WAKE_PIN | EC_RESET_FLAG_HIBERNATE;
else if (hib_wake_flags & HIBERNATE_WAKE_MTC)
flags |= EC_RESET_FLAG_RTC_ALARM | EC_RESET_FLAG_HIBERNATE;
/* Watchdog Reset */
if (IS_BIT_SET(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS)) {
/*
* Don't set EC_RESET_FLAG_WATCHDOG flag if watchdog is issued
* by system_reset or hibernate in order to distinguish reset
* cause is panic reason or not.
*/
if (!(flags & (EC_RESET_FLAG_SOFT | EC_RESET_FLAG_HARD |
EC_RESET_FLAG_HIBERNATE)))
flags |= EC_RESET_FLAG_WATCHDOG;
/* Clear watchdog reset status initially*/
SET_BIT(NPCX_T0CSR, NPCX_T0CSR_WDRST_STS);
}
system_set_reset_flags(flags);
}
/**
* Chip-level function to set GPIOs and wake-up inputs for hibernate.
*/
#ifdef CONFIG_SUPPORT_CHIP_HIBERNATION
static void system_set_gpios_and_wakeup_inputs_hibernate(void)
{
int table, i;
/* Disable all MIWU inputs before entering hibernate */
for (table = MIWU_TABLE_0 ; table < MIWU_TABLE_2 ; table++) {
for (i = 0 ; i < 8 ; i++) {
/* Disable all wake-ups */
NPCX_WKEN(table, i) = 0x00;
/* Clear all pending bits of wake-ups */
NPCX_WKPCL(table, i) = 0xFF;
/*
* Disable all inputs of wake-ups to prevent leakage
* caused by input floating.
*/
NPCX_WKINEN(table, i) = 0x00;
}
}
#if defined(CHIP_FAMILY_NPCX7)
/* Disable MIWU 2 group 6 inputs which used for the additional GPIOs */
NPCX_WKEN(MIWU_TABLE_2, MIWU_GROUP_6) = 0x00;
NPCX_WKPCL(MIWU_TABLE_2, MIWU_GROUP_6) = 0xFF;
NPCX_WKINEN(MIWU_TABLE_2, MIWU_GROUP_6) = 0x00;
#endif
/* Enable wake-up inputs of hibernate_wake_pins array */
for (i = 0; i < hibernate_wake_pins_used; i++) {
gpio_reset(hibernate_wake_pins[i]);
/* Re-enable interrupt for wake-up inputs */
gpio_enable_interrupt(hibernate_wake_pins[i]);
#if defined(CONFIG_HIBERNATE_PSL)
/* Config PSL pins setting for wake-up inputs */
if (!system_config_psl_mode(hibernate_wake_pins[i]))
ccprintf("Invalid PSL setting in wake-up pin %d\n", i);
#endif
}
}
/**
* hibernate function for npcx ec.
*
* @param seconds Number of seconds to sleep before LCT alarm
* @param microseconds Number of microseconds to sleep before LCT alarm
*/
void __enter_hibernate(uint32_t seconds, uint32_t microseconds)
{
int i;
/* Disable ADC */
NPCX_ADCCNF = 0;
usleep(1000);
/* Set SPI pins to be in Tri-State */
SET_BIT(NPCX_DEVCNT, NPCX_DEVCNT_F_SPI_TRIS);
/* Disable instant wake up mode for better power consumption */
CLEAR_BIT(NPCX_ENIDL_CTL, NPCX_ENIDL_CTL_LP_WK_CTL);
/* Disable interrupt */
interrupt_disable();
/* ITIM event module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_EVENT_NO), NPCX_ITCTS_ITEN);
/* ITIM time module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM32), NPCX_ITCTS_ITEN);
/* ITIM watchdog warn module disable */
CLEAR_BIT(NPCX_ITCTS(ITIM_WDG_NO), NPCX_ITCTS_ITEN);
/* Unlock & stop watchdog */
NPCX_WDSDM = 0x87;
NPCX_WDSDM = 0x61;
NPCX_WDSDM = 0x63;
/* Initialize watchdog */
NPCX_TWCFG = 0; /* Select T0IN clock as watchdog prescaler clock */
SET_BIT(NPCX_TWCFG, NPCX_TWCFG_WDCT0I);
NPCX_TWCP = 0x00; /* Keep prescaler ratio timer0 clock to 1:1 */
NPCX_TWDT0 = 0x00; /* Set internal counter and prescaler */
/* Disable interrupt */
interrupt_disable();
/*
* Set gpios and wake-up input for better power consumption before
* entering hibernate.
