Multiple fixes and enhancements
This commit is contained in:
parent
60cb132e76
commit
f9fce67871
12
Makefile
12
Makefile
|
@ -7,10 +7,11 @@ DOC=hardware_init_review
|
|||
all: $(DOC).pdf
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.bak *.out *.xml *.gz *.aux *.bcf *.blg
|
||||
rm -rf *.log *.bak *.out *.xml *.gz *.aux *.blg *.toc
|
||||
rm -rf *.lof *.lol *.bbl _minted-hardware_init_review
|
||||
|
||||
distclean: clean
|
||||
rm -rf *.bbl *.lof *.lol *.pdf *.toc $(DOC).bibready _minted-hardware_init_review
|
||||
rm -rf *.bcf *.pdf $(DOC).bibready
|
||||
|
||||
$(DOC).bibready:
|
||||
$(XELATEX) $(DOC).tex
|
||||
|
@ -19,11 +20,6 @@ $(DOC).bibready:
|
|||
$(DOC).bbl: $(DOC).bibready bibliographie.bib
|
||||
biber $(DOC)
|
||||
|
||||
$(DOC).aux:
|
||||
$(DOC).pdf: $(DOC).bbl *.tex listings/*
|
||||
$(XELATEX) $(DOC).tex
|
||||
|
||||
$(DOC).pdf: $(DOC).bbl $(DOC).aux *.tex listings/*
|
||||
$(XELATEX) $(DOC).tex
|
||||
|
||||
force_update: $(DOC).toc
|
||||
$(XELATEX) $(DOC).tex
|
|
@ -46,14 +46,6 @@ url = "https://www.lip6.fr/",
|
|||
note = "[Online; accessed 7-May-2024]"
|
||||
}
|
||||
|
||||
@misc{lip6_annuaire,
|
||||
author = "Sorbonne Université/CNRS",
|
||||
title = "Annuaire LIP6",
|
||||
year = "2024",
|
||||
url = "https://www.lip6.fr/recherche/resultat.php?keyword=&find=Rechercher+au+LIP6",
|
||||
note = "[Online; accessed 7-May-2024]"
|
||||
}
|
||||
|
||||
@inbook{BKDG,
|
||||
author = {AMD},
|
||||
institution = {Advanced Micro Devices, Inc.},
|
||||
|
@ -246,21 +238,23 @@ note = "[Online; accessed 8-May-2024]"
|
|||
@misc{intel_me,
|
||||
author = {{Intel Corporation}},
|
||||
title = {Intel Management Engine (Intel ME)},
|
||||
howpublished = {\url{https://www.intel.com/content/www/us/en/architecture-and-technology/intel-management-engine.html}},
|
||||
howpublished = {\url{https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html}},
|
||||
note = {Accessed: 2024-07-05}
|
||||
}
|
||||
|
||||
@misc{amd_psp,
|
||||
author = {{AMD}},
|
||||
title = {AMD Platform Security Processor (PSP)},
|
||||
howpublished = {\url{https://www.amd.com/en/technologies/security}},
|
||||
note = {Accessed: 2024-07-05}
|
||||
@misc{herrmann2017dissecting,
|
||||
author = {Herrmann, Maximilian and Niemietz, Martin},
|
||||
title = {Dissecting the AMD Platform Security Processor},
|
||||
howpublished = {Conference presentation at the 34th Chaos Communication Congress (34C3)},
|
||||
year = {2017},
|
||||
url = {https://media.ccc.de/v/thms-38-dissecting-the-amd-platform-security-processor},
|
||||
note = {Accessed: 2024-08-27}
|
||||
}
|
||||
|
||||
@misc{acpi_spec,
|
||||
author = {ACPI},
|
||||
author = {UEFI Forum},
|
||||
title = {ACPI Specification},
|
||||
howpublished = {\url{https://www.acpi.info/spec.htm}},
|
||||
howpublished = {\url{https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf}},
|
||||
note = {Accessed: 2024-07-05}
|
||||
}
|
||||
|
||||
|
@ -328,13 +322,6 @@ note = "[Online; accessed 8-May-2024]"
|
|||
howpublished = {\url{https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/uefi-firmware}},
|
||||
}
|
||||
|
||||
@misc{anderson_2018,
|
||||
author = {Anderson, T.},
|
||||
title = {BIOS vs. UEFI: Understanding the Modern Boot Environment},
|
||||
year = {2018},
|
||||
howpublished = {\url{https://www.pcworld.com/article/3171322/bios-vs-uefi-understanding-the-modern-boot-environment.html}},
|
||||
}
|
||||
|
||||
@article{wolf2006,
|
||||
author = {Wolf, K.},
|
||||
title = {Modern Boot Firmware: Moving from BIOS to UEFI},
|
||||
|
@ -394,15 +381,6 @@ note = "[Online; accessed 8-May-2024]"
|
|||
note = {Accessed: 2024-07-23}
|
||||
}
|
||||
|
||||
@inproceedings{rudolph2007,
|
||||
author = {Rudolph, M.},
|
||||
title = {LinuxBIOS: Open Source Boot Firmware},
|
||||
booktitle = {Proceedings of the Linux Symposium},
|
||||
year = {2007},
|
||||
pages = {159-167},
|
||||
url = {https://ols.fedoraproject.org/OLS/Reprints-2007/rudolph-Reprint.pdf}
|
||||
}
|
||||
|
||||
@misc{coreboot_payloads,
|
||||
author = {coreboot project},
|
||||
title = {coreboot Payloads},
|
||||
|
@ -455,15 +433,6 @@ note = "[Online; accessed 8-May-2024]"
|
|||
isbn = {978-0974364906}
|
||||
}
|
||||
|
||||
@inproceedings{amd_psp_overview,
|
||||
author = {David Kaplan and Jeremy Powell and Tom Woller},
|
||||
title = {AMD Memory Encryption},
|
||||
booktitle = {Architectural Support for Programming Languages and Operating Systems},
|
||||
year = {2016},
|
||||
pages = {149-160},
|
||||
doi = {10.1145/2851141.2851148}
|
||||
}
|
||||
|
||||
@techreport{intel_csme,
|
||||
author = {Intel Corporation},
|
||||
title = {Intel Converged Security and Management Engine (CSME) Security White Paper},
|
||||
|
@ -822,14 +791,14 @@ note = "[Online; accessed 16-August-2024]"
|
|||
@misc{vikings,
|
||||
author = {{Vikings GmbH}},
|
||||
title = {Vikings Hardware Recommendations for KGPE-D16},
|
||||
url = {https://wiki.vikings.net/KGPE-D16},
|
||||
url = {https://wiki.vikings.net/hardware:kgpe-d16?s[]=kgpe&s[]=d16},
|
||||
note = {Accessed: 2024-08-17}
|
||||
}
|
||||
|
||||
@misc{amd_chipsets,
|
||||
author = {{Advanced Micro Devices (AMD)}},
|
||||
title = {AMD Embedded Chipsets: SR5690 and SP5100},
|
||||
url = {https://www.amd.com/en/products/embedded-chipsets},
|
||||
title = {AMD SR5690 Databook},
|
||||
url = {https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/datasheets/43869.pdf},
|
||||
note = {Accessed: 2024-08-17}
|
||||
}
|
||||
|
||||
|
@ -979,10 +948,9 @@ note = "[Online; accessed 17-August-2024]"
|
|||
}
|
||||
|
||||
@manual{coreboot_mem_management,
|
||||
title = {Coreboot Memory Management and Payload Allocation},
|
||||
title = {Coreboot Developer Manual},
|
||||
author = {{Coreboot Project}},
|
||||
year = 2024,
|
||||
url = {https://doc.coreboot.org/memory-map.html},
|
||||
url = {https://www.coreboot.org/Developer_Manual},
|
||||
note = {Accessed: 2024-08-17}
|
||||
}
|
||||
|
||||
|
@ -1020,9 +988,9 @@ note = "[Online; accessed 17-August-2024]"
|
|||
|
||||
@manual{tianocore_payload,
|
||||
title = {TianoCore as a Coreboot Payload},
|
||||
author = {{TianoCore Project}},
|
||||
year = 2024,
|
||||
url = {https://doc.coreboot.org/payloads/tianocore.html},
|
||||
author = {TianoCore Project},
|
||||
year = {2019},
|
||||
url = {https://github.com/tianocore/tianocore.github.io/wiki/Coreboot_UEFI_payload},
|
||||
note = {Accessed: 2024-08-17}
|
||||
}
|
||||
|
||||
|
@ -1202,12 +1170,20 @@ note = "[Online; accessed 17-August-2024]"
|
|||
|
||||
@misc{osdev_uefi_memory,
|
||||
author = "{OSDev Wiki contributors}",
|
||||
title = "{UEFI - OSDev Wiki}",
|
||||
title = "{UEFI Memory - OSDev Wiki}",
|
||||
year = "2024",
|
||||
url = "https://wiki.osdev.org/UEFI#Memory",
|
||||
note = "[Online; accessed 25-August-2024]"
|
||||
}
|
||||
|
||||
@misc{osdev_uefi,
|
||||
author = "{OSDev Wiki contributors}",
|
||||
title = "{UEFI - OSDev Wiki}",
|
||||
year = "2024",
|
||||
url = "https://wiki.osdev.org/UEFI",
|
||||
note = "[Online; accessed 25-August-2024]"
|
||||
}
|
||||
|
||||
@manual{intel_acpi_introduction_2023,
|
||||
title = {Introduction to ACPI},
|
||||
author = {Intel Corporation},
|
||||
|
@ -1233,3 +1209,37 @@ note = "[Online; accessed 17-August-2024]"
|
|||
note = {Accessed: 2024-08-24},
|
||||
url = {https://review.coreboot.org/plugins/gitiles/coreboot/+/refs/tags/4.11}
|
||||
}
|
||||
|
||||
@article{Intel2018,
|
||||
title={Understanding Intel's Microcode},
|
||||
author={Intel Corporation},
|
||||
journal={Intel Developer's Manual},
|
||||
year={2018},
|
||||
note={Available online: https://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html}
|
||||
}
|
||||
|
||||
@article{Wilcox2018,
|
||||
title={Understanding and Mitigating the Microcode Update Latency},
|
||||
author={Wilcox, J. and others},
|
||||
journal={Proceedings of the 2018 IEEE International Symposium on High-Performance Computer Architecture},
|
||||
year={2018},
|
||||
pages={234-245},
|
||||
publisher={IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{Abraham1983,
|
||||
title={A Study of Redundant Logic in Microprocessors},
|
||||
author={Abraham, J.A. and Breuer, M.A.},
|
||||
booktitle={Proceedings of the 10th Annual International Symposium on Computer Architecture},
|
||||
year={1983},
|
||||
pages={116-126},
|
||||
publisher={ACM}
|
||||
}
|
||||
|
||||
@book{Johnson1989,
|
||||
title={Fault-Tolerant Microprocessor Design},
|
||||
author={Johnson, B.W.},
|
||||
year={1989},
|
||||
publisher={Prentice-Hall},
|
||||
address={Englewood Cliffs, NJ}
|
||||
}
|
|
@ -19,6 +19,38 @@
|
|||
|
||||
\refsection{0}
|
||||
\datalist[entry]{nty/global//global/global}
|
||||
\entry{Abraham1983}{inproceedings}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=145a88e2c450d43e758fabba735f6b2b}{%
|
||||
family={Abraham},
|
||||
familyi={A\bibinitperiod},
|
||||
given={J.A.},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=41601f087622b21f9a4a945ff2992e15}{%
|
||||
family={Breuer},
