coreboot-libre-fam15h-rdimm/3rdparty/chromeec/driver/tcpm/fusb302.c

1028 lines
25 KiB
C

/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Author: Gabe Noblesmith
*/
/* Type-C port manager for Fairchild's FUSB302 */
#include "console.h"
#include "fusb302.h"
#include "task.h"
#include "hooks.h"
#include "tcpm.h"
#include "timer.h"
#include "usb_charge.h"
#include "usb_pd.h"
#include "usb_pd_tcpc.h"
#include "util.h"
#if defined(CONFIG_USB_PD_DUAL_ROLE_AUTO_TOGGLE) || \
defined(CONFIG_USB_PD_TCPC_LOW_POWER) || \
defined(CONFIG_USB_PD_DISCHARGE_TCPC)
#error "Unsupported config options of fusb302 PD driver"
#endif
#define PACKET_IS_GOOD_CRC(head) (PD_HEADER_TYPE(head) == PD_CTRL_GOOD_CRC && \
PD_HEADER_CNT(head) == 0)
static struct fusb302_chip_state {
int cc_polarity;
int vconn_enabled;
/* 1 = pulling up (DFP) 0 = pulling down (UFP) */
int pulling_up;
int rx_enable;
uint8_t mdac_vnc;
uint8_t mdac_rd;
} state[CONFIG_USB_PD_PORT_COUNT];
/*
* Bring the FUSB302 out of reset after Hard Reset signaling. This will
* automatically flush both the Rx and Tx FIFOs.
*/
static void fusb302_pd_reset(int port)
{
tcpc_write(port, TCPC_REG_RESET, TCPC_REG_RESET_PD_RESET);
}
/*
* Flush our Rx FIFO. To prevent packet framing issues, this function should
* only be called when Rx is disabled.
*/
static void fusb302_flush_rx_fifo(int port)
{
/*
* other bits in the register _should_ be 0
* until the day we support other SOP* types...
* then we'll have to keep a shadow of what this register
* value should be so we don't clobber it here!
*/
tcpc_write(port, TCPC_REG_CONTROL1, TCPC_REG_CONTROL1_RX_FLUSH);
}
static void fusb302_flush_tx_fifo(int port)
{
int reg;
tcpc_read(port, TCPC_REG_CONTROL0, &reg);
reg |= TCPC_REG_CONTROL0_TX_FLUSH;
tcpc_write(port, TCPC_REG_CONTROL0, reg);
}
static void fusb302_auto_goodcrc_enable(int port, int enable)
{
int reg;
tcpc_read(port, TCPC_REG_SWITCHES1, &reg);
if (enable)
reg |= TCPC_REG_SWITCHES1_AUTO_GCRC;
else
reg &= ~TCPC_REG_SWITCHES1_AUTO_GCRC;
tcpc_write(port, TCPC_REG_SWITCHES1, reg);
}
/* Convert BC LVL values (in FUSB302) to Type-C CC Voltage Status */
static int convert_bc_lvl(int port, int bc_lvl)
{
/* assume OPEN unless one of the following conditions is true... */
int ret = TYPEC_CC_VOLT_OPEN;
if (state[port].pulling_up) {
if (bc_lvl == 0x00)
ret = TYPEC_CC_VOLT_RA;
else if (bc_lvl < 0x3)
ret = TYPEC_CC_VOLT_RD;
} else {
if (bc_lvl == 0x1)
ret = TYPEC_CC_VOLT_RP_DEF;
else if (bc_lvl == 0x2)
ret = TYPEC_CC_VOLT_RP_1_5;
else if (bc_lvl == 0x3)
ret = TYPEC_CC_VOLT_RP_3_0;
}
return ret;
}
static int measure_cc_pin_source(int port, int cc_measure)
{
int switches0_reg;
int reg;
int cc_lvl;
/* Read status register */
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
/* Save current value */
switches0_reg = reg;
/* Clear pull-up register settings and measure bits */
reg &= ~(TCPC_REG_SWITCHES0_MEAS_CC1 | TCPC_REG_SWITCHES0_MEAS_CC2);
/* Set desired pullup register bit */
if (cc_measure == TCPC_REG_SWITCHES0_MEAS_CC1)
reg |= TCPC_REG_SWITCHES0_CC1_PU_EN;
else
reg |= TCPC_REG_SWITCHES0_CC2_PU_EN;
/* Set CC measure bit */
reg |= cc_measure;
/* Set measurement switch */
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
/* Set MDAC for Open vs Rd/Ra comparison */
tcpc_write(port, TCPC_REG_MEASURE, state[port].mdac_vnc);
/* Wait on measurement */
usleep(250);
/* Read status register */
tcpc_read(port, TCPC_REG_STATUS0, &reg);
/* Assume open */
cc_lvl = TYPEC_CC_VOLT_OPEN;
/* CC level is below the 'no connect' threshold (vOpen) */
if ((reg & TCPC_REG_STATUS0_COMP) == 0) {
/* Set MDAC for Rd vs Ra comparison */
