513 lines
13 KiB
C
513 lines
13 KiB
C
/* Copyright 2018 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
/* Flash memory module for STM32H7 family */
|
|
|
|
#include "common.h"
|
|
#include "clock.h"
|
|
#include "cpu.h"
|
|
#include "flash.h"
|
|
#include "hooks.h"
|
|
#include "registers.h"
|
|
#include "panic.h"
|
|
#include "system.h"
|
|
#include "task.h"
|
|
#include "timer.h"
|
|
#include "util.h"
|
|
#include "watchdog.h"
|
|
|
|
/*
|
|
* Approximate number of CPU cycles per iteration of the loop when polling
|
|
* the flash status
|
|
*/
|
|
#define CYCLE_PER_FLASH_LOOP 2
|
|
|
|
/* Flash 256-bit word programming timeout. */
|
|
#define FLASH_TIMEOUT_US 600
|
|
|
|
/*
|
|
* Flash 128-KB block erase timeout.
|
|
* Datasheet says maximum is about 4 seconds in x8.
|
|
* Real delay seems to be: < 1 second in x64, < 2 seconds in x8.
|
|
*/
|
|
#define FLASH_ERASE_TIMEOUT_US (4200 * MSEC)
|
|
|
|
/*
|
|
* Option bytes programming timeout.
|
|
* No specification, real delay seems to be around 300ms.
|
|
*/
|
|
#define FLASH_OPT_PRG_TIMEOUT_US (1000 * MSEC)
|
|
|
|
/*
|
|
* All variants have 2 banks (as in parallel hardware / controllers)
|
|
* not what is called 'bank' in the common code (ie Write-Protect sectors)
|
|
* both have the same number of 128KB blocks.
|
|
*/
|
|
#define HWBANK_SIZE (CONFIG_FLASH_SIZE / 2)
|
|
#define BLOCKS_PER_HWBANK (HWBANK_SIZE / CONFIG_FLASH_ERASE_SIZE)
|
|
#define BLOCKS_HWBANK_MASK (BIT(BLOCKS_PER_HWBANK) - 1)
|
|
|
|
/*
|
|
* We can tune the power consumption vs erase/write speed
|
|
* by default, go fast (and consume current)
|
|
*/
|
|
#define DEFAULT_PSIZE FLASH_CR_PSIZE_DWORD
|
|
|
|
/* Can no longer write/erase flash until next reboot */
|
|
static int access_disabled;
|
|
/* Can no longer modify write-protection in option bytes until next reboot */
|
|
static int option_disabled;
|
|
/* Is physical flash stuck protected? (avoid reboot loop) */
|
|
static int stuck_locked;
|
|
|
|
static inline int calculate_flash_timeout(void)
|
|
{
|
|
return (FLASH_TIMEOUT_US *
|
|
(clock_get_freq() / SECOND) / CYCLE_PER_FLASH_LOOP);
|
|
}
|
|
|
|
static int unlock(int bank)
|
|
{
|
|
/* unlock CR only if needed */
|
|
if (STM32_FLASH_CR(bank) & FLASH_CR_LOCK) {
|
|
/*
|
|
* We may have already locked the flash module and get a bus
|
|
* fault in the attempt to unlock. Need to disable bus fault
|
|
* handler now.
|
|
*/
|
|
ignore_bus_fault(1);
|
|
|
|
STM32_FLASH_KEYR(bank) = FLASH_KEYR_KEY1;
|
|
STM32_FLASH_KEYR(bank) = FLASH_KEYR_KEY2;
|
|
asm volatile("dsb; isb");
|
|
ignore_bus_fault(0);
|
|
}
|
|
|
|
return (STM32_FLASH_CR(bank) & FLASH_CR_LOCK) ? EC_ERROR_UNKNOWN
|
|
: EC_SUCCESS;
|
|
}
|
|
|
|
static void lock(int bank)
|
|
{
|
|
STM32_FLASH_CR(bank) |= FLASH_CR_LOCK;
|
|
}
|
|
|
|
static int unlock_optb(void)
|
|
{
|
|
if (option_disabled)
|
|
return EC_ERROR_ACCESS_DENIED;
|
|
|
|
if (unlock(0))
|
|
return EC_ERROR_UNKNOWN;
|
|
|
|
/*
|
|
* Always use bank 0 flash controller as there is only one option bytes
|
|
* set for both banks.