*/
system_set_gpios_and_wakeup_inputs_hibernate();
/*
* Give the board a chance to do any late stage hibernation work.
* This is likely going to configure GPIOs for hibernation.
*/
if (board_hibernate_late)
board_hibernate_late();
/* Clear all pending IRQ otherwise wfi will have no affect */
for (i = NPCX_IRQ_0 ; i < NPCX_IRQ_COUNT ; i++)
task_clear_pending_irq(i);
/*
* Set RTC interrupt in time to wake up before
* next event.
*/
if (seconds || microseconds)
system_set_rtc_alarm(seconds, microseconds);
/* execute hibernate func depend on chip series */
__hibernate_npcx_series();
}
#endif /* CONFIG_SUPPORT_CHIP_HIBERNATION */
static char system_to_hex(uint8_t x)
{
if (x <= 9)
return '0' + x;
return 'a' + x - 10;
}
/*****************************************************************************/
/* IC specific low-level driver */
/*
* Microseconds will be ignored. The WTC register only
* stores wakeup time in seconds.
* Set seconds = 0 to disable the alarm
*/
void system_set_rtc_alarm(uint32_t seconds, uint32_t microseconds)
{
uint32_t cur_secs, alarm_secs;
if (seconds == EC_RTC_ALARM_CLEAR && !microseconds) {
CLEAR_BIT(NPCX_WTC, NPCX_WTC_WIE);
SET_BIT(NPCX_WTC, NPCX_WTC_PTO);
return;
}
/* Get current clock */
cur_secs = NPCX_TTC;
/* If alarm clock is not sequential or not in range */
alarm_secs = cur_secs + seconds;
alarm_secs = alarm_secs & MTC_ALARM_MASK;
/*
* We should set new alarm (first 25 bits of clock value) first before
* clearing PTO in case issue rtc interrupt immediately.
*/
NPCX_WTC = alarm_secs;
/* Reset alarm first */
system_reset_rtc_alarm();
/* Enable interrupt mode alarm */
SET_BIT(NPCX_WTC, NPCX_WTC_WIE);
/* Enable MTC interrupt */
task_enable_irq(NPCX_IRQ_MTC_WKINTAD_0);
/* Enable wake-up input sources & clear pending bit */
NPCX_WKPCL(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
NPCX_WKINEN(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
NPCX_WKEN(MIWU_TABLE_0, MTC_WUI_GROUP) |= MTC_WUI_MASK;
}
void system_reset_rtc_alarm(void)
{
/*
* Clear interrupt & Disable alarm interrupt
* Update alarm value to zero
*/
CLEAR_BIT(NPCX_WTC, NPCX_WTC_WIE);
SET_BIT(NPCX_WTC, NPCX_WTC_PTO);
/* Disable MTC interrupt */
task_disable_irq(NPCX_IRQ_MTC_WKINTAD_0);
}
/*
* Return the seconds remaining before the RTC alarm goes off.
* Returns 0 if alarm is not set.
*/
uint32_t system_get_rtc_alarm(void)
{
/*
* Return 0:
* 1. If alarm is not set to go off, OR
* 2. If alarm is set and has already gone off
*/
if (!IS_BIT_SET(NPCX_WTC, NPCX_WTC_WIE) ||
IS_BIT_SET(NPCX_WTC, NPCX_WTC_PTO)) {
return 0;
}
/* Get seconds before alarm goes off */
return (NPCX_WTC - NPCX_TTC) & MTC_ALARM_MASK;
}
/**
* Enable hibernate interrupt
*/
void system_enable_hib_interrupt(void)
{
task_enable_irq(NPCX_IRQ_MTC_WKINTAD_0);
}
void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
/* Flush console before hibernating */
cflush();
if (board_hibernate)
board_hibernate();
#ifdef CONFIG_SUPPORT_CHIP_HIBERNATION
/* Add additional hibernate operations here */
__enter_hibernate(seconds, microseconds);
#endif
}
void chip_pre_init(void)
{
/* Setting for fixing JTAG issue */
NPCX_DBGCTRL = 0x04;
/* Enable automatic freeze mode */
CLEAR_BIT(NPCX_DBGFRZEN3, NPCX_DBGFRZEN3_GLBL_FRZ_DIS);
/*
* Enable JTAG functionality by SW without pulling down strap-pin
* nJEN0 or nJEN1 during ec POWERON or VCCRST reset occurs.