tcpc_write(port, TCPC_REG_MEASURE, state[port].mdac_rd);
/* Wait on measurement */
usleep(250);
/* Read status register */
tcpc_read(port, TCPC_REG_STATUS0, &reg);
cc_lvl = (reg & TCPC_REG_STATUS0_COMP) ? TYPEC_CC_VOLT_RD
: TYPEC_CC_VOLT_RA;
}
/* Restore SWITCHES0 register to its value prior */
tcpc_write(port, TCPC_REG_SWITCHES0, switches0_reg);
return cc_lvl;
}
/* Determine cc pin state for source when in manual detect mode */
static void detect_cc_pin_source_manual(int port,
enum tcpc_cc_voltage_status *cc1_lvl,
enum tcpc_cc_voltage_status *cc2_lvl)
{
int cc1_measure = TCPC_REG_SWITCHES0_MEAS_CC1;
int cc2_measure = TCPC_REG_SWITCHES0_MEAS_CC2;
if (state[port].vconn_enabled) {
/* If VCONN enabled, measure cc_pin that matches polarity */
if (state[port].cc_polarity)
*cc2_lvl = measure_cc_pin_source(port, cc2_measure);
else
*cc1_lvl = measure_cc_pin_source(port, cc1_measure);
} else {
/* If VCONN not enabled, measure both cc1 and cc2 */
*cc1_lvl = measure_cc_pin_source(port, cc1_measure);
*cc2_lvl = measure_cc_pin_source(port, cc2_measure);
}
}
/* Determine cc pin state for sink */
static void detect_cc_pin_sink(int port, enum tcpc_cc_voltage_status *cc1,
enum tcpc_cc_voltage_status *cc2)
{
int reg;
int orig_meas_cc1;
int orig_meas_cc2;
int bc_lvl_cc1;
int bc_lvl_cc2;
/*
* Measure CC1 first.
*/
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
/* save original state to be returned to later... */
if (reg & TCPC_REG_SWITCHES0_MEAS_CC1)
orig_meas_cc1 = 1;
else
orig_meas_cc1 = 0;
if (reg & TCPC_REG_SWITCHES0_MEAS_CC2)
orig_meas_cc2 = 1;
else
orig_meas_cc2 = 0;
/* Disable CC2 measurement switch, enable CC1 measurement switch */
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC2;
reg |= TCPC_REG_SWITCHES0_MEAS_CC1;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
/* CC1 is now being measured by FUSB302. */
/* Wait on measurement */
usleep(250);
tcpc_read(port, TCPC_REG_STATUS0, &bc_lvl_cc1);
/* mask away unwanted bits */
bc_lvl_cc1 &= (TCPC_REG_STATUS0_BC_LVL0 | TCPC_REG_STATUS0_BC_LVL1);
/*
* Measure CC2 next.
*/
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
/* Disable CC1 measurement switch, enable CC2 measurement switch */
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC1;
reg |= TCPC_REG_SWITCHES0_MEAS_CC2;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
/* CC2 is now being measured by FUSB302. */
/* Wait on measurement */
usleep(250);
tcpc_read(port, TCPC_REG_STATUS0, &bc_lvl_cc2);
/* mask away unwanted bits */
bc_lvl_cc2 &= (TCPC_REG_STATUS0_BC_LVL0 | TCPC_REG_STATUS0_BC_LVL1);
*cc1 = convert_bc_lvl(port, bc_lvl_cc1);
*cc2 = convert_bc_lvl(port, bc_lvl_cc2);
/* return MEAS_CC1/2 switches to original state */
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
if (orig_meas_cc1)
reg |= TCPC_REG_SWITCHES0_MEAS_CC1;
else
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC1;
if (orig_meas_cc2)
reg |= TCPC_REG_SWITCHES0_MEAS_CC2;
else
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC2;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
}
/* Parse header bytes for the size of packet */
static int get_num_bytes(uint16_t header)
{
int rv;
/* Grab the Number of Data Objects field.*/
rv = PD_HEADER_CNT(header);
/* Multiply by four to go from 32-bit words -> bytes */
rv *= 4;
/* Plus 2 for header */
rv += 2;
return rv;
}
static int fusb302_send_message(int port, uint16_t header, const uint32_t *data,
uint8_t *buf, int buf_pos)
{
int rv;
int reg;
int len;
len = get_num_bytes(header);
/*
* packsym tells the TXFIFO that the next X bytes are payload,
* and should not be interpreted as special tokens.
