coreboot-libre-fam15h-rdimm/3rdparty/chromeec/test/nvmem_tpm2_mock.c

378 lines
8.4 KiB
C

/* Copyright 2019 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Stuff from tpm2 directory. */
#include "nvmem_test.h"
#include "console.h"
#include "nvmem.h"
#include "util.h"
#define NVMEM_CR50_SIZE 272
uint32_t s_evictNvStart;
uint32_t s_evictNvEnd;
/* Calculate size of TPM NVMEM. */
#define MOCK_NV_MEMORY_SIZE \
(NVMEM_PARTITION_SIZE - sizeof(struct nvmem_tag) - NVMEM_CR50_SIZE)
uint32_t nvmem_user_sizes[NVMEM_NUM_USERS] = {MOCK_NV_MEMORY_SIZE,
NVMEM_CR50_SIZE};
/*
* Sizes of the reserved objects stored in the TPM NVMEM. Note that the second
* last object is in fact a variable size field starting with 4 bytes of size
* and then up to 512 bytes of actual index data. The array below assumes that
* the full 512 bytes of the index space are used.
*/
const uint16_t res_sizes[] = {4, 2, 2, 2, 66, 66, 66, 66, 66, 66,
34, 34, 34, 66, 66, 66, 8, 4, 134, 28,
3, 4, 4, 4, 4, 4, 2, 15, 2, 8,
4, 4, 4, 96, 2844, 424, 516, 8};
static uint16_t res_addrs[ARRAY_SIZE(res_sizes)];
BOOL NvEarlyStageFindHandle(TPM_HANDLE handle)
{
size_t i;
res_addrs[0] = 0;
for (i = 1; i < ARRAY_SIZE(res_addrs); i++)
res_addrs[i] = res_addrs[i - 1] + res_sizes[i - 1];
s_evictNvStart = res_addrs[i - 1] + res_sizes[i - 1];
s_evictNvEnd = MOCK_NV_MEMORY_SIZE;
return 0;
}
void NvGetReserved(UINT32 index, NV_RESERVED_ITEM *ri)
{
uint32_t index_size;
if (index >= ARRAY_SIZE(res_sizes)) {
ri->size = 0;
return;
}
ri->offset = res_addrs[index];
if (index != NV_RAM_INDEX_SPACE) {
ri->size = res_sizes[index];
return;
}
memcpy(&index_size, nvmem_cache_base(NVMEM_TPM) + ri->offset,
sizeof(index_size));
if (index_size == ~0)
/* Must be starting with empty flash memeory. */
index_size = 0;
ri->size = index_size + sizeof(index_size);
}
UINT16 UINT16_Marshal(UINT16 *source, BYTE **buffer, INT32 *size)
{
uint16_t value;
if (!size || (*size < sizeof(value)))
return 0;
value = htobe16(*source);
memcpy(*buffer, &value, sizeof(value));
*buffer += sizeof(value);
*size -= sizeof(value);
return sizeof(value);
}
UINT16 UINT32_Marshal(UINT32 *source, BYTE **buffer, INT32 *size)
{
uint32_t value;
if (!size || (*size < sizeof(value)))
return 0;
value = htobe32(*source);
memcpy(*buffer, &value, sizeof(value));
*buffer += sizeof(value);
*size -= sizeof(value);
return sizeof(value);
}
UINT16 UINT64_Marshal(UINT64 *source, BYTE **buffer, INT32 *size)
{
uint64_t value;
if (!size || (*size < sizeof(value)))
return 0;
value = htobe64(*source);
memcpy(*buffer, &value, sizeof(value));
*buffer += sizeof(value);
*size -= sizeof(value);
return sizeof(value);
}
UINT16 TPM2B_DIGEST_Marshal(TPM2B_DIGEST *source, BYTE **buffer, INT32 *size)
{
UINT16 total_size;
INT32 i;
uint8_t *p;
total_size = UINT16_Marshal(&source->t.size, buffer, size);
p = *buffer;
for (i = 0; (i < source->t.size) && *size; ++i) {
*p++ = source->t.buffer[i];
*size -= 1;
}
total_size += i;
*buffer = p;
return total_size;
}
uint16_t TPM2B_AUTH_Marshal(TPM2B_AUTH *source, BYTE **buffer, INT32 *size)
{
return TPM2B_DIGEST_Marshal(source, buffer, size);
}
uint16_t TPM2B_NONCE_Marshal(TPM2B_AUTH *source, BYTE **buffer, INT32 *size)
{
return TPM2B_DIGEST_Marshal(source, buffer, size);
}
TPM_RC UINT16_Unmarshal(UINT16 *target, BYTE **buffer, INT32 *size)
{
uint16_t value;
if (!size || *size < sizeof(value))
return TPM_RC_INSUFFICIENT;
memcpy(&value, *buffer, sizeof(value));
*target = be16toh(value);
*buffer += sizeof(value);
*size -= sizeof(value);
return TPM_RC_SUCCESS;
}
TPM_RC UINT32_Unmarshal(UINT32 *target, BYTE **buffer, INT32 *size)
{
uint32_t value;
if (!size || *size < sizeof(value))
return TPM_RC_INSUFFICIENT;
memcpy(&value, *buffer, sizeof(value));
*target = be32toh(value);
*buffer += sizeof(value);
*size -= sizeof(value);
return TPM_RC_SUCCESS;
}
TPM_RC UINT64_Unmarshal(UINT64 *target, BYTE **buffer, INT32 *size)
{
uint64_t value;
if (!size || *size < sizeof(value))
return TPM_RC_INSUFFICIENT;
memcpy(&value, *buffer, sizeof(value));
*target = be64toh(value);
*buffer += sizeof(value);