|
|
*/
|
|
if (STM32_FLASH_OPTCR(0) & FLASH_OPTCR_OPTLOCK) {
|
|
/*
|
|
* We may have already locked the flash module and get a bus
|
|
* fault in the attempt to unlock. Need to disable bus fault
|
|
* handler now.
|
|
*/
|
|
ignore_bus_fault(1);
|
|
|
|
STM32_FLASH_OPTKEYR(0) = FLASH_OPTKEYR_KEY1;
|
|
STM32_FLASH_OPTKEYR(0) = FLASH_OPTKEYR_KEY2;
|
|
asm volatile("dsb; isb");
|
|
ignore_bus_fault(0);
|
|
}
|
|
|
|
return STM32_FLASH_OPTCR(0) & FLASH_OPTCR_OPTLOCK ? EC_ERROR_UNKNOWN
|
|
: EC_SUCCESS;
|
|
}
|
|
|
|
static int commit_optb(void)
|
|
{
|
|
/* might use this before timer_init, cannot use get_time/usleep */
|
|
int timeout = (FLASH_OPT_PRG_TIMEOUT_US *
|
|
(clock_get_freq() / SECOND) / CYCLE_PER_FLASH_LOOP);
|
|
|
|
STM32_FLASH_OPTCR(0) |= FLASH_OPTCR_OPTSTART;
|
|
|
|
while (STM32_FLASH_OPTSR_CUR(0) & FLASH_OPTSR_BUSY && timeout-- > 0)
|
|
;
|
|
|
|
STM32_FLASH_OPTCR(0) |= FLASH_OPTCR_OPTLOCK;
|
|
lock(0);
|
|
|
|
return (timeout > 0) ? EC_SUCCESS : EC_ERROR_TIMEOUT;
|
|
}
|
|
|
|
static void protect_blocks(uint32_t blocks)
|
|
{
|
|
if (unlock_optb())
|
|
return;
|
|
STM32_FLASH_WPSN_PRG(0) &= ~(blocks & BLOCKS_HWBANK_MASK);
|
|
STM32_FLASH_WPSN_PRG(1) &= ~((blocks >> BLOCKS_PER_HWBANK)
|
|
& BLOCKS_HWBANK_MASK);
|
|
commit_optb();
|
|
}
|
|
|
|
/*
|
|
* If RDP as PSTATE option is defined, use that as 'Write Protect enabled' flag:
|
|
* it makes no sense to be able to unlock RO, as that'd allow flashing
|
|
* arbitrary RO that could read back all flash.
|
|
*
|
|
* crbug.com/888109: Do not copy this code over to other STM32 chips without
|
|
* understanding the full implications.
|
|
*
|
|
* If RDP is not defined, use the option bytes RSS1 bit.
|
|
* TODO(crbug.com/888104): Validate that using RSS1 for this purpose is safe.
|
|
*/
|
|
#ifndef CONFIG_FLASH_READOUT_PROTECTION_AS_PSTATE
|
|
#error "crbug.com/888104: Using RSS1 for write protect PSTATE may not be safe."
|
|
#endif
|
|
static int is_wp_enabled(void)
|
|
{
|
|
#ifdef CONFIG_FLASH_READOUT_PROTECTION_AS_PSTATE
|
|
return (STM32_FLASH_OPTSR_CUR(0) & FLASH_OPTSR_RDP_MASK)
|
|
!= FLASH_OPTSR_RDP_LEVEL_0;
|
|
#else
|
|
return !!(STM32_FLASH_OPTSR_CUR(0) & FLASH_OPTSR_RSS1);
|
|
#endif
|
|
}
|
|
|
|
static int set_wp(int enabled)
|
|
{
|
|
int rv;
|
|
|
|
rv = unlock_optb();
|
|
if (rv)
|
|
return rv;
|
|
|
|
#ifdef CONFIG_FLASH_READOUT_PROTECTION_AS_PSTATE
|
|
if (enabled) {
|
|
/* Enable RDP level 1. */
|
|
STM32_FLASH_OPTSR_PRG(0) =
|
|
(STM32_FLASH_OPTSR_PRG(0) & ~FLASH_OPTSR_RDP_MASK) |
|
|
FLASH_OPTSR_RDP_LEVEL_1;
|
|
}
|
|
#else
|
|
if (enabled)
|
|
STM32_FLASH_OPTSR_PRG(0) |= FLASH_OPTSR_RSS1;
|
|
else
|
|
STM32_FLASH_OPTSR_PRG(0) &= ~FLASH_OPTSR_RSS1;
|
|
#endif
|
|
|
|
return commit_optb();
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Physical layer APIs */
|
|
|
|
int flash_physical_write(int offset, int size, const char *data)
|
|
{
|
|
int res = EC_SUCCESS;
|
|
int bank = offset / HWBANK_SIZE;
|
|
uint32_t *address = (void *)(CONFIG_PROGRAM_MEMORY_BASE + offset);
|
|