* The 5 LSBs represent X, the number of bytes.
*/
reg = FUSB302_TKN_PACKSYM;
reg |= (len & 0x1F);
buf[buf_pos++] = reg;
/* write in the header */
reg = header;
buf[buf_pos++] = reg & 0xFF;
reg >>= 8;
buf[buf_pos++] = reg & 0xFF;
/* header is done, subtract from length to make this for-loop simpler */
len -= 2;
/* write data objects, if present */
memcpy(&buf[buf_pos], data, len);
buf_pos += len;
/* put in the CRC */
buf[buf_pos++] = FUSB302_TKN_JAMCRC;
/* put in EOP */
buf[buf_pos++] = FUSB302_TKN_EOP;
/* Turn transmitter off after sending message */
buf[buf_pos++] = FUSB302_TKN_TXOFF;
/* Start transmission */
reg = FUSB302_TKN_TXON;
buf[buf_pos++] = FUSB302_TKN_TXON;
/* burst write for speed! */
rv = tcpc_xfer(port, buf, buf_pos, 0, 0);
return rv;
}
static int fusb302_tcpm_select_rp_value(int port, int rp)
{
int reg;
int rv;
uint8_t vnc, rd;
rv = tcpc_read(port, TCPC_REG_CONTROL0, &reg);
if (rv)
return rv;
/* Set the current source for Rp value */
reg &= ~TCPC_REG_CONTROL0_HOST_CUR_MASK;
switch (rp) {
case TYPEC_RP_1A5:
reg |= TCPC_REG_CONTROL0_HOST_CUR_1A5;
vnc = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_1_5_VNC_MV);
rd = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_1_5_RD_THRESH_MV);
break;
case TYPEC_RP_3A0:
reg |= TCPC_REG_CONTROL0_HOST_CUR_3A0;
vnc = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_3_0_VNC_MV);
rd = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_3_0_RD_THRESH_MV);
break;
case TYPEC_RP_USB:
default:
reg |= TCPC_REG_CONTROL0_HOST_CUR_USB;
vnc = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_DEF_VNC_MV);
rd = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_DEF_RD_THRESH_MV);
}
state[port].mdac_vnc = vnc;
state[port].mdac_rd = rd;
return tcpc_write(port, TCPC_REG_CONTROL0, reg);
}
static int fusb302_tcpm_init(int port)
{
int reg;
/* set default */
state[port].cc_polarity = -1;
/* set the voltage threshold for no connect detection (vOpen) */
state[port].mdac_vnc = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_DEF_VNC_MV);
/* set the voltage threshold for Rd vs Ra detection */
state[port].mdac_rd = TCPC_REG_MEASURE_MDAC_MV(PD_SRC_DEF_RD_THRESH_MV);
/* all other variables assumed to default to 0 */
/* Restore default settings */
tcpc_write(port, TCPC_REG_RESET, TCPC_REG_RESET_SW_RESET);
/* Turn on retries and set number of retries */
tcpc_read(port, TCPC_REG_CONTROL3, &reg);
reg |= TCPC_REG_CONTROL3_AUTO_RETRY;
reg |= (PD_RETRY_COUNT & 0x3) <<
TCPC_REG_CONTROL3_N_RETRIES_POS;
tcpc_write(port, TCPC_REG_CONTROL3, reg);
/* Create interrupt masks */
reg = 0xFF;