* Please notice it will change pinmux to JTAG directly.
*/
#ifdef NPCX_ENABLE_JTAG
#if NPCX_JTAG_MODULE2
CLEAR_BIT(NPCX_DEVALT(ALT_GROUP_5), NPCX_DEVALT5_NJEN1_EN);
#else
CLEAR_BIT(NPCX_DEVALT(ALT_GROUP_5), NPCX_DEVALT5_NJEN0_EN);
#endif
#endif
#ifndef CONFIG_ENABLE_JTAG_SELECTION
/*
* (b/129908668)
* This is the workaround to disable the JTAG0 which is enabled
* accidentally by a special key combination.
*/
if (!IS_BIT_SET(NPCX_DEVALT(5), NPCX_DEVALT5_NJEN0_EN)) {
int data;
/* Set DEVALT5.nJEN0_EN to disable JTAG0 */
SET_BIT(NPCX_DEVALT(5), NPCX_DEVALT5_NJEN0_EN);
/* Enable Core-to-Host Modules Access */
SET_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSAE);
/* Clear SIOCFD.JEN0_HSL to disable JTAG0 */
data = sib_read_reg(SIO_OFFSET, 0x2D);
data &= ~0x80;
sib_write_reg(SIO_OFFSET, 0x2D, data);
/* Disable Core-to-Host Modules Access */
CLEAR_BIT(NPCX_SIBCTRL, NPCX_SIBCTRL_CSAE);
}
#endif
}
void system_pre_init(void)
{
uint8_t pwdwn6;
/*
* Add additional initialization here
* EC should be initialized in Booter
*/
/* Power-down the modules we don't need */
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_1) = 0xF9; /* Skip SDP_PD FIU_PD */
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_2) = 0xFF;
#if defined(CHIP_FAMILY_NPCX5)
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_3) = 0x0F; /* Skip GDMA */
#elif defined(CHIP_FAMILY_NPCX7)
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_3) = 0x1F; /* Skip GDMA */
#endif
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_4) = 0xF4; /* Skip ITIM2/1_PD */
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_5) = 0xF8;
pwdwn6 = 0x70 |
BIT(NPCX_PWDWN_CTL6_ITIM6_PD) |
BIT(NPCX_PWDWN_CTL6_ITIM4_PD); /* Skip ITIM5_PD */
#if !defined(CONFIG_HOSTCMD_ESPI)
pwdwn6 |= 1 << NPCX_PWDWN_CTL6_ESPI_PD;
#endif
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_6) = pwdwn6;
#if defined(CHIP_FAMILY_NPCX7)
#if defined(CHIP_VARIANT_NPCX7M6FB) || defined(CHIP_VARIANT_NPCX7M6FC) || \
defined(CHIP_VARIANT_NPCX7M7WB) || defined(CHIP_VARIANT_NPCX7M7WC)
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_7) = 0xE7;
#else
NPCX_PWDWN_CTL(NPCX_PMC_PWDWN_7) = 0x07;
#endif
#endif
/* Following modules can be powered down automatically in npcx7 */
#if defined(CHIP_FAMILY_NPCX5)
/* Power down the modules of npcx5 used internally */
NPCX_INTERNAL_CTRL1 = 0x03;
NPCX_INTERNAL_CTRL2 = 0x03;
NPCX_INTERNAL_CTRL3 = 0x03;
/* Enable low-power regulator */
CLEAR_BIT(NPCX_LFCGCALCNT, NPCX_LFCGCALCNT_LPREG_CTL_EN);
SET_BIT(NPCX_LFCGCALCNT, NPCX_LFCGCALCNT_LPREG_CTL_EN);
#endif
/*
* Configure LPRAM in the MPU as a regular memory
* and DATA RAM to prevent code execution
*/
system_mpu_config();
/*
* Change FMUL_WIN_DLY from 0x8A to 0x81 for better WoV
* audio quality.
