coreboot-libre-fam15h-rdimm/3rdparty/chromeec/driver/accelgyro_lsm6ds0.c

436 lines
11 KiB
C

/* Copyright 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/**
* LSM6DS0 accelerometer and gyro module for Chrome EC
* 3D digital accelerometer & 3D digital gyroscope
*/
#include "accelgyro.h"
#include "common.h"
#include "console.h"
#include "driver/accelgyro_lsm6ds0.h"
#include "hooks.h"
#include "i2c.h"
#include "math_util.h"
#include "task.h"
#include "util.h"
#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
#define CPRINTS(format, args...) cprints(CC_ACCEL, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
/*
* Struct for pairing an engineering value with the register value for a
* parameter.
*/
struct accel_param_pair {
int val; /* Value in engineering units. */
int reg_val; /* Corresponding register value. */
};
/* List of range values in +/-G's and their associated register values. */
static const struct accel_param_pair g_ranges[] = {
{2, LSM6DS0_GSEL_2G},
{4, LSM6DS0_GSEL_4G},
{8, LSM6DS0_GSEL_8G}
};
/*
* List of angular rate range values in +/-dps's
* and their associated register values.
*/
const struct accel_param_pair dps_ranges[] = {
{245, LSM6DS0_DPS_SEL_245},
{500, LSM6DS0_DPS_SEL_500},
{1000, LSM6DS0_DPS_SEL_1000},
{2000, LSM6DS0_DPS_SEL_2000}
};
static inline const struct accel_param_pair *get_range_table(
enum motionsensor_type type, int *psize)
{
if (MOTIONSENSE_TYPE_ACCEL == type) {
if (psize)
*psize = ARRAY_SIZE(g_ranges);
return g_ranges;
} else {
if (psize)
*psize = ARRAY_SIZE(dps_ranges);
return dps_ranges;
}
}
/* List of ODR (gyro off) values in mHz and their associated register values.*/
const struct accel_param_pair gyro_on_odr[] = {
{0, LSM6DS0_ODR_PD},
{15000, LSM6DS0_ODR_15HZ},
{59000, LSM6DS0_ODR_59HZ},
{119000, LSM6DS0_ODR_119HZ},
{238000, LSM6DS0_ODR_238HZ},
{476000, LSM6DS0_ODR_476HZ},
{952000, LSM6DS0_ODR_952HZ}
};
/* List of ODR (gyro on) values in mHz and their associated register values. */
const struct accel_param_pair gyro_off_odr[] = {
{0, LSM6DS0_ODR_PD},
{10000, LSM6DS0_ODR_10HZ},
{50000, LSM6DS0_ODR_50HZ},
{119000, LSM6DS0_ODR_119HZ},
{238000, LSM6DS0_ODR_238HZ},
{476000, LSM6DS0_ODR_476HZ},
{952000, LSM6DS0_ODR_952HZ}
};
static inline const struct accel_param_pair *get_odr_table(
enum motionsensor_type type, int *psize)
{
if (MOTIONSENSE_TYPE_ACCEL == type) {
if (psize)
*psize = ARRAY_SIZE(gyro_off_odr);
return gyro_off_odr;
} else {
if (psize)
*psize = ARRAY_SIZE(gyro_on_odr);
return gyro_on_odr;
}
}
static inline int get_ctrl_reg(enum motionsensor_type type)
{
return (MOTIONSENSE_TYPE_ACCEL == type) ?
LSM6DS0_CTRL_REG6_XL : LSM6DS0_CTRL_REG1_G;
}
static inline int get_xyz_reg(enum motionsensor_type type)
{
return (MOTIONSENSE_TYPE_ACCEL == type) ?
LSM6DS0_OUT_X_L_XL : LSM6DS0_OUT_X_L_G;
}
/**
* @return reg value that matches the given engineering value passed in.
* The round_up flag is used to specify whether to round up or down.
* Note, this function always returns a valid reg value. If the request is
* outside the range of values, it returns the closest valid reg value.
