436 lines
11 KiB
C
436 lines
11 KiB
C
/* Copyright 2014 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/**
|
|
* LSM6DS0 accelerometer and gyro module for Chrome EC
|
|
* 3D digital accelerometer & 3D digital gyroscope
|
|
*/
|
|
|
|
#include "accelgyro.h"
|
|
#include "common.h"
|
|
#include "console.h"
|
|
#include "driver/accelgyro_lsm6ds0.h"
|
|
#include "hooks.h"
|
|
#include "i2c.h"
|
|
#include "math_util.h"
|
|
#include "task.h"
|
|
#include "util.h"
|
|
|
|
#define CPUTS(outstr) cputs(CC_ACCEL, outstr)
|
|
#define CPRINTS(format, args...) cprints(CC_ACCEL, format, ## args)
|
|
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
|
|
|
|
/*
|
|
* Struct for pairing an engineering value with the register value for a
|
|
* parameter.
|
|
*/
|
|
struct accel_param_pair {
|
|
int val; /* Value in engineering units. */
|
|
int reg_val; /* Corresponding register value. */
|
|
};
|
|
|
|
/* List of range values in +/-G's and their associated register values. */
|
|
static const struct accel_param_pair g_ranges[] = {
|
|
{2, LSM6DS0_GSEL_2G},
|
|
{4, LSM6DS0_GSEL_4G},
|
|
{8, LSM6DS0_GSEL_8G}
|
|
};
|
|
|
|
/*
|
|
* List of angular rate range values in +/-dps's
|
|
* and their associated register values.
|
|
*/
|
|
const struct accel_param_pair dps_ranges[] = {
|
|
{245, LSM6DS0_DPS_SEL_245},
|
|
{500, LSM6DS0_DPS_SEL_500},
|
|
{1000, LSM6DS0_DPS_SEL_1000},
|
|
{2000, LSM6DS0_DPS_SEL_2000}
|
|
};
|
|
|
|
static inline const struct accel_param_pair *get_range_table(
|
|
enum motionsensor_type type, int *psize)
|
|
{
|
|
if (MOTIONSENSE_TYPE_ACCEL == type) {
|
|
if (psize)
|
|
*psize = ARRAY_SIZE(g_ranges);
|
|
return g_ranges;
|
|
} else {
|
|
if (psize)
|
|
*psize = ARRAY_SIZE(dps_ranges);
|
|
return dps_ranges;
|
|
}
|
|
}
|
|
|
|
/* List of ODR (gyro off) values in mHz and their associated register values.*/
|
|
const struct accel_param_pair gyro_on_odr[] = {
|
|
{0, LSM6DS0_ODR_PD},
|
|
{15000, LSM6DS0_ODR_15HZ},
|
|
{59000, LSM6DS0_ODR_59HZ},
|
|
{119000, LSM6DS0_ODR_119HZ},
|
|
{238000, LSM6DS0_ODR_238HZ},
|
|
{476000, LSM6DS0_ODR_476HZ},
|
|
{952000, LSM6DS0_ODR_952HZ}
|
|
};
|
|
|
|
/* List of ODR (gyro on) values in mHz and their associated register values. */
|
|
const struct accel_param_pair gyro_off_odr[] = {
|
|
{0, LSM6DS0_ODR_PD},
|
|
{10000, LSM6DS0_ODR_10HZ},
|
|
{50000, LSM6DS0_ODR_50HZ},
|
|
{119000, LSM6DS0_ODR_119HZ},
|
|
{238000, LSM6DS0_ODR_238HZ},
|
|
{476000, LSM6DS0_ODR_476HZ},
|
|
{952000, LSM6DS0_ODR_952HZ}
|
|
};
|
|
|
|
static inline const struct accel_param_pair *get_odr_table(
|
|
enum motionsensor_type type, int *psize)
|
|
{
|
|
if (MOTIONSENSE_TYPE_ACCEL == type) {
|
|
if (psize)
|
|
*psize = ARRAY_SIZE(gyro_off_odr);
|
|
return gyro_off_odr;
|
|
} else {
|
|
if (psize)
|
|
*psize = ARRAY_SIZE(gyro_on_odr);
|
|
return gyro_on_odr;
|
|
}
|
|
}
|
|
|
|
static inline int get_ctrl_reg(enum motionsensor_type type)
|
|
{
|
|
return (MOTIONSENSE_TYPE_ACCEL == type) ?