/* CC level changes */
reg &= ~TCPC_REG_MASK_BC_LVL;
/* collisions */
reg &= ~TCPC_REG_MASK_COLLISION;
/* misc alert */
reg &= ~TCPC_REG_MASK_ALERT;
#ifdef CONFIG_USB_PD_VBUS_DETECT_TCPC
/* TODO(crbug.com/791109): Clean up VBUS notification. */
/* VBUS threshold crossed (~4.0V) */
reg &= ~TCPC_REG_MASK_VBUSOK;
#endif
tcpc_write(port, TCPC_REG_MASK, reg);
reg = 0xFF;
/* when all pd message retries fail... */
reg &= ~TCPC_REG_MASKA_RETRYFAIL;
/* when fusb302 send a hard reset. */
reg &= ~TCPC_REG_MASKA_HARDSENT;
/* when fusb302 receives GoodCRC ack for a pd message */
reg &= ~TCPC_REG_MASKA_TX_SUCCESS;
/* when fusb302 receives a hard reset */
reg &= ~TCPC_REG_MASKA_HARDRESET;
tcpc_write(port, TCPC_REG_MASKA, reg);
reg = 0xFF;
/* when fusb302 sends GoodCRC to ack a pd message */
reg &= ~TCPC_REG_MASKB_GCRCSENT;
tcpc_write(port, TCPC_REG_MASKB, reg);
/* Interrupt Enable */
tcpc_read(port, TCPC_REG_CONTROL0, &reg);
reg &= ~TCPC_REG_CONTROL0_INT_MASK;
tcpc_write(port, TCPC_REG_CONTROL0, reg);
/* Set VCONN switch defaults */
tcpm_set_polarity(port, 0);
tcpm_set_vconn(port, 0);
/* Turn on the power! */
/* TODO: Reduce power consumption */
tcpc_write(port, TCPC_REG_POWER, TCPC_REG_POWER_PWR_ALL);
#if defined(CONFIG_USB_PD_VBUS_DETECT_TCPC) && defined(CONFIG_USB_CHARGER)
/* Wait for the reference voltage to stablize */
usleep(250);
/*
* Initialize VBUS supplier when VBUS is already present before
* init (e.g. Cold reboot with charger plugged).
*/
tcpc_read(port, TCPC_REG_STATUS0, &reg);
if (reg & TCPC_REG_STATUS0_VBUSOK)
usb_charger_vbus_change(port, 1);
#endif
return 0;
}
static int fusb302_tcpm_release(int port)
{
return EC_ERROR_UNIMPLEMENTED;
}
static int fusb302_tcpm_get_cc(int port, enum tcpc_cc_voltage_status *cc1,
enum tcpc_cc_voltage_status *cc2)
{
if (state[port].pulling_up) {
/* Source mode? */
detect_cc_pin_source_manual(port, cc1, cc2);
} else {
/* Sink mode? */
detect_cc_pin_sink(port, cc1, cc2);
}
return 0;
}
static int fusb302_tcpm_set_cc(int port, int pull)
{
int reg;
/* NOTE: FUSB302 toggles a single pull-up between CC1 and CC2 */
/* NOTE: FUSB302 Does not support Ra. */
switch (pull) {
case TYPEC_CC_RP:
/* enable the pull-up we know to be necessary */
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
reg &= ~(TCPC_REG_SWITCHES0_CC2_PU_EN |
TCPC_REG_SWITCHES0_CC1_PU_EN |
TCPC_REG_SWITCHES0_CC1_PD_EN |
TCPC_REG_SWITCHES0_CC2_PD_EN |
TCPC_REG_SWITCHES0_VCONN_CC1 |
TCPC_REG_SWITCHES0_VCONN_CC2);
reg |= TCPC_REG_SWITCHES0_CC1_PU_EN |
TCPC_REG_SWITCHES0_CC2_PU_EN;
if (state[port].vconn_enabled)
reg |= state[port].cc_polarity ?