*/
static int get_reg_val(const int eng_val, const int round_up,
const struct accel_param_pair *pairs, const int size)
{
int i;
for (i = 0; i < size - 1; i++) {
if (eng_val <= pairs[i].val)
break;
if (eng_val < pairs[i+1].val) {
if (round_up)
i += 1;
break;
}
}
return pairs[i].reg_val;
}
/**
* @return engineering value that matches the given reg val
*/
static int get_engineering_val(const int reg_val,
const struct accel_param_pair *pairs, const int size)
{
int i;
for (i = 0; i < size; i++) {
if (reg_val == pairs[i].reg_val)
break;
}
return pairs[i].val;
}
/**
* Read register from accelerometer.
*/
static inline int raw_read8(const int port, const uint16_t i2c_addr_flags,
const int reg, int *data_ptr)
{
return i2c_read8(port, i2c_addr_flags, reg, data_ptr);
}
/**
* Write register from accelerometer.
*/
static inline int raw_write8(const int port, const uint16_t i2c_addr_flags,
const int reg, int data)
{
return i2c_write8(port, i2c_addr_flags, reg, data);
}
static int set_range(const struct motion_sensor_t *s,
int range,
int rnd)
{
int ret, ctrl_val, range_tbl_size;
uint8_t ctrl_reg, reg_val;
const struct accel_param_pair *ranges;
struct lsm6ds0_data *data = s->drv_data;
ctrl_reg = get_ctrl_reg(s->type);
ranges = get_range_table(s->type, &range_tbl_size);
reg_val = get_reg_val(range, rnd, ranges, range_tbl_size);
/*
* Lock accel resource to prevent another task from attempting
* to write accel parameters until we are done.
*/
mutex_lock(s->mutex);
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
ctrl_reg, &ctrl_val);
if (ret != EC_SUCCESS)
goto accel_cleanup;
ctrl_val = (ctrl_val & ~LSM6DS0_RANGE_MASK) | reg_val;
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
ctrl_reg, ctrl_val);
/* Now that we have set the range, update the driver's value. */
if (ret == EC_SUCCESS)
data->base.range = get_engineering_val(reg_val, ranges,
range_tbl_size);
accel_cleanup:
mutex_unlock(s->mutex);
return ret;
}
static int get_range(const struct motion_sensor_t *s)
{
struct lsm6ds0_data *data = s->drv_data;
return data->base.range;
}
static int get_resolution(const struct motion_sensor_t *s)
{
return LSM6DS0_RESOLUTION;
}
static int set_data_rate(const struct motion_sensor_t *s,
int rate,
int rnd)
{
int ret, val, odr_tbl_size;
uint8_t ctrl_reg, reg_val;
const struct accel_param_pair *data_rates;
struct lsm6ds0_data *data = s->drv_data;
ctrl_reg = get_ctrl_reg(s->type);
data_rates = get_odr_table(s->type, &odr_tbl_size);
reg_val = get_reg_val(rate, rnd, data_rates, odr_tbl_size);
/*
* Lock accel resource to prevent another task from attempting
* to write accel parameters until we are done.
*/
mutex_lock(s->mutex);
ret = raw_read8(s->port, s->i2c_spi_addr_flags, ctrl_reg, &val);
if (ret != EC_SUCCESS)
goto accel_cleanup;
val = (val & ~LSM6DS0_ODR_MASK) | reg_val;
ret = raw_write8(s->port, s->i2c_spi_addr_flags, ctrl_reg, val);
/* Now that we have set the odr, update the driver's value. */
if (ret == EC_SUCCESS)
data->base.odr = get_engineering_val(reg_val, data_rates,
odr_tbl_size);
/* CTRL_REG3_G 12h
* [7] low-power mode = 0;
* [6] high pass filter disabled;
* [5:4] 0 keep const 0
* [3:0] HPCF_G
* Table 48 Gyroscope high-pass filter cutoff frequency
*/
if (MOTIONSENSE_TYPE_GYRO == s->type) {
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_CTRL_REG3_G, &val);
if (ret != EC_SUCCESS)
goto accel_cleanup;
val &= ~(0x3 << 4); /* clear bit [5:4] */
val = (rate > 119000) ?