int timeout = calculate_flash_timeout();
|
|
int i;
|
|
int unaligned = (uint32_t)data & (CONFIG_FLASH_WRITE_SIZE - 1);
|
|
uint32_t *data32 = (void *)data;
|
|
|
|
if (access_disabled)
|
|
return EC_ERROR_ACCESS_DENIED;
|
|
|
|
/* work on a single hardware bank at a time */
|
|
if ((offset + size - 1) / HWBANK_SIZE != bank)
|
|
return EC_ERROR_INVAL;
|
|
|
|
if (unlock(bank) != EC_SUCCESS)
|
|
return EC_ERROR_UNKNOWN;
|
|
|
|
/* Clear previous error status */
|
|
STM32_FLASH_CCR(bank) = FLASH_CCR_ERR_MASK;
|
|
|
|
/* select write parallelism */
|
|
STM32_FLASH_CR(bank) = (STM32_FLASH_CR(bank) & ~FLASH_CR_PSIZE_MASK)
|
|
| DEFAULT_PSIZE;
|
|
|
|
/* set PG bit */
|
|
STM32_FLASH_CR(bank) |= FLASH_CR_PG;
|
|
|
|
for (; size > 0; size -= CONFIG_FLASH_WRITE_SIZE) {
|
|
/*
|
|
* Reload the watchdog timer to avoid watchdog reset when doing
|
|
* long writing.
|
|
*/
|
|
watchdog_reload();
|
|
|
|
/* write a 256-bit flash word */
|
|
if (unaligned) {
|
|
for (i = 0; i < CONFIG_FLASH_WRITE_SIZE / 4; i++,
|
|
data += 4)
|
|
*address++ = (uint32_t)data[0] | (data[1] << 8)
|
|
| (data[2] << 16) | (data[3] << 24);
|
|
} else {
|
|
for (i = 0; i < CONFIG_FLASH_WRITE_SIZE / 4; i++)
|
|
*address++ = *data32++;
|
|
}
|
|
|
|
/* Wait for writes to complete */
|
|
for (i = 0; (STM32_FLASH_SR(bank) &
|
|
(FLASH_SR_WBNE | FLASH_SR_QW)) && (i < timeout); i++)
|
|
;
|
|
|
|
if (STM32_FLASH_SR(bank) & (FLASH_SR_WBNE | FLASH_SR_QW)) {
|
|
res = EC_ERROR_TIMEOUT;
|
|
goto exit_wr;
|
|
}
|
|
|
|
if (STM32_FLASH_SR(bank) & FLASH_CCR_ERR_MASK) {
|
|
res = EC_ERROR_UNKNOWN;
|
|
goto exit_wr;
|
|
}
|
|
}
|
|
|
|
exit_wr:
|
|
/* Disable PG bit */
|
|
STM32_FLASH_CR(bank) &= ~FLASH_CR_PG;
|
|
|
|
lock(bank);
|
|
|
|
#ifdef CONFIG_ARMV7M_CACHE
|
|
/* Invalidate D-cache, to make sure we do not read back stale data. */
|
|
cpu_clean_invalidate_dcache();
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
int flash_physical_erase(int offset, int size)
|
|
{
|
|
int res = EC_SUCCESS;
|
|
int bank = offset / HWBANK_SIZE;
|
|
int last = (offset + size) / CONFIG_FLASH_ERASE_SIZE;
|
|
int sect;
|
|
|
|
if (access_disabled)
|
|
return EC_ERROR_ACCESS_DENIED;
|
|
|
|
/* work on a single hardware bank at a time */
|
|
if ((offset + size - 1) / HWBANK_SIZE != bank)
|
|
return EC_ERROR_INVAL;
|
|
|
|
if (unlock(bank) != EC_SUCCESS)
|
|
return EC_ERROR_UNKNOWN;
|
|
|
|
/* Clear previous error status */
|
|
STM32_FLASH_CCR(bank) = FLASH_CCR_ERR_MASK;
|
|
|
|
/* select erase parallelism */
|
|
STM32_FLASH_CR(bank) = (STM32_FLASH_CR(bank) & ~FLASH_CR_PSIZE_MASK)
|
|
| DEFAULT_PSIZE;
|
|
|
|
for (sect = offset / CONFIG_FLASH_ERASE_SIZE; sect < last; sect++) {
|
|
timestamp_t deadline;
|
|
|
|
/* select page to erase and PER bit */
|
|
STM32_FLASH_CR(bank) = (STM32_FLASH_CR(bank)
|
|
& ~FLASH_CR_SNB_MASK)
|
|
| FLASH_CR_SER | FLASH_CR_SNB(sect);
|
|
|
|
/* set STRT bit : start erase */
|
|
STM32_FLASH_CR(bank) |= FLASH_CR_STRT;
|
|
|
|
/*
|
|
* Reload the watchdog timer to avoid watchdog reset during a
|
|
* long erase operation.