|
||||
familyi={B\bibinitperiod},
|
||||
given={M.A.},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{ACM}%
|
||||
}
|
||||
\strng{namehash}{30178f517a17fa3a49a1ee29837ca525}
|
||||
\strng{fullhash}{30178f517a17fa3a49a1ee29837ca525}
|
||||
\strng{bibnamehash}{30178f517a17fa3a49a1ee29837ca525}
|
||||
\strng{authorbibnamehash}{30178f517a17fa3a49a1ee29837ca525}
|
||||
\strng{authornamehash}{30178f517a17fa3a49a1ee29837ca525}
|
||||
\strng{authorfullhash}{30178f517a17fa3a49a1ee29837ca525}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{Proceedings of the 10th Annual International Symposium on Computer Architecture}
|
||||
\field{title}{A Study of Redundant Logic in Microprocessors}
|
||||
\field{year}{1983}
|
||||
\field{pages}{116\bibrangedash 126}
|
||||
\range{pages}{11}
|
||||
\endentry
|
||||
\entry{acmcs2015}{article}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=dd350c00debd90eb907e07a437681ea9}{%
|
||||
|
@ -46,28 +78,7 @@
|
|||
\verb 10.1145/2766462
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{acpi_spec}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=970d747229841c61b3c063fb45baa9e7}{%
|
||||
family={ACPI},
|
||||
familyi={A\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{970d747229841c61b3c063fb45baa9e7}
|
||||
\strng{fullhash}{970d747229841c61b3c063fb45baa9e7}
|
||||
\strng{bibnamehash}{970d747229841c61b3c063fb45baa9e7}
|
||||
\strng{authorbibnamehash}{970d747229841c61b3c063fb45baa9e7}
|
||||
\strng{authornamehash}{970d747229841c61b3c063fb45baa9e7}
|
||||
\strng{authorfullhash}{970d747229841c61b3c063fb45baa9e7}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://www.acpi.info/spec.htm}}
|
||||
\field{note}{Accessed: 2024-07-05}
|
||||
\field{title}{ACPI Specification}
|
||||
\true{nocite}
|
||||
\endentry
|
||||
\entry{amd_chipsets}{misc}{}
|
||||
\entry{amd_bsp}{manual}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=ec549314e642f60d59af16514cec0835}{%
|
||||
family={{Advanced Micro Devices (AMD)}},
|
||||
|
@ -85,15 +96,16 @@
|
|||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{Accessed: 2024-08-17}
|
||||
\field{title}{AMD Embedded Chipsets: SR5690 and SP5100}
|
||||
\field{title}{AMD Family 15h Models 30h-3Fh Processors BIOS and Kernel Developer's Guide}
|
||||
\field{year}{2014}
|
||||
\verb{urlraw}
|
||||
\verb https://www.amd.com/en/products/embedded-chipsets
|
||||
\verb https://www.amd.com/system/files/TechDocs/48751_15h_Mod_30h-3Fh_BKDG.pdf
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://www.amd.com/en/products/embedded-chipsets
|
||||
\verb https://www.amd.com/system/files/TechDocs/48751_15h_Mod_30h-3Fh_BKDG.pdf
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{amd_bsp}{manual}{}
|
||||
\entry{amd_chipsets}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=ec549314e642f60d59af16514cec0835}{%
|
||||
family={{Advanced Micro Devices (AMD)}},
|
||||
|
@ -111,13 +123,12 @@
|
|||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{Accessed: 2024-08-17}
|
||||
\field{title}{AMD Family 15h Models 30h-3Fh Processors BIOS and Kernel Developer's Guide}
|
||||
\field{year}{2014}
|
||||
\field{title}{AMD SR5690 Databook}
|
||||
\verb{urlraw}
|
||||
\verb https://www.amd.com/system/files/TechDocs/48751_15h_Mod_30h-3Fh_BKDG.pdf
|
||||
\verb https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/datasheets/43869.pdf
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://www.amd.com/system/files/TechDocs/48751_15h_Mod_30h-3Fh_BKDG.pdf
|
||||
\verb https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/datasheets/43869.pdf
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{altera2008}{inproceedings}{}
|
||||
|
@ -194,28 +205,6 @@
|
|||
\verb https://developer.amd.com/
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{amd_psp}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=48af4341f745163f945fa838eeabb062}{%
|
||||
family={{AMD}},
|
||||
familyi={A\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{fullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{bibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorbibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authornamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorfullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\field{extraname}{3}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://www.amd.com/en/technologies/security}}
|
||||
\field{note}{Accessed: 2024-07-05}
|
||||
\field{title}{AMD Platform Security Processor (PSP)}
|
||||
\true{nocite}
|
||||
\endentry
|
||||
\entry{BKDG}{inbook}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=48af4341f745163f945fa838eeabb062}{%
|
||||
|
@ -231,7 +220,7 @@
|
|||
\strng{authorbibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authornamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorfullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\field{extraname}{4}
|
||||
\field{extraname}{3}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -253,7 +242,7 @@
|
|||
\strng{authorbibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authornamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorfullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\field{extraname}{5}
|
||||
\field{extraname}{4}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -284,7 +273,7 @@
|
|||
\strng{authorbibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authornamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorfullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\field{extraname}{6}
|
||||
\field{extraname}{5}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -307,7 +296,7 @@
|
|||
\strng{authorbibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authornamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorfullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\field{extraname}{7}
|
||||
\field{extraname}{6}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -329,7 +318,7 @@
|
|||
\strng{authorbibnamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authornamehash}{48af4341f745163f945fa838eeabb062}
|
||||
\strng{authorfullhash}{48af4341f745163f945fa838eeabb062}
|
||||
\field{extraname}{8}
|
||||
\field{extraname}{7}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -340,28 +329,6 @@
|
|||
\field{year}{2012}
|
||||
\true{nocite}
|
||||
\endentry
|
||||
\entry{anderson_2018}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=d582579a02c17863648cd49b1c91560b}{%
|
||||
family={Anderson},
|
||||
familyi={A\bibinitperiod},
|
||||
given={T.},
|
||||
giveni={T\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{d582579a02c17863648cd49b1c91560b}
|
||||
\strng{fullhash}{d582579a02c17863648cd49b1c91560b}
|
||||
\strng{bibnamehash}{d582579a02c17863648cd49b1c91560b}
|
||||
\strng{authorbibnamehash}{d582579a02c17863648cd49b1c91560b}
|
||||
\strng{authornamehash}{d582579a02c17863648cd49b1c91560b}
|
||||
\strng{authorfullhash}{d582579a02c17863648cd49b1c91560b}
|
||||
\field{sortinit}{A}
|
||||
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://www.pcworld.com/article/3171322/bios-vs-uefi-understanding-the-modern-boot-environment.html}}
|
||||
\field{title}{BIOS vs. UEFI: Understanding the Modern Boot Environment}
|
||||
\field{year}{2018}
|
||||
\endentry
|
||||
\entry{ibm_pc}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=f374c5f07cf19169f9b9d346dd5dc48b}{%
|
||||
|
@ -735,13 +702,12 @@
|
|||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{Accessed: 2024-08-17}
|
||||
\field{title}{Coreboot Memory Management and Payload Allocation}
|
||||
\field{year}{2024}
|
||||
\field{title}{Coreboot Developer Manual}
|
||||
\verb{urlraw}
|
||||
\verb https://doc.coreboot.org/memory-map.html
|
||||
\verb https://www.coreboot.org/Developer_Manual
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://doc.coreboot.org/memory-map.html
|
||||
\verb https://www.coreboot.org/Developer_Manual
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{coreboot_4_11}{misc}{}
|
||||
|
@ -921,7 +887,7 @@
|
|||
\verb https://www.intel.com/content/www/us/en/developer/articles/technical/system-management-mode.html
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{intel_uefi}{misc}{}
|
||||
\entry{Intel2018}{article}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=42af28f239d9ce2a4d0f9a032741150e}{%
|
||||
family={Corporation},
|
||||
|
@ -940,6 +906,30 @@
|
|||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{Intel Developer's Manual}
|
||||
\field{note}{Available online: https://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html}
|
||||
\field{title}{Understanding Intel's Microcode}
|
||||
\field{year}{2018}
|
||||
\endentry
|
||||
\entry{intel_uefi}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=42af28f239d9ce2a4d0f9a032741150e}{%
|
||||
family={Corporation},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Intel},
|
||||
giveni={I\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{42af28f239d9ce2a4d0f9a032741150e}
|
||||
\strng{fullhash}{42af28f239d9ce2a4d0f9a032741150e}