(val | (1<<7)) /* set high-power mode */ :
(val & ~(1<<7)); /* set low-power mode */
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_CTRL_REG3_G, val);
}
accel_cleanup:
mutex_unlock(s->mutex);
return ret;
}
static int get_data_rate(const struct motion_sensor_t *s)
{
struct lsm6ds0_data *data = s->drv_data;
return data->base.odr;
}
static int set_offset(const struct motion_sensor_t *s,
const int16_t *offset,
int16_t temp)
{
/* temperature is ignored */
struct lsm6ds0_data *data = s->drv_data;
data->offset[X] = offset[X];
data->offset[Y] = offset[Y];
data->offset[Z] = offset[Z];
return EC_SUCCESS;
}
static int get_offset(const struct motion_sensor_t *s,
int16_t *offset,
int16_t *temp)
{
struct lsm6ds0_data *data = s->drv_data;
offset[X] = data->offset[X];
offset[Y] = data->offset[Y];
offset[Z] = data->offset[Z];
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
return EC_SUCCESS;
}
static int is_data_ready(const struct motion_sensor_t *s, int *ready)
{
int ret, tmp;
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_STATUS_REG, &tmp);
if (ret != EC_SUCCESS) {
CPRINTS("%s type:0x%X RS Error", s->name, s->type);
return ret;
}
if (MOTIONSENSE_TYPE_ACCEL == s->type)
*ready = (LSM6DS0_STS_XLDA_UP == (tmp & LSM6DS0_STS_XLDA_MASK));
else
*ready = (LSM6DS0_STS_GDA_UP == (tmp & LSM6DS0_STS_GDA_MASK));
return EC_SUCCESS;
}
static int read(const struct motion_sensor_t *s, intv3_t v)
{
uint8_t raw[6];
uint8_t xyz_reg;
int ret, range, i, tmp = 0;
struct lsm6ds0_data *data = s->drv_data;
ret = is_data_ready(s, &tmp);
if (ret != EC_SUCCESS)
return ret;
/*
* If sensor data is not ready, return the previous read data.
* Note: return success so that motion senor task can read again
* to get the latest updated sensor data quickly.
*/
if (!tmp) {
if (v != s->raw_xyz)
memcpy(v, s->raw_xyz, sizeof(s->raw_xyz));
return EC_SUCCESS;
}
xyz_reg = get_xyz_reg(s->type);
/* Read 6 bytes starting at xyz_reg */
ret = i2c_read_block(s->port, s->i2c_spi_addr_flags,
xyz_reg, raw, 6);
if (ret != EC_SUCCESS) {
CPRINTS("%s type:0x%X RD XYZ Error",
s->name, s->type);
return ret;
}
for (i = X; i <= Z; i++)
v[i] = (int16_t)((raw[i * 2 + 1] << 8) | raw[i * 2]);
rotate(v, *s->rot_standard_ref, v);
/* apply offset in the device coordinates */
range = get_range(s);
for (i = X; i <= Z; i++)
v[i] += (data->offset[i] << 5) / range;
return EC_SUCCESS;
}
static int init(const struct motion_sensor_t *s)
{
int ret = 0, tmp;
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_WHO_AM_I_REG, &tmp);
if (ret)
return EC_ERROR_UNKNOWN;
if (tmp != LSM6DS0_WHO_AM_I)
return EC_ERROR_ACCESS_DENIED;
/*
* This sensor can be powered through an EC reboot, so the state of
* the sensor is unknown here. Initiate software reset to restore
* sensor to default.
* [6] BDU Enable Block Data Update.
* [0] SW_RESET software reset
*
* lsm6ds0 supports both accel & gyro features
* Board will see two virtual sensor devices: accel & gyro.
* Requirement: Accel need be init before gyro.
* SW_RESET is down for accel only!
*/
if (MOTIONSENSE_TYPE_ACCEL == s->type) {
mutex_lock(s->mutex);
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_CTRL_REG8, &tmp);
if (ret) {
mutex_unlock(s->mutex);
return EC_ERROR_UNKNOWN;
}
tmp |= (1 | LSM6DS0_BDU_ENABLE);
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_CTRL_REG8, tmp);
mutex_unlock(s->mutex);
if (ret)
return ret;
/* Power Down Gyro */
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
LSM6DS0_CTRL_REG1_G, 0x0);
if (ret)
return ret;
}
return sensor_init_done(s);
}
const struct accelgyro_drv lsm6ds0_drv = {
.init = init,
.read = read,
.set_range = set_range,
.get_range = get_range,
.get_resolution = get_resolution,
.set_data_rate = set_data_rate,
.get_data_rate = get_data_rate,
.set_offset = set_offset,
.get_offset = get_offset,
.perform_calib = NULL,
};