|
|
*/
|
|
watchdog_reload();
|
|
|
|
deadline.val = get_time().val + FLASH_ERASE_TIMEOUT_US;
|
|
/* Wait for erase to complete */
|
|
while ((STM32_FLASH_SR(bank) & FLASH_SR_BUSY) &&
|
|
(get_time().val < deadline.val)) {
|
|
usleep(5000);
|
|
}
|
|
if (STM32_FLASH_SR(bank) & FLASH_SR_BUSY) {
|
|
res = EC_ERROR_TIMEOUT;
|
|
goto exit_er;
|
|
}
|
|
|
|
/*
|
|
* Check for error conditions - erase failed, voltage error,
|
|
* protection error
|
|
*/
|
|
if (STM32_FLASH_SR(bank) & FLASH_CCR_ERR_MASK) {
|
|
res = EC_ERROR_UNKNOWN;
|
|
goto exit_er;
|
|
}
|
|
}
|
|
|
|
exit_er:
|
|
/* reset SER bit */
|
|
STM32_FLASH_CR(bank) &= ~(FLASH_CR_SER | FLASH_CR_SNB_MASK);
|
|
|
|
lock(bank);
|
|
|
|
#ifdef CONFIG_ARMV7M_CACHE
|
|
/* Invalidate D-cache, to make sure we do not read back stale data. */
|
|
cpu_clean_invalidate_dcache();
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
int flash_physical_get_protect(int block)
|
|
{
|
|
int bank = block / BLOCKS_PER_HWBANK;
|
|
int index = block % BLOCKS_PER_HWBANK;
|
|
|
|
return !(STM32_FLASH_WPSN_CUR(bank) & BIT(index));
|
|
}
|
|
|
|
/*
|
|
* Note: This does not need to update _NOW flags, as flash_get_protect
|
|
* in common code already does so.
|
|
*/
|
|
uint32_t flash_physical_get_protect_flags(void)
|
|
{
|
|
uint32_t flags = 0;
|
|
|
|
if (access_disabled)
|
|
flags |= EC_FLASH_PROTECT_ALL_NOW;
|
|
|
|
if (is_wp_enabled())
|
|
flags |= EC_FLASH_PROTECT_RO_AT_BOOT;
|
|
|
|
/* Check if blocks were stuck locked at pre-init */
|
|
if (stuck_locked)
|
|
flags |= EC_FLASH_PROTECT_ERROR_STUCK;
|
|
|
|
return flags;
|
|
}
|
|
|
|
#define WP_RANGE(start, count) (((1 << (count)) - 1) << (start))
|
|
#define RO_WP_RANGE WP_RANGE(WP_BANK_OFFSET, WP_BANK_COUNT)
|
|
|
|
int flash_physical_protect_now(int all)
|
|
{
|
|
protect_blocks(RO_WP_RANGE);
|
|
|
|
/*
|
|
* Lock the option bytes or the full access by writing a wrong
|
|
* key to FLASH_*KEYR. This triggers a bus fault, so we need to
|
|
* disable bus fault handler while doing this.
|
|
*
|
|
* This incorrect key fault causes the flash to become
|
|
* permanently locked until reset, a correct keyring write
|
|
* will not unlock it.