TCPC_REG_SWITCHES0_VCONN_CC1 :
TCPC_REG_SWITCHES0_VCONN_CC2;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
state[port].pulling_up = 1;
break;
case TYPEC_CC_RD:
/* Enable UFP Mode */
/* turn off toggle */
tcpc_read(port, TCPC_REG_CONTROL2, &reg);
reg &= ~TCPC_REG_CONTROL2_TOGGLE;
tcpc_write(port, TCPC_REG_CONTROL2, reg);
/* enable pull-downs, disable pullups */
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
reg &= ~(TCPC_REG_SWITCHES0_CC2_PU_EN);
reg &= ~(TCPC_REG_SWITCHES0_CC1_PU_EN);
reg |= (TCPC_REG_SWITCHES0_CC1_PD_EN);
reg |= (TCPC_REG_SWITCHES0_CC2_PD_EN);
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
state[port].pulling_up = 0;
break;
case TYPEC_CC_OPEN:
/* Disable toggling */
tcpc_read(port, TCPC_REG_CONTROL2, &reg);
reg &= ~TCPC_REG_CONTROL2_TOGGLE;
tcpc_write(port, TCPC_REG_CONTROL2, reg);
/* Ensure manual switches are opened */
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
reg &= ~TCPC_REG_SWITCHES0_CC1_PU_EN;
reg &= ~TCPC_REG_SWITCHES0_CC2_PU_EN;
reg &= ~TCPC_REG_SWITCHES0_CC1_PD_EN;
reg &= ~TCPC_REG_SWITCHES0_CC2_PD_EN;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
state[port].pulling_up = 0;
break;
default:
/* Unsupported... */
return EC_ERROR_UNIMPLEMENTED;
}
return 0;
}
static int fusb302_tcpm_set_polarity(int port, int polarity)
{
/* Port polarity : 0 => CC1 is CC line, 1 => CC2 is CC line */
int reg;
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
/* clear VCONN switch bits */
reg &= ~TCPC_REG_SWITCHES0_VCONN_CC1;
reg &= ~TCPC_REG_SWITCHES0_VCONN_CC2;
if (state[port].vconn_enabled) {
/* set VCONN switch to be non-CC line */
if (polarity)
reg |= TCPC_REG_SWITCHES0_VCONN_CC1;
else
reg |= TCPC_REG_SWITCHES0_VCONN_CC2;
}
/* clear meas_cc bits (RX line select) */
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC1;
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC2;
/* set rx polarity */
if (polarity)
reg |= TCPC_REG_SWITCHES0_MEAS_CC2;
else
reg |= TCPC_REG_SWITCHES0_MEAS_CC1;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
tcpc_read(port, TCPC_REG_SWITCHES1, &reg);
/* clear tx_cc bits */
reg &= ~TCPC_REG_SWITCHES1_TXCC1_EN;
reg &= ~TCPC_REG_SWITCHES1_TXCC2_EN;
/* set tx polarity */
if (polarity)
reg |= TCPC_REG_SWITCHES1_TXCC2_EN;
else
reg |= TCPC_REG_SWITCHES1_TXCC1_EN;
tcpc_write(port, TCPC_REG_SWITCHES1, reg);
/* Save the polarity for later */
state[port].cc_polarity = polarity;
return 0;
}
static int fusb302_tcpm_set_vconn(int port, int enable)
{
/*
* FUSB302 does not have dedicated VCONN Enable switch.
* We'll get through this by disabling both of the
* VCONN - CC* switches to disable, and enabling the
* saved polarity when enabling.
* Therefore at startup, tcpm_set_polarity should be called first,
* or else live with the default put into tcpm_init.