|
|
LSM6DS0_CTRL_REG6_XL : LSM6DS0_CTRL_REG1_G;
|
|
}
|
|
|
|
static inline int get_xyz_reg(enum motionsensor_type type)
|
|
{
|
|
return (MOTIONSENSE_TYPE_ACCEL == type) ?
|
|
LSM6DS0_OUT_X_L_XL : LSM6DS0_OUT_X_L_G;
|
|
}
|
|
|
|
/**
|
|
* @return reg value that matches the given engineering value passed in.
|
|
* The round_up flag is used to specify whether to round up or down.
|
|
* Note, this function always returns a valid reg value. If the request is
|
|
* outside the range of values, it returns the closest valid reg value.
|
|
*/
|
|
static int get_reg_val(const int eng_val, const int round_up,
|
|
const struct accel_param_pair *pairs, const int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size - 1; i++) {
|
|
if (eng_val <= pairs[i].val)
|
|
break;
|
|
|
|
if (eng_val < pairs[i+1].val) {
|
|
if (round_up)
|
|
i += 1;
|
|
break;
|
|
}
|
|
}
|
|
return pairs[i].reg_val;
|
|
}
|
|
|
|
/**
|
|
* @return engineering value that matches the given reg val
|
|
*/
|
|
static int get_engineering_val(const int reg_val,
|
|
const struct accel_param_pair *pairs, const int size)
|
|
{
|
|
int i;
|
|
for (i = 0; i < size; i++) {
|
|
if (reg_val == pairs[i].reg_val)
|
|
break;
|
|
}
|
|
return pairs[i].val;
|
|
}
|
|
|
|
/**
|
|
* Read register from accelerometer.
|
|
*/
|
|
static inline int raw_read8(const int port, const uint16_t i2c_addr_flags,
|
|
const int reg, int *data_ptr)
|
|
{
|
|
return i2c_read8(port, i2c_addr_flags, reg, data_ptr);
|
|
}
|
|
|
|
/**
|
|
* Write register from accelerometer.
|
|
*/
|
|
static inline int raw_write8(const int port, const uint16_t i2c_addr_flags,
|
|
const int reg, int data)
|
|
{
|
|
return i2c_write8(port, i2c_addr_flags, reg, data);
|
|
}
|
|
|
|
static int set_range(const struct motion_sensor_t *s,
|
|
int range,
|
|
int rnd)
|
|
{
|
|
int ret, ctrl_val, range_tbl_size;
|
|
uint8_t ctrl_reg, reg_val;
|
|
const struct accel_param_pair *ranges;
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
|
|
ctrl_reg = get_ctrl_reg(s->type);
|
|
ranges = get_range_table(s->type, &range_tbl_size);
|
|
|
|
reg_val = get_reg_val(range, rnd, ranges, range_tbl_size);
|
|
|
|
/*
|
|
* Lock accel resource to prevent another task from attempting
|
|
* to write accel parameters until we are done.