|
|
*/
|
|
ignore_bus_fault(1);
|
|
|
|
if (all) {
|
|
/* cannot do any write/erase access until next reboot */
|
|
STM32_FLASH_KEYR(0) = 0xffffffff;
|
|
STM32_FLASH_KEYR(1) = 0xffffffff;
|
|
access_disabled = 1;
|
|
}
|
|
/* cannot modify the WP bits in the option bytes until reboot */
|
|
STM32_FLASH_OPTKEYR(0) = 0xffffffff;
|
|
option_disabled = 1;
|
|
asm volatile("dsb; isb");
|
|
ignore_bus_fault(0);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
int flash_physical_protect_at_boot(uint32_t new_flags)
|
|
{
|
|
int new_wp_enable = !!(new_flags & EC_FLASH_PROTECT_RO_AT_BOOT);
|
|
|
|
if (is_wp_enabled() != new_wp_enable)
|
|
return set_wp(new_wp_enable);
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
uint32_t flash_physical_get_valid_flags(void)
|
|
{
|
|
return EC_FLASH_PROTECT_RO_AT_BOOT |
|
|
EC_FLASH_PROTECT_RO_NOW |
|
|
EC_FLASH_PROTECT_ALL_NOW;
|
|
}
|
|
|
|
uint32_t flash_physical_get_writable_flags(uint32_t cur_flags)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
/* If RO protection isn't enabled, its at-boot state can be changed. */
|
|
if (!(cur_flags & EC_FLASH_PROTECT_RO_NOW))
|
|
ret |= EC_FLASH_PROTECT_RO_AT_BOOT;
|
|
|
|
/*
|
|
* If entire flash isn't protected at this boot, it can be enabled if
|
|
* the WP GPIO is asserted.
|
|
*/
|
|
if (!(cur_flags & EC_FLASH_PROTECT_ALL_NOW) &&
|
|
(cur_flags & EC_FLASH_PROTECT_GPIO_ASSERTED))
|
|
ret |= EC_FLASH_PROTECT_ALL_NOW;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int flash_pre_init(void)
|
|
{
|
|
uint32_t reset_flags = system_get_reset_flags();
|
|
uint32_t prot_flags = flash_get_protect();
|
|
uint32_t unwanted_prot_flags = EC_FLASH_PROTECT_ALL_NOW |
|
|
EC_FLASH_PROTECT_ERROR_INCONSISTENT;
|
|
|
|
/*
|
|
* If we have already jumped between images, an earlier image could
|
|
* have applied write protection. Nothing additional needs to be done.
|
|
*/
|
|
if (reset_flags & EC_RESET_FLAG_SYSJUMP)
|
|
return EC_SUCCESS;
|
|
|
|
if (prot_flags & EC_FLASH_PROTECT_GPIO_ASSERTED) {
|
|
/*
|
|
* Write protect is asserted. If we want RO flash protected,
|
|
* protect it now.
|
|
*/
|
|
if ((prot_flags & EC_FLASH_PROTECT_RO_AT_BOOT) &&
|
|
!(prot_flags & EC_FLASH_PROTECT_RO_NOW)) {
|
|
int rv;
|
|
|
|
rv = flash_set_protect(EC_FLASH_PROTECT_RO_NOW,
|
|
EC_FLASH_PROTECT_RO_NOW);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Re-read flags */
|
|
prot_flags = flash_get_protect();
|
|
}
|
|
} else {
|
|
/* Don't want RO flash protected */
|
|
unwanted_prot_flags |= EC_FLASH_PROTECT_RO_NOW;
|
|
}
|
|
|
|
/* If there are no unwanted flags, done */
|
|
if (!(prot_flags & unwanted_prot_flags))
|
|
return EC_SUCCESS;
|
|
|
|
/*
|
|
* If the last reboot was a power-on reset, it should have cleared
|
|
* write-protect. If it didn't, then the flash write protect registers
|
|
* have been permanently committed and we can't fix that.
|
|
*/
|
|
if (reset_flags & EC_RESET_FLAG_POWER_ON) {
|
|
stuck_locked = 1;
|
|
return EC_ERROR_ACCESS_DENIED;
|
|
}
|
|
|
|
/* Otherwise, do a hard boot to clear the flash protection registers */
|
|
system_reset(SYSTEM_RESET_HARD | SYSTEM_RESET_PRESERVE_FLAGS);
|
|
|
|
/* That doesn't return, so if we're still here that's an error */
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|