*/
int reg;
/* save enable state for later use */
state[port].vconn_enabled = enable;
if (enable) {
/* set to saved polarity */
tcpm_set_polarity(port, state[port].cc_polarity);
#ifdef CONFIG_USB_PD_DECODE_SOP
if (state[port].rx_enable) {
if (tcpc_read(port, TCPC_REG_CONTROL1, &reg))
return EC_ERROR_UNKNOWN;
reg |= (TCPC_REG_CONTROL1_ENSOP1 |
TCPC_REG_CONTROL1_ENSOP2);
tcpc_write(port, TCPC_REG_CONTROL1, reg);
}
#endif
} else {
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
/* clear VCONN switch bits */
reg &= ~TCPC_REG_SWITCHES0_VCONN_CC1;
reg &= ~TCPC_REG_SWITCHES0_VCONN_CC2;
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
#ifdef CONFIG_USB_PD_DECODE_SOP
if (state[port].rx_enable) {
if (tcpc_read(port, TCPC_REG_CONTROL1, &reg))
return EC_ERROR_UNKNOWN;
reg &= ~(TCPC_REG_CONTROL1_ENSOP1 |
TCPC_REG_CONTROL1_ENSOP2);
tcpc_write(port, TCPC_REG_CONTROL1, reg);
}
#endif
}
return 0;
}
static int fusb302_tcpm_set_msg_header(int port, int power_role, int data_role)
{
int reg;
tcpc_read(port, TCPC_REG_SWITCHES1, &reg);
reg &= ~TCPC_REG_SWITCHES1_POWERROLE;
reg &= ~TCPC_REG_SWITCHES1_DATAROLE;
if (power_role)
reg |= TCPC_REG_SWITCHES1_POWERROLE;
if (data_role)
reg |= TCPC_REG_SWITCHES1_DATAROLE;
tcpc_write(port, TCPC_REG_SWITCHES1, reg);
return 0;
}
static int fusb302_tcpm_set_rx_enable(int port, int enable)
{
int reg;
state[port].rx_enable = enable;
/* Get current switch state */
tcpc_read(port, TCPC_REG_SWITCHES0, &reg);
/* Clear CC1/CC2 measure bits */
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC1;
reg &= ~TCPC_REG_SWITCHES0_MEAS_CC2;
if (enable) {
switch (state[port].cc_polarity) {
/* if CC polarity hasnt been determined, can't enable */
case -1:
return EC_ERROR_UNKNOWN;
case 0:
reg |= TCPC_REG_SWITCHES0_MEAS_CC1;
break;
case 1:
reg |= TCPC_REG_SWITCHES0_MEAS_CC2;
break;
default:
/* "shouldn't get here" */
return EC_ERROR_UNKNOWN;
}
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
/* Disable BC_LVL interrupt when enabling PD comm */
if (!tcpc_read(port, TCPC_REG_MASK, &reg))
tcpc_write(port, TCPC_REG_MASK,
reg | TCPC_REG_MASK_BC_LVL);
/* flush rx fifo in case messages have been coming our way */
fusb302_flush_rx_fifo(port);
} else {
tcpc_write(port, TCPC_REG_SWITCHES0, reg);
/* Enable BC_LVL interrupt when disabling PD comm */
if (!tcpc_read(port, TCPC_REG_MASK, &reg))
tcpc_write(port, TCPC_REG_MASK,
reg & ~TCPC_REG_MASK_BC_LVL);
}
#ifdef CONFIG_USB_PD_DECODE_SOP
/*
* Only the VCONN Source is allowed to communicate
* with the Cable Plugs.
*/
if (state[port].vconn_enabled) {
if (tcpc_read(port, TCPC_REG_CONTROL1, &reg))
return EC_ERROR_UNKNOWN;
reg |= (TCPC_REG_CONTROL1_ENSOP1 | TCPC_REG_CONTROL1_ENSOP2);
tcpc_write(port, TCPC_REG_CONTROL1, reg);
}
#endif
fusb302_auto_goodcrc_enable(port, enable);
return 0;
}
/* Return true if our Rx FIFO is empty */
static int fusb302_rx_fifo_is_empty(int port)
{
int reg;
return (!tcpc_read(port, TCPC_REG_STATUS1, &reg)) &&
(reg & TCPC_REG_STATUS1_RX_EMPTY);
}
static int fusb302_tcpm_get_message_raw(int port, uint32_t *payload, int *head)
{
/*
* This is the buffer that will get the burst-read data
* from the fusb302.
*
* It's re-used in a couple different spots, the worst of which
* is the PD packet (not header) and CRC.
* maximum size necessary = 28 + 4 = 32
*/
uint8_t buf[32];
int rv, len;
/* Read until we have a non-GoodCRC packet or an empty FIFO */
do {
buf[0] = TCPC_REG_FIFOS;
tcpc_lock(port, 1);
/*
* PART 1 OF BURST READ: Write in register address.
* Issue a START, no STOP.
*/
rv = tcpc_xfer_unlocked(port, buf, 1, 0, 0, I2C_XFER_START);
/*
* PART 2 OF BURST READ: Read up to the header.
* Issue a repeated START, no STOP.
* only grab three bytes so we can get the header
* and determine how many more bytes we need to read.
* TODO: Check token to ensure valid packet.
*/
rv |= tcpc_xfer_unlocked(port, 0, 0, buf, 3, I2C_XFER_START);
/* Grab the header */
*head = (buf[1] & 0xFF);
*head |= ((buf[2] << 8) & 0xFF00);
/* figure out packet length, subtract header bytes */
len = get_num_bytes(*head) - 2;
/*
* PART 3 OF BURST READ: Read everything else.