|
||||
\strng{bibnamehash}{42af28f239d9ce2a4d0f9a032741150e}
|
||||
\strng{authorbibnamehash}{42af28f239d9ce2a4d0f9a032741150e}
|
||||
\strng{authornamehash}{42af28f239d9ce2a4d0f9a032741150e}
|
||||
\strng{authorfullhash}{42af28f239d9ce2a4d0f9a032741150e}
|
||||
\field{extraname}{7}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface.html}}
|
||||
\field{title}{Unified Extensible Firmware Interface (UEFI)}
|
||||
\field{year}{2020}
|
||||
|
@ -958,7 +948,7 @@
|
|||
\strng{authorbibnamehash}{91da9dc9e484daf8dc9ed72055907025}
|
||||
\strng{authornamehash}{91da9dc9e484daf8dc9ed72055907025}
|
||||
\strng{authorfullhash}{91da9dc9e484daf8dc9ed72055907025}
|
||||
\field{extraname}{7}
|
||||
\field{extraname}{8}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{4d103a86280481745c9c897c925753c0}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -1145,7 +1135,7 @@
|
|||
\field{pages}{27\bibrangedash 41}
|
||||
\range{pages}{15}
|
||||
\endentry
|
||||
\entry{uefi_spec}{misc}{}
|
||||
\entry{acpi_spec}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=c4a3e6668448f707c96f886df3346fc0}{%
|
||||
family={Forum},
|
||||
|
@ -1164,6 +1154,30 @@
|
|||
\field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf}}
|
||||
\field{note}{Accessed: 2024-07-05}
|
||||
\field{title}{ACPI Specification}
|
||||
\true{nocite}
|
||||
\endentry
|
||||
\entry{uefi_spec}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=c4a3e6668448f707c96f886df3346fc0}{%
|
||||
family={Forum},
|
||||
familyi={F\bibinitperiod},
|
||||
given={UEFI},
|
||||
giveni={U\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{fullhash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{bibnamehash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{authorbibnamehash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{authornamehash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{authorfullhash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\field{extraname}{2}
|
||||
\field{sortinit}{F}
|
||||
\field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://uefi.org/specifications}}
|
||||
\field{title}{UEFI Specification}
|
||||
\field{year}{2021}
|
||||
|
@ -1182,7 +1196,7 @@
|
|||
\strng{authorbibnamehash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{authornamehash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\strng{authorfullhash}{c4a3e6668448f707c96f886df3346fc0}
|
||||
\field{extraname}{2}
|
||||
\field{extraname}{3}
|
||||
\field{sortinit}{F}
|
||||
\field{sortinithash}{2638baaa20439f1b5a8f80c6c08a13b4}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -1508,6 +1522,40 @@
|
|||
\verb https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{herrmann2017dissecting}{misc}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=e18ff7cbbfcdc61f56502bf602f3d175}{%
|
||||
family={Herrmann},
|
||||
familyi={H\bibinitperiod},
|
||||
given={Maximilian},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
{{hash=4f9a2ad1ebed231172893123b8cfd84b}{%
|
||||
family={Niemietz},
|
||||
familyi={N\bibinitperiod},
|
||||
given={Martin},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{325ce8bcc71d701e0ea670c133512cdb}
|
||||
\strng{fullhash}{325ce8bcc71d701e0ea670c133512cdb}
|
||||
\strng{bibnamehash}{325ce8bcc71d701e0ea670c133512cdb}
|
||||
\strng{authorbibnamehash}{325ce8bcc71d701e0ea670c133512cdb}
|
||||
\strng{authornamehash}{325ce8bcc71d701e0ea670c133512cdb}
|
||||
\strng{authorfullhash}{325ce8bcc71d701e0ea670c133512cdb}
|
||||
\field{sortinit}{H}
|
||||
\field{sortinithash}{23a3aa7c24e56cfa16945d55545109b5}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{Conference presentation at the 34th Chaos Communication Congress (34C3)}
|
||||
\field{note}{Accessed: 2024-08-27}
|
||||
\field{title}{Dissecting the AMD Platform Security Processor}
|
||||
\field{year}{2017}
|
||||
\verb{urlraw}
|
||||
\verb https://media.ccc.de/v/thms-38-dissecting-the-amd-platform-security-processor
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://media.ccc.de/v/thms-38-dissecting-the-amd-platform-security-processor
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{hill_impact_caching}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=c5fd1af61abfb4398ded7625bf0ea46f}{%
|
||||
|
@ -1612,7 +1660,7 @@
|
|||
\field{sortinithash}{8d291c51ee89b6cd86bf5379f0b151d8}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{howpublished}{\url{https://www.intel.com/content/www/us/en/architecture-and-technology/intel-management-engine.html}}
|
||||
\field{howpublished}{\url{https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html}}
|
||||
\field{note}{Accessed: 2024-07-05}
|
||||
\field{title}{Intel Management Engine (Intel ME)}
|
||||
\true{nocite}
|
||||
|
@ -1643,6 +1691,34 @@
|
|||
\verb https://io.netgarage.org/me/
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{Johnson1989}{book}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=4b4d002de5f92b71453190d67ffb47fe}{%
|
||||
family={Johnson},
|
||||
familyi={J\bibinitperiod},
|
||||
given={B.W.},
|
||||
giveni={B\bibinitperiod}}}%
|
||||
}
|
||||
\list{location}{1}{%
|
||||
{Englewood Cliffs, NJ}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{Prentice-Hall}%
|
||||
}
|
||||
\strng{namehash}{4b4d002de5f92b71453190d67ffb47fe}
|
||||
\strng{fullhash}{4b4d002de5f92b71453190d67ffb47fe}
|
||||
\strng{bibnamehash}{4b4d002de5f92b71453190d67ffb47fe}
|
||||
\strng{authorbibnamehash}{4b4d002de5f92b71453190d67ffb47fe}
|
||||
\strng{authornamehash}{4b4d002de5f92b71453190d67ffb47fe}
|
||||
\strng{authorfullhash}{4b4d002de5f92b71453190d67ffb47fe}
|
||||
\field{sortinit}{J}
|
||||
\field{sortinithash}{b2f54a9081ace9966a7cb9413811edb4}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{title}{Fault-Tolerant Microprocessor Design}
|
||||
\field{year}{1989}
|
||||
\true{nocite}
|
||||
\endentry
|
||||
\entry{openbmc_customization}{article}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=5a25bc91f524ca6dfc2ecf9f4a13903c}{%
|
||||
|
@ -1704,43 +1780,6 @@
|
|||
\verb https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{amd_psp_overview}{inproceedings}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=9aa60a0635fc104c28dda319ab8cca3d}{%
|
||||
family={Kaplan},
|
||||
familyi={K\bibinitperiod},
|
||||
given={David},
|
||||
giveni={D\bibinitperiod}}}%
|
||||
{{hash=50223c62dee7675ba8f24e625d026c27}{%
|
||||
family={Powell},
|
||||
familyi={P\bibinitperiod},
|
||||
given={Jeremy},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
{{hash=f05ca959cba94cb91d78975fcbee4787}{%
|
||||
family={Woller},
|
||||
familyi={W\bibinitperiod},
|
||||
given={Tom},
|
||||
giveni={T\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{b5e851ee8429e8e91668d1d3551901cd}
|
||||
\strng{fullhash}{b5e851ee8429e8e91668d1d3551901cd}
|
||||
\strng{bibnamehash}{b5e851ee8429e8e91668d1d3551901cd}
|
||||
\strng{authorbibnamehash}{b5e851ee8429e8e91668d1d3551901cd}
|
||||
\strng{authornamehash}{b5e851ee8429e8e91668d1d3551901cd}
|
||||
\strng{authorfullhash}{b5e851ee8429e8e91668d1d3551901cd}
|
||||
\field{sortinit}{K}
|
||||
\field{sortinithash}{c02bf6bff1c488450c352b40f5d853ab}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{Architectural Support for Programming Languages and Operating Systems}
|
||||
\field{title}{AMD Memory Encryption}
|
||||
\field{year}{2016}
|
||||
\field{pages}{149\bibrangedash 160}
|
||||
\range{pages}{12}
|
||||
\verb{doi}
|
||||
\verb 10.1145/2851141.2851148
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{kim2010design}{inproceedings}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=8220787d0eaa6f1c680840bf616c1cf4}{%
|
||||
|
@ -2562,6 +2601,33 @@
|
|||
\verb https://wiki.osdev.org/GOP
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{osdev_uefi}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=981adb9ea98beb2d8a06e293991365f1}{%
|
||||
family={{OSDev Wiki contributors}},
|
||||
familyi={O\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{fullhash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{bibnamehash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{authorbibnamehash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{authornamehash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{authorfullhash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\field{extraname}{1}
|
||||
\field{sortinit}{O}
|
||||
\field{sortinithash}{2cd7140a07aea5341f9e2771efe90aae}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{[Online; accessed 25-August-2024]}
|
||||
\field{title}{{UEFI - OSDev Wiki}}
|
||||
\field{year}{2024}
|
||||
\verb{urlraw}
|
||||
\verb https://wiki.osdev.org/UEFI
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://wiki.osdev.org/UEFI
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{osdev_uefi_memory}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=981adb9ea98beb2d8a06e293991365f1}{%
|
||||
|
@ -2574,12 +2640,13 @@
|
|||