*/
#ifdef CHIP_FAMILY_NPCX7
NPCX_FMUL_WIN_DLY = 0x81;
#endif
#ifdef CONFIG_CHIP_PANIC_BACKUP
chip_panic_data_restore();
#endif
}
void system_reset(int flags)
{
uint32_t save_flags;
/* Disable interrupts to avoid task swaps during reboot */
interrupt_disable();
/* Get flags to be saved in BBRAM */
system_encode_save_flags(flags, &save_flags);
/* Store flags to battery backed RAM. */
chip_save_reset_flags(save_flags);
/* If WAIT_EXT is set, then allow 10 seconds for external reset */
if (flags & SYSTEM_RESET_WAIT_EXT) {
int i;
/* Wait 10 seconds for external reset */
for (i = 0; i < 1000; i++) {
watchdog_reload();
udelay(10000);
}
}
/* Ask the watchdog to trigger a hard reboot */
system_watchdog_reset();
/* Spin and wait for reboot; should never return */
while (1)
;
}
/**
* Return the chip vendor/name/revision string.
*/
const char *system_get_chip_vendor(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
/* Read Vendor ID in core register */
uint8_t fam_id = NPCX_SID_CR;
switch (fam_id) {
case 0x20:
return "Nuvoton";
default:
*p = system_to_hex((fam_id & 0xF0) >> 4);
*(p + 1) = system_to_hex(fam_id & 0x0F);
*(p + 2) = '\0';
return str;
}
}
const char *system_get_chip_name(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
/* Read Chip ID in core register */
uint8_t chip_id = NPCX_DEVICE_ID_CR;
switch (chip_id) {
#if defined(CHIP_FAMILY_NPCX5)
case 0x12:
return "NPCX585G";
case 0x13:
return "NPCX575G";
case 0x16:
return "NPCX586G";
case 0x17:
return "NPCX576G";
#elif defined(CHIP_FAMILY_NPCX7)
case 0x1F:
return "NPCX787G";
case 0x21:
case 0x29:
return "NPCX796F";
case 0x24:
case 0x2C:
return "NPCX797W";
#endif
default:
*p = system_to_hex((chip_id & 0xF0) >> 4);
*(p + 1) = system_to_hex(chip_id & 0x0F);
*(p + 2) = '\0';
return str;
}
}
const char *system_get_chip_revision(void)
{
static char rev[6];
char *p = rev;
/* Read chip generation from SRID_CR */
uint8_t chip_gen = NPCX_SRID_CR;
/* Read ROM data for chip revision directly */
uint8_t rev_num = *((uint8_t *)CHIP_REV_ADDR);
#ifdef CHIP_FAMILY_NPCX7
uint8_t chip_id = NPCX_DEVICE_ID_CR;
#endif
switch (chip_gen) {
#if defined(CHIP_FAMILY_NPCX5)
case 0x05:
*p++ = 'A';
break;
#elif defined(CHIP_FAMILY_NPCX7)
case 0x06:
*p++ = 'A';
break;
case 0x07:
if (chip_id == 0x21 || chip_id == 0x24)
*p++ = 'B';
else
*p++ = 'C';
break;
#endif
default:
*p++ = system_to_hex((chip_gen & 0xF0) >> 4);
*p++ = system_to_hex(chip_gen & 0x0F);
break;
}
*p++ = '.';
*p++ = system_to_hex((rev_num & 0xF0) >> 4);
*p++ = system_to_hex(rev_num & 0x0F);
*p++ = '\0';
return rev;
}
BUILD_ASSERT(BBRM_DATA_INDEX_VBNVCNTXT + EC_VBNV_BLOCK_SIZE <= NPCX_BBRAM_SIZE);
/**
* Set a scratchpad register to the specified value.