* No START, but do issue a STOP at the end.
* add 4 to len to read CRC out
*/
rv |= tcpc_xfer_unlocked(port, 0, 0, buf, len+4, I2C_XFER_STOP);
tcpc_lock(port, 0);
} while (!rv && PACKET_IS_GOOD_CRC(*head) &&
!fusb302_rx_fifo_is_empty(port));
if (!rv) {
/* Discard GoodCRC packets */
if (PACKET_IS_GOOD_CRC(*head))
rv = EC_ERROR_UNKNOWN;
else
memcpy(payload, buf, len);
}
#ifdef CONFIG_USB_PD_DECODE_SOP
{
int reg;
if (tcpc_read(port, TCPC_REG_STATUS1, &reg))
return EC_ERROR_UNKNOWN;
if (reg & TCPC_REG_STATUS1_RXSOP1)
*head |= PD_HEADER_SOP(PD_MSG_SOPP);
else if (reg & TCPC_REG_STATUS1_RXSOP2)
*head |= PD_HEADER_SOP(PD_MSG_SOPPP);
}
#endif
return rv;
}
static int fusb302_tcpm_transmit(int port, enum tcpm_transmit_type type,
uint16_t header, const uint32_t *data)
{
/*
* this is the buffer that will be burst-written into the fusb302
* maximum size necessary =
* 1: FIFO register address
* 4: SOP* tokens
* 1: Token that signifies "next X bytes are not tokens"
* 30: 2 for header and up to 7*4 = 28 for rest of message
* 1: "Insert CRC" Token
* 1: EOP Token
* 1: "Turn transmitter off" token
* 1: "Star Transmission" Command
* -
* 40: 40 bytes worst-case
*/
uint8_t buf[40];
int buf_pos = 0;
int reg;
/* Flush the TXFIFO */
fusb302_flush_tx_fifo(port);
switch (type) {
case TCPC_TX_SOP:
/* put register address first for of burst tcpc write */
buf[buf_pos++] = TCPC_REG_FIFOS;
/* Write the SOP Ordered Set into TX FIFO */
buf[buf_pos++] = FUSB302_TKN_SYNC1;
buf[buf_pos++] = FUSB302_TKN_SYNC1;
buf[buf_pos++] = FUSB302_TKN_SYNC1;
buf[buf_pos++] = FUSB302_TKN_SYNC2;
return fusb302_send_message(port, header, data, buf, buf_pos);
case TCPC_TX_HARD_RESET:
/* Simply hit the SEND_HARD_RESET bit */
tcpc_read(port, TCPC_REG_CONTROL3, &reg);
reg |= TCPC_REG_CONTROL3_SEND_HARDRESET;
tcpc_write(port, TCPC_REG_CONTROL3, reg);
break;
case TCPC_TX_BIST_MODE_2:
/* Hit the BIST_MODE2 bit and start TX */
tcpc_read(port, TCPC_REG_CONTROL1, &reg);
reg |= TCPC_REG_CONTROL1_BIST_MODE2;
tcpc_write(port, TCPC_REG_CONTROL1, reg);
tcpc_read(port, TCPC_REG_CONTROL0, &reg);
reg |= TCPC_REG_CONTROL0_TX_START;
tcpc_write(port, TCPC_REG_CONTROL0, reg);
task_wait_event(PD_T_BIST_TRANSMIT);
/* Clear BIST mode bit, TX_START is self-clearing */
tcpc_read(port, TCPC_REG_CONTROL1, &reg);
reg &= ~TCPC_REG_CONTROL1_BIST_MODE2;
tcpc_write(port, TCPC_REG_CONTROL1, reg);
break;
default:
return EC_ERROR_UNIMPLEMENTED;
}
return 0;
}
#ifdef CONFIG_USB_PD_VBUS_DETECT_TCPC
static int fusb302_tcpm_get_vbus_level(int port)
{
int reg;
/* Read status register */
tcpc_read(port, TCPC_REG_STATUS0, &reg);
return (reg & TCPC_REG_STATUS0_VBUSOK) ? 1 : 0;
}
#endif
void fusb302_tcpc_alert(int port)
{
/* interrupt has been received */
int interrupt;
int interrupta;
int interruptb;
/* reading interrupt registers clears them */
tcpc_read(port, TCPC_REG_INTERRUPT, &interrupt);
tcpc_read(port, TCPC_REG_INTERRUPTA, &interrupta);
tcpc_read(port, TCPC_REG_INTERRUPTB, &interruptb);
/*
* Ignore BC_LVL changes when transmitting / receiving PD,
* since CC level will constantly change.