*size -= sizeof(value);
return TPM_RC_SUCCESS;
}
TPM_RC TPM2B_DIGEST_Unmarshal(TPM2B_DIGEST *target, BYTE **buffer, INT32 *size)
{
TPM_RC result;
INT32 i;
uint8_t *p;
result = UINT16_Unmarshal(&target->t.size, buffer, size);
if (result != TPM_RC_SUCCESS)
return result;
if (target->t.size == 0)
return TPM_RC_SUCCESS;
if ((target->t.size > sizeof(TPMU_HA)) || (target->t.size > *size))
return TPM_RC_SIZE;
p = *buffer;
for (i = 0; i < target->t.size; ++i)
target->t.buffer[i] = *p++;
*buffer = p;
*size -= i;
return TPM_RC_SUCCESS;
}
TPM_RC TPM2B_AUTH_Unmarshal(TPM2B_AUTH *target, BYTE **buffer, INT32 *size)
{
return TPM2B_DIGEST_Unmarshal(target, buffer, size);
}
TPM_RC TPM2B_NONCE_Unmarshal(TPM2B_AUTH *target, BYTE **buffer, INT32 *size)
{
return TPM2B_DIGEST_Unmarshal(target, buffer, size);
}
#define ITER_INIT (~0)
static void *get_cache_addr(size_t offset)
{
return (void *)(((uintptr_t)nvmem_cache_base(NVMEM_TPM)) + offset);
}
static void read_from_cache(size_t offset, size_t size, void *dest)
{
nvmem_read(offset, size, dest, NVMEM_TPM);
}
static void write_to_cache(size_t offset, size_t size, void *src)
{
nvmem_write(offset, size, src, NVMEM_TPM);
}
/* Copies of the appropriate functions from NV.c in TPM2 library. */
static uint32_t nv_next(uint32_t *iter)
{
uint32_t currentIter;
if (*iter == ITER_INIT)
*iter = s_evictNvStart;
if ((*iter + sizeof(uint32_t) > s_evictNvEnd) || !*iter)
return 0;
currentIter = *iter;
read_from_cache(*iter, sizeof(uint32_t), iter);
if (!*iter || (*iter == ITER_INIT))
return 0;
return currentIter + sizeof(uint32_t);
}
static uint32_t nv_get_end(void)
{
uint32_t iter = ITER_INIT;
uint32_t endAddr = s_evictNvStart;
uint32_t currentAddr;
while ((currentAddr = nv_next(&iter)) != 0)
endAddr = currentAddr;
if (endAddr != s_evictNvStart) {
/* Read offset. */
endAddr -= sizeof(uint32_t);
read_from_cache(endAddr, sizeof(uint32_t), &endAddr);
}
return endAddr;
}
size_t add_evictable_obj(void *obj, size_t obj_size)
{
uint32_t end_addr;
uint32_t next_addr;
uint32_t list_end = 0;
end_addr = nv_get_end();
next_addr = end_addr + sizeof(uint32_t) + obj_size;
if (next_addr >= s_evictNvEnd) {
ccprintf("%s: could not fit %d bytes!\n", __func__, obj_size);
return 0;
}
/* Write next pointer */
write_to_cache(end_addr, sizeof(uint32_t), &next_addr);
/* Write entity data. */
write_to_cache(end_addr + sizeof(uint32_t), obj_size, obj);
/* Write the end of list if it fits. */
if (next_addr + sizeof(uint32_t) <= s_evictNvEnd)
write_to_cache(next_addr, sizeof(list_end), &list_end);
return obj_size;
}
/*
* It is the responsibility of the caller to pass the proper address of an
* object in the cache.
*/
void drop_evictable_obj(void *obj)
{
uint32_t next_addr;
uint32_t list_end = 0;
uint32_t obj_addr;
obj_addr = (uintptr_t)obj - (uintptr_t)nvmem_cache_base(NVMEM_TPM);
read_from_cache(obj_addr - sizeof(next_addr), sizeof(next_addr),
&next_addr);
ccprintf("%s:%d dropping obj at cache addr %x, offset %x, addr %p next "
"addr %x aka %x (off s_evictNvStart)\n",
__func__, __LINE__, obj_addr - s_evictNvStart, obj_addr, obj,
next_addr, next_addr - s_evictNvStart);
/*
* Now, to make it easier to add objects behind the current one, let's
* pretend there is no more objects.
*/
write_to_cache(obj_addr - sizeof(next_addr), sizeof(list_end),
&list_end);
if (!next_addr || (next_addr == s_evictNvEnd))
return;
/*
* Iterate over objects starting with next_addr, copying them into
* obj_addr.
*/
obj_addr = next_addr;
while (1) {
uint32_t next_next_addr;
uint32_t next_obj_size;
read_from_cache(next_addr, sizeof(next_next_addr),
&next_next_addr);
if (!next_next_addr || (next_next_addr == s_evictNvEnd))
return;
next_obj_size = next_next_addr - obj_addr - sizeof(uint32_t);
add_evictable_obj(
(void *)((uintptr_t)nvmem_cache_base(NVMEM_TPM) +
next_addr + sizeof(uint32_t)),
next_obj_size);
next_addr = next_next_addr;
obj_addr += next_obj_size + sizeof(next_obj_size);
}
}
void *evictable_offs_to_addr(uint16_t offset)
{
return (void *)((uintptr_t)get_cache_addr(s_evictNvStart) + offset);
}