*
* The scratchpad register must maintain its contents across a
* software-requested warm reset.
*
* @param value Value to store.
* @return EC_SUCCESS, or non-zero if error.
*/
int system_set_scratchpad(uint32_t value)
{
return bbram_data_write(BBRM_DATA_INDEX_SCRATCHPAD, value);
}
uint32_t system_get_scratchpad(void)
{
return bbram_data_read(BBRM_DATA_INDEX_SCRATCHPAD);
}
int system_is_reboot_warm(void)
{
uint32_t reset_flags;
/*
* Check reset cause here,
* gpio_pre_init is executed faster than system_pre_init
*/
check_reset_cause();
reset_flags = system_get_reset_flags();
if ((reset_flags & EC_RESET_FLAG_RESET_PIN) ||
(reset_flags & EC_RESET_FLAG_POWER_ON) ||
(reset_flags & EC_RESET_FLAG_WATCHDOG) ||
(reset_flags & EC_RESET_FLAG_HARD) ||
(reset_flags & EC_RESET_FLAG_SOFT) ||
(reset_flags & EC_RESET_FLAG_HIBERNATE))
return 0;
else
return 1;
}
/*****************************************************************************/
/* Console commands */
void print_system_rtc(enum console_channel ch)
{
uint32_t sec = system_get_rtc_sec();
cprintf(ch, "RTC: 0x%08x (%d.00 s)\n", sec, sec);
}
#ifdef CONFIG_CMD_RTC
static int command_system_rtc(int argc, char **argv)
{
if (argc == 3 && !strcasecmp(argv[1], "set")) {
char *e;
uint32_t t = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
system_set_rtc(t);
} else if (argc > 1) {
return EC_ERROR_INVAL;
}
print_system_rtc(CC_COMMAND);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc, command_system_rtc,
"[set <seconds>]",
"Get/set real-time clock");
#ifdef CONFIG_CMD_RTC_ALARM
/**
* Test the RTC alarm by setting an interrupt on RTC match.
*/
static int command_rtc_alarm_test(int argc, char **argv)
{
int s = 1, us = 0;
char *e;
ccprintf("Setting RTC alarm\n");
system_enable_hib_interrupt();
if (argc > 1) {
s = strtoi(argv[1], &e, 10);
if (*e)
return EC_ERROR_PARAM1;
}
if (argc > 2) {
us = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
}
system_set_rtc_alarm(s, us);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc_alarm, command_rtc_alarm_test,
"[seconds [microseconds]]",
"Test alarm");
#endif /* CONFIG_CMD_RTC_ALARM */
#endif /* CONFIG_CMD_RTC */
/*****************************************************************************/
/* Host commands */
#ifdef CONFIG_HOSTCMD_RTC
static enum ec_status system_rtc_get_value(struct host_cmd_handler_args *args)
{
struct ec_response_rtc *r = args->response;
r->time = system_get_rtc_sec();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_VALUE,
system_rtc_get_value,
EC_VER_MASK(0));
static enum ec_status system_rtc_set_value(struct host_cmd_handler_args *args)
{
const struct ec_params_rtc *p = args->params;
system_set_rtc(p->time);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_VALUE,
system_rtc_set_value,
EC_VER_MASK(0));
static enum ec_status system_rtc_set_alarm(struct host_cmd_handler_args *args)
{
const struct ec_params_rtc *p = args->params;
system_set_rtc_alarm(p->time, 0);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_ALARM,
system_rtc_set_alarm,
EC_VER_MASK(0));
static enum ec_status system_rtc_get_alarm(struct host_cmd_handler_args *args)
{
struct ec_response_rtc *r = args->response;
r->time = system_get_rtc_alarm();
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_ALARM,
system_rtc_get_alarm,
EC_VER_MASK(0));
#endif /* CONFIG_HOSTCMD_RTC */
#ifdef CONFIG_EXTERNAL_STORAGE
void system_jump_to_booter(void)
{
enum API_RETURN_STATUS_T status __attribute__((unused));
static uint32_t flash_offset;
static uint32_t flash_used;
static uint32_t addr_entry;
/*
* Get memory offset and size for RO/RW regions.
* Both of them need 16-bytes alignment since GDMA burst mode.