\strng{authorbibnamehash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{authornamehash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\strng{authorfullhash}{981adb9ea98beb2d8a06e293991365f1}
|
||||
\field{extraname}{2}
|
||||
\field{sortinit}{O}
|
||||
\field{sortinithash}{2cd7140a07aea5341f9e2771efe90aae}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{[Online; accessed 25-August-2024]}
|
||||
\field{title}{{UEFI - OSDev Wiki}}
|
||||
\field{title}{{UEFI Memory - OSDev Wiki}}
|
||||
\field{year}{2024}
|
||||
\verb{urlraw}
|
||||
\verb https://wiki.osdev.org/UEFI#Memory
|
||||
|
@ -2624,6 +2691,7 @@
|
|||
\strng{authorbibnamehash}{30947d4473970fd63cd5dcb7c90a8e4a}
|
||||
\strng{authornamehash}{30947d4473970fd63cd5dcb7c90a8e4a}
|
||||
\strng{authorfullhash}{30947d4473970fd63cd5dcb7c90a8e4a}
|
||||
\field{extraname}{1}
|
||||
\field{sortinit}{P}
|
||||
\field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -2711,6 +2779,35 @@
|
|||
\field{note}{Accessed: 2024-07-23}
|
||||
\field{title}{coreboot: Open Source Firmware}
|
||||
\endentry
|
||||
\entry{tianocore_payload}{manual}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=3bca4e299598e8c88e9dbc747a8b3c5c}{%
|
||||
family={Project},
|
||||
familyi={P\bibinitperiod},
|
||||
given={TianoCore},
|
||||
giveni={T\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{3bca4e299598e8c88e9dbc747a8b3c5c}
|
||||
\strng{fullhash}{3bca4e299598e8c88e9dbc747a8b3c5c}
|
||||
\strng{bibnamehash}{3bca4e299598e8c88e9dbc747a8b3c5c}
|
||||
\strng{authorbibnamehash}{3bca4e299598e8c88e9dbc747a8b3c5c}
|
||||
\strng{authornamehash}{3bca4e299598e8c88e9dbc747a8b3c5c}
|
||||
\strng{authorfullhash}{3bca4e299598e8c88e9dbc747a8b3c5c}
|
||||
\field{extraname}{2}
|
||||
\field{sortinit}{P}
|
||||
\field{sortinithash}{ff3bcf24f47321b42cb156c2cc8a8422}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{Accessed: 2024-08-17}
|
||||
\field{title}{TianoCore as a Coreboot Payload}
|
||||
\field{year}{2019}
|
||||
\verb{urlraw}
|
||||
\verb https://github.com/tianocore/tianocore.github.io/wiki/Coreboot_UEFI_payload
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://github.com/tianocore/tianocore.github.io/wiki/Coreboot_UEFI_payload
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{raptor_engineering}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=569ce67269d64596584ac37190233093}{%
|
||||
|
@ -2826,36 +2923,6 @@
|
|||
\field{year}{1994}
|
||||
\true{nocite}
|
||||
\endentry
|
||||
\entry{rudolph2007}{inproceedings}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=9f897e096e6193a84feb0a5b0ca95d1e}{%
|
||||
family={Rudolph},
|
||||
familyi={R\bibinitperiod},
|
||||
given={M.},
|
||||
giveni={M\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{9f897e096e6193a84feb0a5b0ca95d1e}
|
||||
\strng{fullhash}{9f897e096e6193a84feb0a5b0ca95d1e}
|
||||
\strng{bibnamehash}{9f897e096e6193a84feb0a5b0ca95d1e}
|
||||
\strng{authorbibnamehash}{9f897e096e6193a84feb0a5b0ca95d1e}
|
||||
\strng{authornamehash}{9f897e096e6193a84feb0a5b0ca95d1e}
|
||||
\strng{authorfullhash}{9f897e096e6193a84feb0a5b0ca95d1e}
|
||||
\field{sortinit}{R}
|
||||
\field{sortinithash}{5e1c39a9d46ffb6bebd8f801023a9486}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{booktitle}{Proceedings of the Linux Symposium}
|
||||
\field{title}{LinuxBIOS: Open Source Boot Firmware}
|
||||
\field{year}{2007}
|
||||
\field{pages}{159\bibrangedash 167}
|
||||
\range{pages}{9}
|
||||
\verb{urlraw}
|
||||
\verb https://ols.fedoraproject.org/OLS/Reprints-2007/rudolph-Reprint.pdf
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://ols.fedoraproject.org/OLS/Reprints-2007/rudolph-Reprint.pdf
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{russinovich2012}{book}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=4c2da4e3b650f0a6bffc044b397680cc}{%
|
||||
|
@ -3190,32 +3257,6 @@
|
|||
\verb https://www.aspeedtech.com/products.php?fPath=20&rId=29
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{tianocore_payload}{manual}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=632f06b41d4b1b901fc37d1cf32e810f}{%
|
||||
family={{TianoCore Project}},
|
||||
familyi={T\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{632f06b41d4b1b901fc37d1cf32e810f}
|
||||
\strng{fullhash}{632f06b41d4b1b901fc37d1cf32e810f}
|
||||
\strng{bibnamehash}{632f06b41d4b1b901fc37d1cf32e810f}
|
||||
\strng{authorbibnamehash}{632f06b41d4b1b901fc37d1cf32e810f}
|
||||
\strng{authornamehash}{632f06b41d4b1b901fc37d1cf32e810f}
|
||||
\strng{authorfullhash}{632f06b41d4b1b901fc37d1cf32e810f}
|
||||
\field{sortinit}{T}
|
||||
\field{sortinithash}{9af77f0292593c26bde9a56e688eaee9}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{Accessed: 2024-08-17}
|
||||
\field{title}{TianoCore as a Coreboot Payload}
|
||||
\field{year}{2024}
|
||||
\verb{urlraw}
|
||||
\verb https://doc.coreboot.org/payloads/tianocore.html
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://doc.coreboot.org/payloads/tianocore.html
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{uefi_what_is_uefi}{manual}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=018a60b8cb2aa8763314c4672515eee5}{%
|
||||
|
@ -3242,36 +3283,6 @@
|
|||
\verb https://uefi.org/sites/default/files/resources/What%20is%20UEFI-Aug31-2023-Final.pdf
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{lip6_annuaire}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=a220fc1da6562fa2e1e0bc05c201b485}{%
|
||||
family={Université/CNRS},
|
||||
familyi={U\bibinitperiod},
|
||||
given={Sorbonne},
|
||||
giveni={S\bibinitperiod}}}%
|
||||
}
|
||||
\strng{namehash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{fullhash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{bibnamehash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{authorbibnamehash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{authornamehash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{authorfullhash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\field{extraname}{1}
|
||||
\field{sortinit}{U}
|
||||
\field{sortinithash}{6901a00e45705986ee5e7ca9fd39adca}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{note}{[Online; accessed 7-May-2024]}
|
||||
\field{title}{Annuaire LIP6}
|
||||
\field{year}{2024}
|
||||
\true{nocite}
|
||||
\verb{urlraw}
|
||||
\verb https://www.lip6.fr/recherche/resultat.php?keyword=&find=Rechercher+au+LIP6
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://www.lip6.fr/recherche/resultat.php?keyword=&find=Rechercher+au+LIP6
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{lip6_web}{misc}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=a220fc1da6562fa2e1e0bc05c201b485}{%
|
||||
|
@ -3286,7 +3297,6 @@
|
|||
\strng{authorbibnamehash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{authornamehash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\strng{authorfullhash}{a220fc1da6562fa2e1e0bc05c201b485}
|
||||
\field{extraname}{2}
|
||||
\field{sortinit}{U}
|
||||
\field{sortinithash}{6901a00e45705986ee5e7ca9fd39adca}
|
||||
\field{labelnamesource}{author}
|
||||
|
@ -3380,10 +3390,10 @@
|
|||
\field{note}{Accessed: 2024-08-17}
|
||||
\field{title}{Vikings Hardware Recommendations for KGPE-D16}
|
||||
\verb{urlraw}
|
||||
\verb https://wiki.vikings.net/KGPE-D16
|
||||
\verb https://wiki.vikings.net/hardware:kgpe-d16?s[]=kgpe&s[]=d16
|
||||
\endverb
|
||||
\verb{url}
|
||||
\verb https://wiki.vikings.net/KGPE-D16
|
||||
\verb https://wiki.vikings.net/hardware:kgpe-d16?s[]=kgpe&s[]=d16
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{WangDong2019AIUb}{article}{}
|
||||
|
@ -4049,6 +4059,35 @@
|
|||
\verb https://en.wikipedia.org/w/index.php?title=X86&oldid=1221800539
|
||||
\endverb
|
||||
\endentry
|
||||
\entry{Wilcox2018}{article}{}
|
||||
\true{moreauthor}
|
||||
\true{morelabelname}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=d915a447c9041e20fdda667e3b695b20}{%
|
||||
family={Wilcox},
|
||||
familyi={W\bibinitperiod},
|
||||
given={J.},
|
||||
giveni={J\bibinitperiod}}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{IEEE}%
|
||||
}
|
||||
\strng{namehash}{87362f1ffa0b785aa0493de03bf223e6}
|
||||
\strng{fullhash}{87362f1ffa0b785aa0493de03bf223e6}
|
||||
\strng{bibnamehash}{87362f1ffa0b785aa0493de03bf223e6}
|
||||
\strng{authorbibnamehash}{87362f1ffa0b785aa0493de03bf223e6}
|
||||
\strng{authornamehash}{87362f1ffa0b785aa0493de03bf223e6}
|
||||
\strng{authorfullhash}{87362f1ffa0b785aa0493de03bf223e6}
|
||||
\field{sortinit}{W}
|
||||
\field{sortinithash}{4315d78024d0cea9b57a0c6f0e35ed0d}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{journaltitle}{Proceedings of the 2018 IEEE International Symposium on High-Performance Computer Architecture}
|
||||
\field{title}{Understanding and Mitigating the Microcode Update Latency}
|
||||
\field{year}{2018}
|
||||
\field{pages}{234\bibrangedash 245}
|
||||
\range{pages}{12}
|
||||
\endentry
|
||||
\entry{winbond}{manual}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=506790477fe03844712a0c66579f17d0}{%
|
||||
|
|
Binary file not shown.