|
|
*/
|
|
mutex_lock(s->mutex);
|
|
|
|
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
|
|
ctrl_reg, &ctrl_val);
|
|
if (ret != EC_SUCCESS)
|
|
goto accel_cleanup;
|
|
|
|
ctrl_val = (ctrl_val & ~LSM6DS0_RANGE_MASK) | reg_val;
|
|
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
|
|
ctrl_reg, ctrl_val);
|
|
|
|
/* Now that we have set the range, update the driver's value. */
|
|
if (ret == EC_SUCCESS)
|
|
data->base.range = get_engineering_val(reg_val, ranges,
|
|
range_tbl_size);
|
|
|
|
accel_cleanup:
|
|
mutex_unlock(s->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int get_range(const struct motion_sensor_t *s)
|
|
{
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
|
|
return data->base.range;
|
|
}
|
|
|
|
static int get_resolution(const struct motion_sensor_t *s)
|
|
{
|
|
return LSM6DS0_RESOLUTION;
|
|
}
|
|
|
|
static int set_data_rate(const struct motion_sensor_t *s,
|
|
int rate,
|
|
int rnd)
|
|
{
|
|
int ret, val, odr_tbl_size;
|
|
uint8_t ctrl_reg, reg_val;
|
|
const struct accel_param_pair *data_rates;
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
|
|
ctrl_reg = get_ctrl_reg(s->type);
|
|
data_rates = get_odr_table(s->type, &odr_tbl_size);
|
|
reg_val = get_reg_val(rate, rnd, data_rates, odr_tbl_size);
|
|
|
|
/*
|
|
* Lock accel resource to prevent another task from attempting
|
|
* to write accel parameters until we are done.
|
|
*/
|
|
mutex_lock(s->mutex);
|
|
|
|
ret = raw_read8(s->port, s->i2c_spi_addr_flags, ctrl_reg, &val);
|
|
if (ret != EC_SUCCESS)
|
|
goto accel_cleanup;
|
|
|
|
val = (val & ~LSM6DS0_ODR_MASK) | reg_val;
|
|
ret = raw_write8(s->port, s->i2c_spi_addr_flags, ctrl_reg, val);
|
|
|
|
/* Now that we have set the odr, update the driver's value. */
|
|
if (ret == EC_SUCCESS)
|
|
data->base.odr = get_engineering_val(reg_val, data_rates,
|
|
odr_tbl_size);
|
|
|
|
/* CTRL_REG3_G 12h
|
|
* [7] low-power mode = 0;
|
|
* [6] high pass filter disabled;
|
|
* [5:4] 0 keep const 0
|
|
* [3:0] HPCF_G
|
|
* Table 48 Gyroscope high-pass filter cutoff frequency
|
|
*/
|
|
if (MOTIONSENSE_TYPE_GYRO == s->type) {
|
|
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_CTRL_REG3_G, &val);
|
|
if (ret != EC_SUCCESS)
|
|
goto accel_cleanup;
|
|
val &= ~(0x3 << 4); /* clear bit [5:4] */
|
|
val = (rate > 119000) ?
|
|
(val | (1<<7)) /* set high-power mode */ :
|
|
(val & ~(1<<7)); /* set low-power mode */
|
|
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_CTRL_REG3_G, val);
|
|
}
|
|
|
|
accel_cleanup:
|
|
mutex_unlock(s->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int get_data_rate(const struct motion_sensor_t *s)
|
|
{
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
|
|
return data->base.odr;
|
|
}
|
|
|
|
static int set_offset(const struct motion_sensor_t *s,
|
|
const int16_t *offset,
|
|
int16_t temp)
|
|
{
|
|
/* temperature is ignored */
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
data->offset[X] = offset[X];
|
|
data->offset[Y] = offset[Y];
|
|
data->offset[Z] = offset[Z];
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
static int get_offset(const struct motion_sensor_t *s,
|
|
int16_t *offset,
|
|
int16_t *temp)
|
|
{
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
offset[X] = data->offset[X];
|
|
offset[Y] = data->offset[Y];
|
|
offset[Z] = data->offset[Z];
|
|
*temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP;
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
static int is_data_ready(const struct motion_sensor_t *s, int *ready)
|
|
{
|
|
int ret, tmp;
|
|
|
|
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_STATUS_REG, &tmp);
|
|
|
|
if (ret != EC_SUCCESS) {
|
|
CPRINTS("%s type:0x%X RS Error", s->name, s->type);
|
|
return ret;
|
|
}
|
|
|
|
if (MOTIONSENSE_TYPE_ACCEL == s->type)
|
|
*ready = (LSM6DS0_STS_XLDA_UP == (tmp & LSM6DS0_STS_XLDA_MASK));
|
|
else
|
|
*ready = (LSM6DS0_STS_GDA_UP == (tmp & LSM6DS0_STS_GDA_MASK));
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
static int read(const struct motion_sensor_t *s, intv3_t v)
|
|
{
|
|
uint8_t raw[6];
|
|
uint8_t xyz_reg;
|
|
int ret, range, i, tmp = 0;
|
|
struct lsm6ds0_data *data = s->drv_data;
|
|
|
|
ret = is_data_ready(s, &tmp);
|
|
if (ret != EC_SUCCESS)
|
|
return ret;
|
|
|
|
/*
|
|
* If sensor data is not ready, return the previous read data.