*/
switch (system_get_shrspi_image_copy()) {
case SYSTEM_IMAGE_RW:
flash_offset = CONFIG_EC_WRITABLE_STORAGE_OFF +
CONFIG_RW_STORAGE_OFF;
flash_used = CONFIG_RW_SIZE;
break;
#ifdef CONFIG_RW_B
case SYSTEM_IMAGE_RW_B:
flash_offset = CONFIG_EC_WRITABLE_STORAGE_OFF +
CONFIG_RW_B_STORAGE_OFF;
flash_used = CONFIG_RW_SIZE;
break;
#endif
case SYSTEM_IMAGE_RO:
default: /* Jump to RO by default */
flash_offset = CONFIG_EC_PROTECTED_STORAGE_OFF +
CONFIG_RO_STORAGE_OFF;
flash_used = CONFIG_RO_SIZE;
break;
}
/* Make sure the reset vector is inside the destination image */
addr_entry = *(uintptr_t *)(flash_offset +
CONFIG_MAPPED_STORAGE_BASE + 4);
/*
* Speed up FW download time by increasing clock freq of EC. It will
* restore to default in clock_init() later.
*/
clock_turbo();
/* Bypass for GMDA issue of ROM api utilities */
#if defined(CHIP_FAMILY_NPCX5)
system_download_from_flash(
flash_offset, /* The offset of the data in spi flash */
CONFIG_PROGRAM_MEMORY_BASE, /* RAM Addr of downloaded data */
flash_used, /* Number of bytes to download */
addr_entry /* jump to this address after download */
);
#else
download_from_flash(
flash_offset, /* The offset of the data in spi flash */
CONFIG_PROGRAM_MEMORY_BASE, /* RAM Addr of downloaded data */
flash_used, /* Number of bytes to download */
SIGN_NO_CHECK, /* Need CRC check or not */
addr_entry, /* jump to this address after download */
&status /* Status fo download */
);
#endif
}
uint32_t system_get_lfw_address()
{
/*
* In A3 version, we don't use little FW anymore
* We provide the alternative function in ROM
*/
uint32_t jump_addr = (uint32_t)system_jump_to_booter;
return jump_addr;
}
/*
* Set and clear image copy flags in MDC register.
*
* NPCX_FWCTRL_RO_REGION: 1 - RO, 0 - RW
* NPCX_FWCTRL_FW_SLOT: 1 - SLOT_A, 0 - SLOT_B
*/
void system_set_image_copy(enum system_image_copy_t copy)
{
switch (copy) {
case SYSTEM_IMAGE_RW:
CLEAR_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
SET_BIT(NPCX_FWCTRL, NPCX_FWCTRL_FW_SLOT);
break;
#ifdef CONFIG_RW_B
case SYSTEM_IMAGE_RW_B:
CLEAR_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
CLEAR_BIT(NPCX_FWCTRL, NPCX_FWCTRL_FW_SLOT);
break;
#endif
default:
CPRINTS("Invalid copy (%d) is requested as a jump destination. "
"Change it to %d.", copy, SYSTEM_IMAGE_RO);
/* Fall through to SYSTEM_IMAGE_RO */
case SYSTEM_IMAGE_RO:
SET_BIT(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION);
SET_BIT(NPCX_FWCTRL, NPCX_FWCTRL_FW_SLOT);
break;
}
}
enum system_image_copy_t system_get_shrspi_image_copy(void)
{
if (IS_BIT_SET(NPCX_FWCTRL, NPCX_FWCTRL_RO_REGION)) {
/* RO image */
#ifdef CHIP_HAS_RO_B
if (!IS_BIT_SET(NPCX_FWCTRL, NPCX_FWCTRL_FW_SLOT))
return SYSTEM_IMAGE_RO_B;
#endif
return SYSTEM_IMAGE_RO;
} else {
#ifdef CONFIG_RW_B
/* RW image */
if (!IS_BIT_SET(NPCX_FWCTRL, NPCX_FWCTRL_FW_SLOT))
/* Slot A */
return SYSTEM_IMAGE_RW_B;
#endif
return SYSTEM_IMAGE_RW;
}
}
#endif