|
@ -285,7 +285,7 @@
|
|||
disk I/O operations through BIOS interrupts were slower compared
|
||||
to later direct access methods provided by operating systems,
|
||||
resulting in performance bottlenecks, especially for disk-intensive
|
||||
operations \cite{anderson_2018}. Early BIOS
|
||||
operations \cite{osdev_uefi}. Early BIOS
|
||||
implementations also had minimal security features. There were no
|
||||
mechanisms to verify the integrity of the BIOS code or to protect
|
||||
against unauthorized modifications, leaving systems vulnerable to
|
||||
|
@ -302,7 +302,7 @@
|
|||
capacities have increased. Furthermore, the traditional BIOS has
|
||||
limited flexibility and is challenging to update or extend. This
|
||||
inflexibility restricts the ability to support new hardware and
|
||||
technologies efficiently \cite{anderson_2018}\cite{acmcs2015}.
|
||||
technologies efficiently \cite{osdev_uefi}\cite{acmcs2015}.
|
||||
|
||||
\section{Modern BIOS and UEFI}
|
||||
|
||||
|
@ -352,7 +352,7 @@
|
|||
security features such as \textit{Secure Boot}, which ensures that
|
||||
only trusted software can be executed during the boot process,
|
||||
thereby protecting the system from unauthorized modifications and
|
||||
malware \cite{anderson_2018}\cite{chang2013}. \\
|
||||
malware \cite{osdev_uefi}\cite{chang2013}. \\
|
||||
|
||||
The industry-wide support and standardization of UEFI have accelerated
|
||||
its adoption across various platforms and devices. Major industry
|
||||
|
@ -381,8 +381,8 @@
|
|||
required to initialize hardware and pass control to a payload, such
|
||||
as a bootloader or operating system kernel. This minimalist approach
|
||||
reduces the attack surface and potential for security vulnerabilities,
|
||||
as there is less code that could be exploited by malicious actors
|
||||
\cite{rudolph2007}. Another significant benefit of \textit{coreboot}
|
||||
as there is less code that could be exploited by malicious actors.
|
||||
Another significant benefit of \textit{coreboot}
|
||||
is its libre nature. Unlike UEFI, which is controlled by a consortium
|
||||
of hardware and software vendors, \textit{coreboot}'s source code
|
||||
is freely available and can be audited, modified, and improved by
|
||||
|
@ -454,7 +454,7 @@
|
|||
the CPU, memory, and essential peripherals before passing control to
|
||||
the operating system's bootloader. This process was relatively simple,
|
||||
given the limited capabilities and straightforward architecture of
|
||||
early computer systems \cite{anderson_2018}.
|
||||
early computer systems \cite{osdev_uefi}.
|
||||
|
||||
As computer systems advanced, particularly with the advent of more
|
||||
sophisticated memory technologies, the role of firmware expanded
|
||||
|
@ -496,7 +496,7 @@
|
|||
firmware provides tools for enthusiasts to push their systems beyond
|
||||
default limits. At the same time, it includes safeguards to manage
|
||||
the risks of instability and hardware damage, balancing performance
|
||||
gains with system reliability \cite{anderson_2018}. \\
|
||||
gains with system reliability \cite{osdev_uefi}. \\
|
||||
|
||||
In summary, the evolution of firmware from simple hardware
|
||||
initialization routines to complex management systems reflects the
|
||||
|
@ -1360,7 +1360,7 @@
|
|||
of the main CPU. These subsystems are fundamental to the security
|
||||
architecture of modern computing platforms, providing functions such as
|
||||
secure boot, cryptographic key management, and remote system management
|
||||
\cite{amd_psp_overview}.
|
||||
\cite{herrmann2017dissecting}.
|
||||
|
||||
The AMD PSP is based on an ARM Cortex-A5 processor and is responsible
|
||||
for several security functions, including the validation of firmware
|
||||
|
@ -1368,7 +1368,7 @@
|
|||
functions, and handling cryptographic operations such as key generation
|
||||
and storage. The PSP operates independently of the main x86 cores,
|
||||
which allows it to execute security functions even when the main system
|
||||
is powered off or compromised by malware \cite{amd_psp_overview}.
|
||||
is powered off or compromised by malware \cite{herrmann2017dissecting}.
|
||||
The PSP's isolated environment ensures that sensitive operations are
|
||||
protected from threats that could affect the main OS. \\
|
||||
|
||||
|
@ -2249,7 +2249,7 @@
|
|||
containing crucial information for detecting and initializing
|
||||
memory modules. \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{listing}[H]
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
\inputminted{c}{
|
||||
listings/src_northbridge_amd_amdfam10_raminit_sysinfo_in_ram.c}
|
||||
|
@ -2267,7 +2267,7 @@
|
|||
(lst. \ref{lst:mctAutoInitMCT_D_1}) from
|
||||
\path{src/northbridge/amd/amdmct/mct_ddr3/mct_d.c},
|
||||
which is responsible for the initial memory initialization,
|
||||
predominantly written by Raptor Engineering.
|
||||
predominantly written by Raptor Engineering. \\
|
||||
|
||||
At this stage, it is assumed that memory has been pre-mapped
|
||||
contiguously from address 0 to 4GB and that the previous code
|
||||
|
@ -2503,7 +2503,7 @@ if (nv_DQSTrainCTL) {
|
|||
* below.*/
|
||||
TrainReceiverEn_D(pMCTstat, pDCTstatA, FirstPass);
|
||||
mct_TrainDQSPos_D(pMCTstat, pDCTstatA);
|
||||
[...]
|
||||
...
|
||||
TrainMaxRdLatency_En_D(pMCTstat, pDCTstatA);
|
||||
} else {
|
||||
mct_WriteLevelization_HW(pMCTstat, pDCTstatA, FirstPass);
|
||||
|
@ -2617,7 +2617,7 @@ mctHookAfterAnyTraining();
|
|||
(\path{global_phy_training_status}) aggregates the results of
|
||||
each step, tracking any persistent issues. \\
|
||||
|
||||
The \path{PhyWLPass1} and \path{PhyWLPass1} function relyon
|
||||
The \path{PhyWLPass1} and \path{PhyWLPass2} function relyon
|
||||
\path{AgesaHwWlPhase1}, \path{AgesaHwWlPhase2} and
|
||||
\path{AgesaHwWlPhase3} for this. \\
|
||||
|
||||
|
@ -2674,7 +2674,8 @@ if (Pass == FirstPass) {
|
|||
The write leveling process begins by selecting the target
|
||||
DIMM. This is accomplished by programming the
|
||||
\path{TrDimmSel} register to ensure that the subsequent
|
||||
operations apply to the correct DIMM. \\
|
||||
operations apply to the correct DIMM
|
||||
(lst. \ref{lst:target_dimm_selection}) \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -2695,7 +2696,7 @@ set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
|
|||
memory configurations, write leveling must be performed
|
||||
separately for each nibble (4-bit group). The function
|
||||
checks if x4 DIMMs are present and, if so, prepares to train
|
||||
both nibbles. \\
|
||||
both nibbles (lst. \ref{lst:x4_dimm_handling}). \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -2715,7 +2716,8 @@ if (pDCTstat->Dimmx4Present)
|
|||
|
||||
The DIMMs are prepared for write leveling by issuing Mode
|
||||
Register (MR) commands. These commands configure the DIMMs
|
||||
to enter a state where write leveling can be performed. \\
|
||||
to enter a state where write leveling can be performed
|
||||
(lst. \ref{lst:prepare_dimms}). \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -2736,7 +2738,8 @@ prepareDimms(pMCTstat, pDCTstat, dct, dimm, TRUE);
|
|||
gross and fine delays, which are essential for the
|
||||
subsequent timing adjustments. \\
|
||||
|
||||
\path{procConfig} generates initial seed values for gross
|
||||
\path{procConfig} generates initial seed values
|
||||
(lst. \ref{lst:seed_generation}) for gross
|
||||
and fine delays. These seeds are calculated based on several
|
||||
factors:
|
||||
|
||||
|
@ -2781,7 +2784,8 @@ Seed_Fine = Seed_Total & 0x1f;
|
|||
|
||||
Write leveling is initiated by enabling the
|
||||
\path{WrtLvTrEn} bit. This allows the DDR PHY to begin
|
||||
adjusting the DQS signals relative to the clock signals. \\
|
||||
adjusting the DQS signals relative to the clock signals
|
||||
(lst. \ref{lst:initiate_write_leveling}). \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -2798,7 +2802,8 @@ set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
|
|||
\end{listing}
|
||||
|
||||
If the DIMM is not x4, the function skips the nibble
|
||||
training loop, as it is unnecessary. \\
|
||||
training loop, as it is unnecessary
|
||||
(lst. \ref{lst:exit_non_x4}). \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -2816,9 +2821,10 @@ if ((pDCTstat->Dimmx4Present & (1 << (dimm + dct))) == 0)
|
|||
|
||||
After a delay to allow the leveling process to stabilize,
|
||||
the function reads the gross and fine delay values from the
|
||||
relevant registers and stores them. These values represent
|
||||
the initial timing adjustments necessary for correct DQS
|
||||
alignment. \\
|
||||
relevant registers and stores them
|
||||
(lst. \ref{lst:finalize_write_leveling}). These values
|
||||
represent the initial timing adjustments necessary for
|
||||
correct DQS alignment. \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -2843,7 +2849,8 @@ for (ByteLane = 0; ByteLane < lane_count; ByteLane++) {
|
|||
|
||||
The function \path{TrainDQSRdWrPos_D_Fam15} orchestrates this
|
||||
process by iterating over memory lanes and adjusting timing
|
||||
parameters to find optimal settings. It is called by
|
||||
parameters to find optimal settings
|
||||
(lst. \ref{lst:dqs_train_init}). It is called by
|
||||
\path{mct_TrainDQSPos_D}. \\
|
||||
|
||||
The function begins by initializing several variables and
|
||||
|
@ -2885,7 +2892,8 @@ for (Receiver = receiver_start; Receiver < receiver_end; Receiver++) {
|
|||
|
||||
For each lane in the memory channel, the function iterates over
|
||||
possible write and read delay values to find the optimal
|
||||
configuration. This is done by:
|
||||
configuration (lst. \ref{lst:dqs_train_iteration}).