*/
if (state[port].rx_enable)
interrupt &= ~TCPC_REG_INTERRUPT_BC_LVL;
if (interrupt & TCPC_REG_INTERRUPT_BC_LVL) {
/* CC Status change */
task_set_event(PD_PORT_TO_TASK_ID(port), PD_EVENT_CC, 0);
}
if (interrupt & TCPC_REG_INTERRUPT_COLLISION) {
/* packet sending collided */
pd_transmit_complete(port, TCPC_TX_COMPLETE_FAILED);
}
#ifdef CONFIG_USB_PD_VBUS_DETECT_TCPC
if (interrupt & TCPC_REG_INTERRUPT_VBUSOK) {
/* VBUS crossed threshold */
#ifdef CONFIG_USB_CHARGER
usb_charger_vbus_change(port,
fusb302_tcpm_get_vbus_level(port));
#else
if (!fusb302_tcpm_get_vbus_level(port))
pd_vbus_low(port);
#endif
task_wake(PD_PORT_TO_TASK_ID(port));
hook_notify(HOOK_AC_CHANGE);
}
#endif
/* GoodCRC was received, our FIFO is now non-empty */
if (interrupta & TCPC_REG_INTERRUPTA_TX_SUCCESS) {
pd_transmit_complete(port, TCPC_TX_COMPLETE_SUCCESS);
}
if (interrupta & TCPC_REG_INTERRUPTA_RETRYFAIL) {
/* all retries have failed to get a GoodCRC */
pd_transmit_complete(port, TCPC_TX_COMPLETE_FAILED);
}
if (interrupta & TCPC_REG_INTERRUPTA_HARDSENT) {
/* hard reset has been sent */
/* bring FUSB302 out of reset */
fusb302_pd_reset(port);
pd_transmit_complete(port, TCPC_TX_COMPLETE_SUCCESS);
}
if (interrupta & TCPC_REG_INTERRUPTA_HARDRESET) {
/* hard reset has been received */
/* bring FUSB302 out of reset */
fusb302_pd_reset(port);
pd_execute_hard_reset(port);
task_wake(PD_PORT_TO_TASK_ID(port));
}
if (interruptb & TCPC_REG_INTERRUPTB_GCRCSENT) {
/* Packet received and GoodCRC sent */
/* (this interrupt fires after the GoodCRC finishes) */
if (state[port].rx_enable) {
/* Pull all RX messages from TCPC into EC memory */
while (!fusb302_rx_fifo_is_empty(port))
tcpm_enqueue_message(port);
} else {
/* flush rx fifo if rx isn't enabled */
fusb302_flush_rx_fifo(port);
}
}
}
/* For BIST receiving */
void tcpm_set_bist_test_data(int port)
{
int reg;
/* Read control3 register */
tcpc_read(port, TCPC_REG_CONTROL3, &reg);
/* Set the BIST_TMODE bit (Clears on Hard Reset) */
reg |= TCPC_REG_CONTROL3_BIST_TMODE;
/* Write the updated value */
tcpc_write(port, TCPC_REG_CONTROL3, reg);
}
const struct tcpm_drv fusb302_tcpm_drv = {
.init = &fusb302_tcpm_init,
.release = &fusb302_tcpm_release,
.get_cc = &fusb302_tcpm_get_cc,
#ifdef CONFIG_USB_PD_VBUS_DETECT_TCPC
.get_vbus_level = &fusb302_tcpm_get_vbus_level,
#endif
.select_rp_value = &fusb302_tcpm_select_rp_value,
.set_cc = &fusb302_tcpm_set_cc,
.set_polarity = &fusb302_tcpm_set_polarity,
.set_vconn = &fusb302_tcpm_set_vconn,
.set_msg_header = &fusb302_tcpm_set_msg_header,
.set_rx_enable = &fusb302_tcpm_set_rx_enable,
.get_message_raw = &fusb302_tcpm_get_message_raw,
.transmit = &fusb302_tcpm_transmit,
.tcpc_alert = &fusb302_tcpc_alert,
};