|
|
* Note: return success so that motion senor task can read again
|
|
* to get the latest updated sensor data quickly.
|
|
*/
|
|
if (!tmp) {
|
|
if (v != s->raw_xyz)
|
|
memcpy(v, s->raw_xyz, sizeof(s->raw_xyz));
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
xyz_reg = get_xyz_reg(s->type);
|
|
|
|
/* Read 6 bytes starting at xyz_reg */
|
|
ret = i2c_read_block(s->port, s->i2c_spi_addr_flags,
|
|
xyz_reg, raw, 6);
|
|
|
|
if (ret != EC_SUCCESS) {
|
|
CPRINTS("%s type:0x%X RD XYZ Error",
|
|
s->name, s->type);
|
|
return ret;
|
|
}
|
|
|
|
for (i = X; i <= Z; i++)
|
|
v[i] = (int16_t)((raw[i * 2 + 1] << 8) | raw[i * 2]);
|
|
|
|
rotate(v, *s->rot_standard_ref, v);
|
|
|
|
/* apply offset in the device coordinates */
|
|
range = get_range(s);
|
|
for (i = X; i <= Z; i++)
|
|
v[i] += (data->offset[i] << 5) / range;
|
|
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
static int init(const struct motion_sensor_t *s)
|
|
{
|
|
int ret = 0, tmp;
|
|
|
|
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_WHO_AM_I_REG, &tmp);
|
|
if (ret)
|
|
return EC_ERROR_UNKNOWN;
|
|
|
|
if (tmp != LSM6DS0_WHO_AM_I)
|
|
return EC_ERROR_ACCESS_DENIED;
|
|
|
|
/*
|
|
* This sensor can be powered through an EC reboot, so the state of
|
|
* the sensor is unknown here. Initiate software reset to restore
|
|
* sensor to default.
|
|
* [6] BDU Enable Block Data Update.
|
|
* [0] SW_RESET software reset
|
|
*
|
|
* lsm6ds0 supports both accel & gyro features
|
|
* Board will see two virtual sensor devices: accel & gyro.
|
|
* Requirement: Accel need be init before gyro.
|
|
* SW_RESET is down for accel only!
|
|
*/
|
|
if (MOTIONSENSE_TYPE_ACCEL == s->type) {
|
|
|
|
mutex_lock(s->mutex);
|
|
ret = raw_read8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_CTRL_REG8, &tmp);
|
|
if (ret) {
|
|
mutex_unlock(s->mutex);
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
tmp |= (1 | LSM6DS0_BDU_ENABLE);
|
|
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_CTRL_REG8, tmp);
|
|
mutex_unlock(s->mutex);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Power Down Gyro */
|
|
ret = raw_write8(s->port, s->i2c_spi_addr_flags,
|
|
LSM6DS0_CTRL_REG1_G, 0x0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return sensor_init_done(s);
|
|
}
|
|
|
|
const struct accelgyro_drv lsm6ds0_drv = {
|
|
.init = init,
|
|
.read = read,
|
|
.set_range = set_range,
|
|
.get_range = get_range,
|
|
.get_resolution = get_resolution,
|
|
.set_data_rate = set_data_rate,
|
|
.get_data_rate = get_data_rate,
|
|
.set_offset = set_offset,
|
|
.get_offset = get_offset,
|
|
.perform_calib = NULL,
|
|
};
|