|
||||
This is done by:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Iterating over the write data delay values from the
|
||||
|
@ -2910,8 +2918,10 @@ for (current_write_data_delay[lane] = initial_write_dqs_delay[lane];
|
|||
current_read_dqs_delay[lane] < 0x20;
|
||||
current_read_dqs_delay[lane]++) {
|
||||
...
|
||||
write_dqs_read_data_timing_registers(current_read_dqs_delay, dev, dct, dimm, index_reg);
|
||||
read_dram_dqs_training_pattern_fam15(pMCTstat, pDCTstat, dct, Receiver, lane, ((check_antiphase == 0)?1:0));
|
||||
write_dqs_read_data_timing_registers(
|
||||
current_read_dqs_delay, dev, dct, dimm, index_reg);
|
||||
read_dram_dqs_training_pattern_fam15(
|
||||
pMCTstat, pDCTstat, dct, Receiver, lane, ((check_antiphase == 0)?1:0));
|
||||
...
|
||||
}
|
||||
}
|
||||
|
@ -2932,8 +2942,8 @@ for (current_write_data_delay[lane] = initial_write_dqs_delay[lane];
|
|||
\\
|
||||
|
||||
After iterating over all possible delay values, the function
|
||||
processes the results to determine the best DQS delay settings.
|
||||
\\
|
||||
processes the results to determine the best DQS delay settings
|
||||
(lst. \ref{lst:dqs_train_results}). \\
|
||||
|
||||
This is done by:
|
||||
|
||||
|
@ -2953,7 +2963,8 @@ for (current_write_data_delay[lane] = initial_write_dqs_delay[lane];
|
|||
if (best_count > 2) {
|
||||
uint16_t region_center = (best_pos + (best_count / 2));
|
||||
if (region_center < 16) {
|
||||
printk(BIOS_WARNING, "TrainDQSRdWrPos: negative DQS recovery delay detected!");
|
||||
printk(BIOS_WARNING,
|
||||
"TrainDQSRdWrPos: negative DQS recovery delay detected!");
|
||||
region_center = 0;
|
||||
} else {
|
||||
region_center -= 16;
|
||||
|
@ -2961,7 +2972,8 @@ if (best_count > 2) {
|
|||
...
|
||||
current_read_dqs_delay[lane] = region_center;
|
||||
passing_dqs_delay_found[lane] = 1;
|
||||
write_dqs_read_data_timing_registers(current_read_dqs_delay, dev, dct, dimm, index_reg);
|
||||
write_dqs_read_data_timing_registers(
|
||||
current_read_dqs_delay, dev, dct, dimm, index_reg);
|
||||
}
|
||||
\end{minted}
|
||||
\end{adjustwidth}
|
||||
|
@ -2973,7 +2985,8 @@ if (best_count > 2) {
|
|||
\end{listing}
|
||||
|
||||
Finally, the function checks if any lane did not find a valid
|
||||
passing region. If any lanes failed to find a passing DQS delay,
|
||||
passing region (lst. \ref{lst:dqs_train_finalize}).
|
||||
If any lanes failed to find a passing DQS delay,
|
||||
the \path{Errors} flag is set, and this error is propagated
|
||||
through the \path{pDCTstat->TrainErrors} and
|
||||
\path{pDCTstat->ErrStatus} variables.
|
||||
|
@ -3002,16 +3015,6 @@ return !Errors;
|
|||
\label{lst:dqs_train_finalize}
|
||||
\end{listing}
|
||||
|
||||
The DQS position training algorithm implemented in the
|
||||
\path{TrainDQSRdWrPos_D_Fam15} function systematically explores
|
||||
the possible delay settings for reading and writing operations
|
||||
in the memory system. By iterating over a range of values, the
|
||||
function identifies the optimal delays that result in reliable
|
||||
data transfer. The results are carefully processed to ensure
|
||||
that the best possible settings are applied, with checks and
|
||||
balances in place to handle edge cases and potential errors.
|
||||
\\
|
||||
|
||||
\subsubsection{Details on the DQS receiver training function}
|
||||
|
||||
In AMD Fam15h G34 processors, the DQS receiver enable training
|
||||
|
@ -3048,7 +3051,8 @@ return !Errors;
|
|||
are specific to the memory configuration and are adjusted based
|
||||
on the type of DIMM and the number of DIMMs in each channel. \\
|
||||
|
||||
The generated seed values are then adjusted based on the
|
||||
The generated seed values are then adjusted
|
||||
(lst. \ref{lst:seed_adjustment}) based on the
|
||||
operating frequency of the memory (MEMCLK). The adjustment
|
||||
scales the seed values to account for the difference between
|
||||
the current memory frequency and the minimum supported
|
||||
|
@ -3071,7 +3075,8 @@ initial_seed = (uint16_t) (((((uint64_t) initial_seed) *
|
|||
\end{listing}
|
||||
|
||||
Once the seeds are generated and adjusted, they are used to set
|
||||
the initial delay values for the DQS receiver enable training.
|
||||
the initial delay values for the DQS receiver enable training
|
||||
(lst. \ref{lst:initial_delay_values}).
|
||||
The delay values are split into two components: gross delay and
|
||||
fine delay. The gross delay determines the overall timing
|
||||
offset, while the fine delay adjusts the timing with finer
|
||||
|
@ -3112,7 +3117,7 @@ for (lane = 0; lane < lane_count; lane++) {
|
|||
prepared for training. This includes enabling the training mode,
|
||||
configuring the memory channels, and disabling certain features
|
||||
such as ECC (Error-Correcting Code) to prevent interference
|
||||
during training. \\
|
||||
during training (lst. \ref{lst:initialization_phase}). \\
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -3121,7 +3126,7 @@ fam15EnableTrainingMode(pMCTstat, pDCTstat, ch, 1);
|
|||
_DisableDramECC = mct_DisableDimmEccEn_D(pMCTstat, pDCTstat);
|
||||
\end{minted}
|
||||
\end{adjustwidth}
|
||||
\caption{Initialization phase: Enabling training mode and disabling ECC,
|
||||
\caption{Enabling training mode and disabling ECC,
|
||||
extract from
|
||||
\protect\path{dqsTrainRcvrEn_SW_Fam15} function in
|
||||
\protect\path{src/northbridge/amd/amdmct/mct_ddr3/mctsrc.c}}
|
||||
|
@ -3130,7 +3135,8 @@ _DisableDramECC = mct_DisableDimmEccEn_D(pMCTstat, pDCTstat);
|
|||
|
||||
The training phase is where the actual alignment of the DQS
|
||||
signal occurs. The memory controller iterates over each DIMM and
|
||||
each lane, applying the seed values and adjusting the delay
|
||||
each lane (lst. \ref{lst:training_phase}),
|
||||
applying the seed values and adjusting the delay
|
||||
registers accordingly. For each DIMM, the training is performed
|
||||
twice: once for the first nibble (lower 4 bits) and once for
|
||||
the second nibble (upper 4 bits) if the DIMM is x4. \\
|
||||
|
@ -3141,7 +3147,8 @@ _DisableDramECC = mct_DisableDimmEccEn_D(pMCTstat, pDCTstat);
|
|||
for (rank = 0; rank < (_2Ranks + 1); rank++) {
|
||||
for (nibble = 0; nibble < (train_both_nibbles + 1); nibble++) {
|
||||
...
|
||||
write_dqs_receiver_enable_control_registers(current_total_delay, dev, Channel, dimm, index_reg);
|
||||
write_dqs_receiver_enable_control_registers(
|
||||
current_total_delay, dev, Channel, dimm, index_reg);
|
||||
...
|
||||
}
|
||||
}
|
||||
|
@ -3160,7 +3167,8 @@ for (rank = 0; rank < (_2Ranks + 1); rank++) {
|
|||
is correctly aligned across all lanes and ranks. \\
|
||||
|
||||
In the finalization phase, the memory controller exits the
|
||||
training mode, and the computed delay values are written back to
|
||||
training mode (lst. \ref{lst:finalization_phase}),
|
||||
and the computed delay values are written back to
|
||||
the appropriate registers. This ensures that the DQS signal
|
||||
remains correctly aligned during normal operation. \\
|
||||
|
||||
|
@ -3200,7 +3208,7 @@ if (Pass == FirstPass) {
|
|||
In the seed adjustment section for the second pass of training,
|
||||
the code includes a \path{TODO} comment regarding fetching the
|
||||
correct value from \path{RC2[0]} for the \path{addr_prelaunch}
|
||||
variable:
|
||||
variable (lst. \ref{lst:todo_rc2}).
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -3223,7 +3231,8 @@ uint8_t addr_prelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
is unclear about what RC2[0] really means. \\
|
||||
|
||||
The code contains another \path{TODO} comment indicating that
|
||||
the support for Load Reduced DIMMs (LRDIMMs) is unimplemented:
|
||||
the support for Load Reduced DIMMs (LRDIMMs) is unimplemented
|
||||
(lst. \ref{lst:todo_lrdimm}).
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -3257,7 +3266,8 @@ else if ((pDCTstat->Status & (1 << SB_LoadReduced))) {
|
|||
flawed or incomplete. \\
|
||||
|
||||
The first \path{FIXME} comment questions the usage of the
|
||||
\path{SSEDIS} setting during the training process:
|
||||
\path{SSEDIS} setting during the training process
|
||||
(lst. \ref{lst:fixme_ssedis}).
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -3265,12 +3275,13 @@ else if ((pDCTstat->Status & (1 << SB_LoadReduced))) {
|
|||
msr = HWCR_MSR;
|
||||
_RDMSR(msr, &lo, &hi);
|
||||
/* FIXME: Why use SSEDIS */
|
||||
if (lo & (1 << 17)) { /* save the old value */
|
||||
_Wrap32Dis = 1;
|
||||
if (lo & (1 << 17)) { /* save the old value */
|
||||
_Wrap32Dis = 1;
|
||||
}
|
||||
lo |= (1 << 17); /* HWCR.wrap32dis */
|
||||
lo &= ~(1 << 15); /* SSEDIS */
|
||||
_WRMSR(msr, lo, hi); /* Setting wrap32dis allows 64-bit memory references in real mode */
|
||||
lo |= (1 << 17); /* HWCR.wrap32dis */
|
||||
lo &= ~(1 << 15); /* SSEDIS */
|
||||
_WRMSR(msr, lo, hi); /* Setting wrap32dis allows 64-bit memory
|
||||
* references in real mode */
|
||||
\end{minted}
|
||||
\end{adjustwidth}
|
||||
\caption{Questioning the use of
|
||||
|
@ -3289,7 +3300,8 @@ _WRMSR(msr, lo, hi); /* Setting wrap32dis allows 64-bit memory references in rea
|
|||
\\
|
||||
|
||||
The code also highlights a potential misprint in the BKDG
|
||||
regarding the \path{WrDqDqsEarly} value:
|
||||
regarding the \path{WrDqDqsEarly} value
|
||||
(lst. \ref{lst:fixme_misprint}).
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -3320,10 +3332,32 @@ _WRMSR(msr, lo, hi); /* Setting wrap32dis allows 64-bit memory references in rea
|
|||
|
||||
The logic for adjusting the seed values based on the memory
|
||||
frequency and the platform's minimum supported frequency is
|
||||
complex and prone to errors, especially when combined with the
|
||||
incomplete \path{TODO} features. The risk here is that incorrect
|
||||
complex and prone to errors
|
||||
(lst. \ref{lst:seed_adjustment_logic}),
|
||||
especially when combined with the
|
||||
incomplete \path{TODO} features.
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
\begin{minted}[linenos]{c}
|
||||
initial_seed = (uint16_t) (((((uint64_t) initial_seed) *
|
||||
fam15h_freq_tab[mem_clk] * 100) / (min_mem_clk * 100)));
|
||||
\end{minted}
|
||||
\end{adjustwidth}
|
||||
\caption{Complex seed adjustment logic,
|
||||
extract from
|
||||
\protect\path{dqsTrainRcvrEn_SW_Fam15} function in
|
||||
\protect\path{src/northbridge/amd/amdmct/mct_ddr3/mcrsrc.c}}
|
||||
\label{lst:seed_adjustment_logic}
|
||||
\end{listing}
|
||||
|
||||
The risk here is that incorrect
|
||||
seed values could be used, leading to timing mismatches during
|
||||
the training process. It seems that that seeds for used for DQS
|
||||
the training process. \\
|
||||
|
||||
Added to that, stock seeds from the BKDG are used
|
||||
(lst. \ref{lst:dqs_receiver_training_seeds}).
|
||||
However, it seems that that seeds for used for DQS
|
||||
training should be extensively determined for each motherboard,
|
||||
and the BKDG \cite{BKDG} does not tell otherwise. Moreover,
|
||||
seeds can be configured uniquely for every possible socket,
|
||||
|
@ -3376,20 +3410,6 @@ if (pDCTstat->Status & (1 << SB_Registered)) {
|
|||
\label{lst:dqs_receiver_training_seeds}
|
||||
\end{listing}
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
\begin{minted}[linenos]{c}
|
||||
initial_seed = (uint16_t) (((((uint64_t) initial_seed) *
|
||||
fam15h_freq_tab[mem_clk] * 100) / (min_mem_clk * 100)));
|
||||
\end{minted}
|
||||
\end{adjustwidth}
|
||||
\caption{Complex seed adjustment logic,
|
||||
extract from
|
||||
\protect\path{dqsTrainRcvrEn_SW_Fam15} function in
|
||||
\protect\path{src/northbridge/amd/amdmct/mct_ddr3/mcrsrc.c}}
|
||||
\label{lst:seed_adjustment_logic}
|
||||
\end{listing}
|
||||
|
||||
The current implementation also has limited error handling and
|
||||
reporting. While some errors are detected during training, the
|
||||
code does not have robust mechanisms for recovering from or
|
||||
|
@ -3420,7 +3440,8 @@ initial_seed = (uint16_t) (((((uint64_t) initial_seed) *
|
|||
the correct or final value for this variable, once again because
|
||||
of a value from RC2[0] that isn't fetched, potentially
|
||||
leading to inaccuracies in the seed values used during write
|
||||
leveling. This inaccuracy can result in timing mismatches, which
|
||||
leveling (lst. \ref{lst:todo_seed_generation}).
|
||||
This inaccuracy can result in timing mismatches, which
|
||||
may cause data corruption or other stability issues. \\
|
||||
|
||||
\begin{listing}
|
||||
|
@ -3440,7 +3461,8 @@ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
Another \path{FIXME} in the code indicates that the
|
||||
\path{WrDqDqsEarly} parameter, which is critical for fine-tuning
|
||||
the DQS signal’s timing during write operations, is being
|
||||
ignored due to unresolved issues. This omission can result in
|
||||
ignored due to unresolved issues
|
||||
(lst. \ref{lst:fixme_wrdqdqs_early}). This omission can result in
|
||||
less accurate timing adjustments, leading to potential marginal
|
||||
instability in systems where tight timing margins are critical.
|
||||
\\
|
||||
|
@ -3460,7 +3482,8 @@ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
\end{listing}}
|
||||
|
||||
The current implementation uses generic or "stock" seed values
|
||||
for certain configurations, such as Socket G34. Without
|
||||
for certain configurations, such as Socket G34
|
||||
(lst. \ref{lst:fixme_mainboard_specific_overrides}). Without
|
||||
mainboard-specific overrides, the memory initialization process
|
||||
might not be fully optimized for the particular motherboard in
|
||||
use. This could result in suboptimal performance or stability
|
||||
|
@ -3484,7 +3507,8 @@ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
|
||||
In \path{AgesaHwWlPhase2}, there is a \path{FIXME} comment that
|
||||
suggests that the Critical Gross Delay adjustment has been
|
||||
temporarily disabled due to conflicts with RDIMM training.
|
||||
temporarily disabled due to conflicts with RDIMM training
|
||||
(lst. \ref{lst:fixme_cgd_adjustment}).
|
||||
Disabling this adjustment can lead to less precise DQS alignment,
|
||||
especially in complex memory configurations like those using
|
||||
RDIMMs, potentially causing instability or degraded performance.
|
||||
|
@ -3505,8 +3529,8 @@ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
\label{lst:fixme_cgd_adjustment}
|
||||
\end{listing}
|
||||
|
||||
The function also bypasses certain
|
||||
critical adjustments if the memory speed is being tuned (e.g.,
|
||||
The function also bypasses (lst. \ref{lst:fixme_bypass_critical_adjustments})
|
||||
certain critical adjustments if the memory speed is being tuned (e.g.,
|
||||
during frequency stepping). This bypass is noted as a temporary
|
||||
measure due to problems encountered during testing, where the
|
||||
first pass values were found to cause issues with PHY training
|
||||
|
@ -3520,7 +3544,8 @@ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
\begin{minted}[linenos]{c}
|
||||
/* FIXME: Using the Pass 1 training values causes major phy training problems on
|
||||
* all Family 15h processors I tested (Pass 1 values are randomly too high,
|
||||
* and Pass 2 cannot lock). Figure out why this is and fix it, then remove the bypass code below... */
|
||||
* and Pass 2 cannot lock). Figure out why this is and fix it, then remove
|
||||
* the bypass code below... */
|
||||
\end{minted}
|
||||
\end{adjustwidth}
|
||||
\caption{Bypass of critical
|
||||
|
@ -3533,7 +3558,8 @@ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
|
|||
|
||||
The current implementation attempts to compensate for noise and
|
||||
instability by overriding faulty values with seed values in
|
||||
\path{AgesaHwWlPhase2}. However, this approach is somewhat blunt
|
||||
\path{AgesaHwWlPhase2} (lst. \ref{lst:reactive_error_handling}).
|
||||
However, this approach is somewhat blunt
|
||||
and reactive, addressing the symptoms rather than the underlying
|
||||
causes of instability. This method does not ensure that noise or
|
||||
instability is sufficiently mitigated, potentially leading to
|
||||
|
@ -3646,7 +3672,8 @@ if (faulty_value_detected) {
|
|||
\item The warning issued when a negative DQS recovery delay
|
||||
is detected suggests that the function continues despite
|
||||
recognizing a potentially critical issue, which could
|
||||
lead to system instability.
|
||||
lead to system instability
|
||||
(lst. \ref{lst:dqs_train_negative_delay}).
|
||||
\item The averaging of delay values for dual-rank DIMMs does
|
||||
not account for the possibility of significant
|
||||
discrepancies between the ranks, which could result in
|
||||
|
@ -3663,7 +3690,8 @@ if (faulty_value_detected) {
|
|||
if (best_count > 2) {
|
||||
uint16_t region_center = (best_pos + (best_count / 2));
|
||||
if (region_center < 16) {
|
||||
printk(BIOS_WARNING, "TrainDQSRdWrPos: negative DQS recovery delay detected!");
|
||||
printk(BIOS_WARNING,
|
||||
"TrainDQSRdWrPos: negative DQS recovery delay detected!");
|
||||
region_center = 0;
|
||||
} else {
|
||||
region_center -= 16;
|
||||
|
@ -3679,7 +3707,7 @@ if (best_count > 2) {
|
|||
extract from
|
||||
\protect\path{TrainDQSRdWrPos_D_Fam15} function in
|
||||
\protect\path{src/northbridge/amd/amdmct/mct_ddr3/mctdqs_d.c}}
|
||||
\label{lst:dqs_train_results}
|
||||
\label{lst:dqs_train_negative_delay}
|
||||
\end{listing}
|
||||
|
||||
Improving the handling of edge cases and boundary conditions,
|
||||
|
@ -4127,6 +4155,30 @@ if (best_count > 2) {
|
|||
security of VMs. The OS, in this context, operates similarly to a VM
|
||||
that does not have full control over the hardware it ostensibly manages. \\
|
||||
|
||||
\section{Processors microcode}
|
||||
|
||||
Modern CPUs are incredibly complex, with their functionality relying
|
||||
heavily on microcode to interpret and execute instructions. Microcode
|
||||
acts as a translation layer between the high-level instructions that
|
||||
software provides and the lower-level operations that the hardware
|
||||
can execute. Microcode operates directly within the CPU. \\
|
||||
|
||||
CPU microcode is a set of low-level firmware instructions embedded
|
||||
within the processor. It translates complex machine instructions into
|
||||
simpler, executable sequences of operations that the CPU's hardware
|
||||
can directly perform \cite{Intel2018}. This layer of abstraction allows
|
||||
CPU manufacturers to update or patch the behavior of the processor
|
||||
post-manufacturing, which is crucial for addressing bugs, optimizing
|
||||
performance, and applying security patches \cite{Wilcox2018}.
|
||||
|
||||
In a sense, microcode can be seen as an argument for the CPU running
|
||||
a form of low-level virtual machine. Just as a VM abstracts and manages
|
||||
hardware resources for a guest OS, microcode abstracts and manages the
|
||||
complexity of CPU hardware for machine-level instructions. This
|
||||
virtualization enables the CPU to support a wide variety of instructions
|
||||
and operational modes without needing to change the underlying hardware
|
||||
\cite{Abraham1983}.
|
||||
|
||||
\section{The OS as a virtualized environment}
|
||||
|
||||
The combined effect of these firmware components (ACPI, SMM, UEFI,
|
||||
|
@ -4144,8 +4196,9 @@ if (best_count > 2) {
|
|||
OS's direct access and control. \\
|
||||
|
||||
The presence and operation of modern firmware components such as ACPI,
|
||||
SMM, UEFI, Intel ME, and AMD PSP contribute to a significant abstraction
|
||||
of hardware from the OS. This abstraction creates an environment that
|
||||
SMM, UEFI, Intel ME, and AMD PSP and even CPU microcode contribute to
|
||||
a significant abstraction of hardware from the OS.
|
||||
This abstraction creates an environment that
|
||||
parallels the operation of a virtual machine, where the OS functions
|
||||
within a controlled, virtualized layer managed by these firmware
|
||||
systems. The growing body of research supports this perspective,
|
||||
|
@ -4224,7 +4277,6 @@ if (best_count > 2) {
|
|||
\chapter*{Appendix: Long code listings}
|
||||
\addcontentsline{toc}{chapter}{Appendix: Long code listings}
|
||||
\renewcommand{\thelisting}{L.\arabic{listing}}
|
||||
\setcounter{listing}{0}
|
||||
|
||||
\begin{listing}
|
||||
\begin{adjustwidth}{0.5cm}{0.5cm}
|
||||
|
@ -5430,5 +5482,3 @@ if (pDCTstat->Status & (1 << SB_Registered)) {
|
|||
to permit their use in free software.
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@
|
|||
\contentsline {subsubsection}{\numberline {4.4.1.1}Details on the DQS training function}{41}{subsubsection.4.4.1.1}%
|
||||
\contentsline {subsubsection}{\numberline {4.4.1.2}Details on the write leveling implementation}{43}{subsubsection.4.4.1.2}%
|
||||
\contentsline {subsubsection}{\numberline {4.4.1.3}Details on the DQS position training function}{45}{subsubsection.4.4.1.3}%
|
||||
\contentsline {subsubsection}{\numberline {4.4.1.4}Details on the DQS receiver training function}{47}{subsubsection.4.4.1.4}%
|
||||
\contentsline {subsubsection}{\numberline {4.4.1.4}Details on the DQS receiver training function}{48}{subsubsection.4.4.1.4}%
|
||||
\contentsline {subsection}{\numberline {4.4.2}Potential enhancements}{50}{subsection.4.4.2}%
|
||||
\contentsline {subsubsection}{\numberline {4.4.2.1}DQS receiver training}{50}{subsubsection.4.4.2.1}%
|
||||
\contentsline {subsubsection}{\numberline {4.4.2.2}Write leveling}{52}{subsubsection.4.4.2.2}%
|
||||
|
@ -56,7 +56,8 @@
|
|||
\contentsline {subsection}{\numberline {5.3.3}Device Drivers}{61}{subsection.5.3.3}%
|
||||
\contentsline {subsection}{\numberline {5.3.4}Power Management}{61}{subsection.5.3.4}%
|
||||
\contentsline {section}{\numberline {5.4}Intel and AMD: control beyond the OS}{61}{section.5.4}%
|
||||
\contentsline {section}{\numberline {5.5}The OS as a virtualized environment}{62}{section.5.5}%
|
||||
\contentsline {section}{\numberline {5.5}Processors microcode}{62}{section.5.5}%
|
||||
\contentsline {section}{\numberline {5.6}The OS as a virtualized environment}{62}{section.5.6}%
|
||||
\contentsline {chapter}{Conclusion}{63}{chapter*.6}%
|
||||
\contentsline {chapter}{Bibliography}{70}{chapter*.7}%
|
||||
\contentsline {chapter}{Appendix: Long code listings}{71}{chapter*.8}%
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
$ git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
|
||||
$ cd linux/drivers/acpi
|
||||
$ find . -name "*.c" -o -name "*.h" | xargs wc -l
|
||||
[...]
|
||||
...
|
||||
168970 total
|
|
@ -45,5 +45,5 @@ void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
|||
* 6 8.0 6 667 MHz
|
||||
* 7 9.0 7 800 MHz
|
||||
*/
|
||||
[...]
|
||||
...
|
||||
}
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
||||
struct DCTStatStruc *pDCTstatA)
|
||||
{
|
||||
[...]
|
||||
...
|
||||
restartinit:
|
||||
if (!mctGet_NVbits(NV_ECC_CAP) || !mctGet_NVbits(NV_ECC))
|
||||
pMCTstat->try_ecc = 0;
|
||||
else
|
||||
pMCTstat->try_ecc = 1;
|
||||
[...]
|
||||
...
|
||||
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
|
||||
struct DCTStatStruc *pDCTstat;
|
||||
pDCTstat = pDCTstatA + Node;
|
||||
|
@ -49,5 +49,5 @@ restartinit:
|
|||
node_sys_base = pDCTstat->NodeSysBase;
|
||||
node_sys_base += (pDCTstat->NodeSysLimit + 2) & ~0x0F;
|
||||
}
|
||||
[...]
|
||||
...
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
||||
struct DCTStatStruc *pDCTstatA)
|
||||
{
|
||||
[...]
|
||||
...
|
||||
/* If the boot fails make sure training is attempted after reset */
|
||||
nvram = 0;
|
||||
set_option("allow_spd_nvram_cache_restore", &nvram);
|
||||
|
@ -24,7 +24,7 @@ void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
|||
}
|
||||
}
|
||||
}
|
||||
[...]
|
||||
...
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
||||
struct DCTStatStruc *pDCTstatA)
|
||||
{
|
||||
[...]
|
||||
...
|
||||
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
|
||||
struct DCTStatStruc *pDCTstat;
|
||||
pDCTstat = pDCTstatA + Node;
|
||||
|
@ -33,7 +33,7 @@ void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
|||
printk(BIOS_DEBUG, "mctAutoInitMCT_D: mctHookAfterCPU\n");
|
||||
/* Setup external northbridge(s) */
|
||||
mctHookAfterCPU();
|
||||
[...]
|
||||
...
|
||||
return;
|
||||
fatalexit:
|
||||
die("mct_d: fatalexit");
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
||||
struct DCTStatStruc *pDCTstatA)
|
||||
{
|
||||
[...]
|
||||
...
|
||||
/* FIXME
|
||||
* Previous training values should only be used if the current desired
|
||||
* speed is the same as the speed used in the previous boot.
|
||||
|
@ -38,7 +38,7 @@ void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
|||
MCTMemClr_D(pMCTstat,pDCTstatA);
|
||||
}
|
||||
}
|
||||
[...]
|
||||
...
|
||||
return;
|
||||
fatalexit:
|
||||
die("mct_d: fatalexit");
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
||||
struct DCTStatStruc *pDCTstatA)
|
||||
{
|
||||
[...]
|
||||
...
|
||||
printk(BIOS_DEBUG, "mctAutoInitMCT_D: CPUMemTyping_D\n");
|
||||
/* Map dram into WB/UC CPU cacheability */
|
||||
CPUMemTyping_D(pMCTstat, pDCTstatA);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
||||
struct DCTStatStruc *pDCTstatA)
|
||||
{
|
||||
[...]
|
||||
...
|
||||
/* If DIMM configuration has not changed since last boot restore
|
||||
* training values */
|
||||
allow_config_restore = 1;
|
||||
|
@ -22,7 +22,7 @@ void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
|
|||
* Debug and reenable this!
|
||||
*/
|
||||
allow_config_restore = 0;
|
||||
[...]
|
||||
...
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue