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Abstract

The global trend is towards the scarcity of free software-compatible hardware, and soon there will be no computer
that will work without software domination by big companies, especially involving firmware like BIOSes.

A Basic Input Output System (BIOS) was originally a set of low-level functions contained in the read-only memory
of a computer’s mainboard, enabling it to perform basic operations when powered up. However, the definition
of a BIOS has evolved to include what used to be known as Power On Self Test (POST) for the presence of
peripherals, allocating resources for them to avoid conflicts, and then handing over to an operating system boot
loader. Nowadays, the bulk of the BIOS work is the initialization and training of RAM. This means, for example,
initializing the memory controller and optimizing timing and read/write voltage for optimal performance, making
the code complex, as its role is to optimize several parallel buses operating at high speeds and shared by many
CPU cores, and make them act as a homogeneous whole.

This document is the product of a project hosted by the LIP6 laboratory and supported by the GNU Boot Project
and the Free Software Foundation. It delves into the importance of firmware in the hardware initialization of mod-
ern computers and explores various aspects of firmware, such as Intel Management Engine (ME), AMD Platform
Security Processor (PSP), Advanced Configuration and Power Interface (ACPI), and System Management Mode
(SMM). Additionally, it provides an in-depth look at memory initialization and training algorithms, highlighting
their critical role in system stability and performance. Examples of the implementation in the ASUS KGPE-D16
mainboard are presented, describing its hardware characteristics, topology, and the crucial role of firmware in its
operation after the mainboard architecture is examined. Practical examples illustrate the impact of firmware on
hardware initialization, memory optimization, resource allocation, power management, and security. Specific algo-
rithms used for memory training and their outcomes are analyzed to demonstrate the complexity and importance of
firmware in achieving optimal system performance. Furthermore, this document explores the relationship between
firmware and hardware virtualization. Security considerations and future trends in firmware development are also
addressed, emphasizing the need for continued research and advocacy for free software-compatible hardware.
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Chapter 1

Introduction to firmware and BIOS evolution

1.1 Historical context of BIOS

1.1.1 Definition and origin
The BIOS (Basic Input/Output System) is firmware, which is a type of software that is embedded into hardware
devices to control their basic functions, acting as a bridge between hardware and other software, ensuring that
the hardware operates correctly. Unlike regular software, firmware is usually stored in a non-volatile memory like
ROM or flash memory. The term "firmware" comes from its role: it is "firm" because it’s more permanent than
regular software (which can be easily changed) but not as rigid as hardware.

The BIOS is used to perform initialization during the booting process and to provide runtime services for op-
erating systems and programs. Being a critical component for the startup of personal computers, acting as an
intermediary between the computer’s hardware and its operating system, the BIOS is embedded on a chip on
the motherboard and is the first code that runs when a PC is powered on. The concept of BIOS has its roots
in the early days of personal computing. It was first developed by IBM for their IBM PC, which was introduced
in 1981 [45]. The term BIOS itself was coined by Gary Kildall, who developed the CP/M (Control Program
for Microcomputers) operating system [98]. In CP/M, BIOS was used to describe a component that interfaced
directly with the hardware, allowing the operating system to be somewhat hardware-independent.

Figure 1.1: The eight-striped wordmark of IBM (1967, public domain, trademarked)

IBM’s implementation of BIOS became a de facto standard in the industry, as it was part of the IBM PC’s open
architecture [48][15], which refers to the design philosophy adopted by IBM when developing the IBM Personal
Computer (PC), introduced in 1981. This architecture is characterized by the use of off-the-shelf components and
publicly available specifications, which allowed other manufacturers to create compatible hardware and software.
It was in fact a departure from the proprietary systems prevalent at the time, where companies closely guarded
their designs to maintain control over the hardware and software ecosystem. For example, IBM used the Intel
8088 CPU, a well-documented and widely available processor, and also the Industry Standard Architecture (ISA)
bus, which defined how various components like memory, storage, and peripherals communicated with the CPU.
This open architecture allowed other manufacturers to create IBM-compatible computers, also known as "clones",
which further popularized the BIOS concept. As a result, the IBM PC BIOS set the stage for a standardized
method of interacting with computer hardware, which has evolved over the years but remains fundamentally the
same in principle. IBM also published detailed technical documentation at that time, including circuit diagrams,
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BIOS listings, and interface specifications. This transparency allowed other companies to understand and replicate
the IBM PC’s functionality [45].

1.1.2 Functionalities and limitations
When a computer is powered on, the BIOS executes a Power-On Self-Test (POST), a diagnostic sequence that
verifies the integrity and functionality of critical hardware components such as the CPU, RAM, disk drives, key-
board, and other peripherals [116]. This process ensures that all essential hardware components are operational
before the system attempts to load the operating system. If any issues are detected, the BIOS generates error
messages or beep codes to alert the user. Following the successful completion of POST, the BIOS runs the
bootstrap loader, a small program that identifies the operating system’s bootloader on a storage device, such as
a hard drive, floppy disk, or optical drive. The bootstrap loader then transfers control to the OS bootloader,
initiating the process of loading the operating system into the computer’s memory and starting it. This step
effectively bridges the gap between hardware initialization and operating system execution. The BIOS also pro-
vides a set of low-level software routines known as interrupts. These routines enable software to perform basic
input/output operations, such as reading from the keyboard, writing to the display, and accessing disk drives,
without needing to manage the hardware directly. By providing standardized interfaces for hardware components,
the BIOS simplifies software development and improves compatibility across different hardware configurations [15].

Figure 1.2: An AMI BIOS chip from a Dell 310, by Jud McCranie (CC BY-SA 4.0, 2018)

Despite its essential role, the early BIOS had several limitations. One significant limitation was its limited storage
capacity. Early BIOS firmware was stored in Read-Only Memory (ROM) chips with very limited storage, often
just a few kilobytes. This constrained the complexity and functionality of the BIOS, limiting it to only the
most essential tasks needed to start the system and provide basic hardware control. The original BIOS was
also non-extensible. ROM chips were typically soldered onto the motherboard, making updates difficult and
costly. Bug fixes, updates for new hardware support, or enhancements required replacing the ROM chip, leading
to challenges in maintaining and upgrading systems. Furthermore, the early BIOS was tailored for the specific
hardware configurations of the initial IBM PC models, which included a limited set of peripherals and expansion
options. As new hardware components and peripherals were developed, the BIOS often needed to be updated to
support them, which was not always feasible or timely. Performance bottlenecks were another limitation. The BIOS
provided basic input/output operations that were often slower than direct hardware access methods. For example,
disk I/O operations through BIOS interrupts were slower compared to later direct access methods provided by
operating systems, resulting in performance bottlenecks, especially for disk-intensive operations. This inflexibility
restricts the ability to support new hardware and technologies efficiently[14]. Early BIOS implementations also
had minimal security features. There were no mechanisms to verify the integrity of the BIOS code or to protect
against unauthorized modifications, leaving systems vulnerable to attacks that could alter the BIOS and potentially
compromise the entire system, such as rootkits and firmware viruses. Added to that, the traditional BIOS operates
in 16-bit real mode, a constraint that limits the amount of code and memory it can address. This limitation hinders
the performance and complexity of firmware, making it less suitable for modern computing needs [33]. Additionally,
BIOS relies on the Master Boot Record (MBR) partitioning scheme, which supports a maximum disk size of 2
terabytes and allows only four primary partitions [40][95]. This constraint has become a significant drawback
as storage capacities have increased. Furthermore, the traditional BIOS has limited flexibility and is challenging
to update or extend. This inflexibility restricts the ability to support new hardware and technologies efficiently
[14][1].
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1.2 Modern BIOS and UEFI

1.2.1 Transition from traditional BIOS to UEFI (Unified Extensible Firmware Interface)
All the limitations listed earlier caused a transition to a more modern firmware interface, designed to address
the shortcomings of the traditional BIOS. This section delves into the historical context of this shift, the driving
factors behind it, and the advantages UEFI offers over the traditional BIOS.

The development of UEFI began in the mid-1990s as part of the Intel Boot Initiative, which aimed to modernize the
boot process and overcome the limitations of the traditional BIOS. By 2005, the Unified EFI Forum, a consortium
of technology companies including Intel, AMD, and Microsoft, had formalized the UEFI specification [40]. UEFI
was designed to address the shortcomings of the traditional BIOS, providing several key improvements.

Figure 1.3: The UEFI logo (public domain, 2010)

One of the most significant advancements of UEFI is its support for 32-bit and 64-bit modes, allowing it to
address more memory and run more complex firmware programs. This capability enables UEFI to handle the
increased demands of modern hardware and software [33][97]. Additionally, UEFI uses the GUID Partition Table
(GPT) instead of the MBR, supporting disks larger than 2 terabytes and allowing for a nearly unlimited number
of partitions [34][95].
Improved boot performance is another driving factor. UEFI provides faster boot times compared to the traditional
BIOS, thanks to its efficient hardware and software initialization processes. This improvement is particularly bene-
ficial for systems with complex hardware configurations, where quick boot times are essential [33]. UEFI’s modular
architecture makes it more extensible and easier to update compared to the traditional BIOS. This design allows
for the addition of drivers, applications, and other components without requiring a complete firmware overhaul,
providing greater flexibility and adaptability to new technologies [1]. UEFI also includes enhanced security features
such as Secure Boot, which ensures that only trusted software can be executed during the boot process, thereby
protecting the system from unauthorized modifications and malware [14][23].

The industry-wide support and standardization of UEFI have accelerated its adoption across various platforms and
devices. Major industry players, including Intel, AMD, and Microsoft, have adopted UEFI as the new standard for
firmware interfaces, ensuring broad compatibility and interoperability [40].

1.2.2 An other way with coreboot
While UEFI has become the dominant firmware interface for modern computing systems, it is not without its
critics. Some of the primary concerns about UEFI include its complexity, potential security vulnerabilities, and the
degree of control it provides to hardware manufacturers over the boot process. Originally known as LinuxBIOS,
coreboot, is a free firmware project initiated in 1999 by Ron Minnich and his team at the Los Alamos National
Laboratory. The project’s primary goal was to create a fast, lightweight, and flexible firmware solution that could
initialize hardware and boot operating systems quickly, while remaining transparent and auditable[89]. As an
alternative to UEFI, coreboot offers a different approach to firmware that aims to address some of these concerns
and continue the evolution of BIOS.
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One of the main advantages of coreboot over UEFI is its simplicity, as it is designed to perform only the minimal
tasks required to initialize hardware and pass control to a payload, such as a bootloader or operating system ker-
nel. This minimalist approach reduces the attack surface and potential for security vulnerabilities, as there is less
code that could be exploited by malicious actors [94]. Another significant benefit of coreboot is its libre nature.
Unlike UEFI, which is controlled by a consortium of hardware and software vendors, coreboot’s source code is
freely available and can be audited, modified, and improved by anyone. This transparency ensures that security
researchers and developers can review the code for potential vulnerabilities and contribute to its improvement,
fostering a community-driven approach to firmware development[89]. This project also supports a wide range of
bootloaders, called payloads, allowing users to customize their boot process to suit their specific needs. Popular
payloads include SeaBIOS, which provides legacy BIOS compatibility, and Tianocore, which offers UEFI function-
ality within the coreboot framework. This flexibility allows coreboot to be used in a variety of environments, from
embedded systems to high-performance servers [88].

Figure 1.4: The coreboot logo, by Konsult Stuge & coresystems (coreboot logo license, 2008)

Despite its advantages, coreboot is not without its challenges. The project relies heavily on community con-
tributions, and support for new hardware often lags behind that of UEFI. Additionally, the minimalist design of
coreboot means that some advanced features provided by UEFI are not available by default. However, the core-
boot community continues to work on adding new features and improving compatibility with modern hardware
or security issues [75]. For example, it provides a verified boot function, allowing to prevent rootkits and other
attacks based on firmware modifications [87]. However, it’s important to note that coreboot is not entirely free in
all aspects. Many modern processors and chipsets require proprietary blobs, short for Binary Large Object, which
is a collection of binary data stored as a single entity. These blobs are necessary for coreboot to function correctly
on a wide range of hardware, but they compromise the goal of having a fully free firmware one day [69], since
these blobs are used for certain functionalities such as memory initialization and hardware management.

Figure 1.5: The GNU Boot logo, by Jason Self (CC0, 2020)

To address these concerns, the GNU Project has developed GNU Boot, a fully free distribution of firmware,
including coreboot, that aims to be entirely free by avoiding the use of proprietary binary blobs. GNU Boot
is committed to using only free software for all aspects of firmware, making it a preferred choice for users and
organizations that prioritize software freedom and transparency [70].
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1.3 Shift in firmware responsibilities
Initially, the BIOS’s primary function was to perform the POST, a basic diagnostic testing process to check the
system’s hardware components and ensure they were functioning correctly. This included verifying the CPU,
memory, and essential peripherals before passing control to the operating system’s bootloader. This process was
relatively simple, given the limited capabilities and straightforward architecture of early computer systems [14].
As computer systems advanced, particularly with the advent of more sophisticated memory technologies, the role
of firmware expanded significantly. Modern memory modules operate at much higher speeds and capacities than
their predecessors, requiring precise configuration to ensure stability and optimal performance. Firmware now plays
a critical role in managing the memory controller, which is responsible for regulating data flow between the proces-
sor and memory modules. This includes configuring memory frequencies, voltage levels, and timing parameters to
match the specifications of the installed memory [40][9]. Beyond memory management, firmware responsibilities
have broadened to encompass a wide range of system-critical tasks. One key area is power management, where
firmware is responsible for optimizing energy consumption across various components of the system. Efficient
power management is essential not only for extending battery life in portable devices but also for reducing thermal
output and ensuring system longevity in desktop and server environments. Moreover, modern firmware takes on
significant roles in hardware initialization and configuration, which were traditionally handled by the operating
system. For example, the initialization of USB controllers, network interfaces, and storage devices is now often
managed by the firmware during the early stages of the boot process. This shift ensures that the operating system
can seamlessly interact with hardware from the moment it takes control, reducing boot times and improving
overall system reliability [40]. Security has also become a paramount concern for modern firmware. UEFI (Unified
Extensible Firmware Interface), which has largely replaced traditional BIOS in modern systems, includes features
which prevents unauthorized or malicious software from loading during the boot process. This helps protect the
system from rootkits and other low-level malware that could compromise the integrity of the operating system
before it even starts [40]. In the context of performance tuning, firmware sometimes also plays a key role in
enabling and managing overclocking, particularly for the memory subsystem. By allowing adjustments to memory
frequencies, voltages, and timings, firmware provides tools for enthusiasts to push their systems beyond default
limits. At the same time, it includes safeguards to manage the risks of instability and hardware damage, balancing
performance gains with system reliability [14].

In summary, the evolution of firmware from simple hardware initialization routines to complex management sys-
tems reflects the increasing sophistication of modern computer architectures. Firmware is now a critical layer that
not only ensures the correct functioning of hardware components but also optimizes performance, manages power
consumption, and enhances system security, making it an indispensable part of contemporary computing.

This document will focus on coreboot during the next parts to study how modern firmware interact with hardware
and also as a basis for improvements.
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Chapter 2

Characteristics of ASUS KGPE-D16
mainboard

Figure 2.1: The KGPE-D16 (CC BY-SA 4.0, 2021)
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2.1 Overview of ASUS KGPE-D16 hardware
The ASUS KGPE-D16 server mainboard is a dual-socket motherboard designed to support AMD Family 10h/15h
series processors. Released in 2009, this mainboard was later awarded the Respects Your Freedom (RYF) certifica-
tion in March 2017, underscoring its commitment to fully free software compatibility [43]. Indeed, this mainboard
can be operated with a fully free firmware such as GNU Boot [71].

This mainboard is equipped with robust hardware components designed to meet the demands of high-performance
computing. It features 16 DDR3 DIMM slots, capable of supporting up to 256GB of memory, although certain
configurations may be limited to 192GB, with some reports suggesting the potential to support 256GB under
specific conditions. In terms of expandability, the KGPE-D16 includes multiple PCIe slots, with five physical slots
available, although only four can be used simultaneously due to slot sharing. For storage, the mainboard provides
several SATA ports. Networking capabilities are enhanced by integrated dual gigabit Ethernet ports, which provide
high-speed connectivity essential for data-intensive tasks and network communication [16]. Additionally, the board
is equipped with various peripheral interfaces, including USB ports, audio outputs, and other I/O ports, ensuring
compatibility with a wide range of external devices.

Figure 2.2: Basic schematics of the ASUS KGPE-D16 Mainboard, ASUS (2011)

The physical layout of the ASUS KGPE-D16 is meticulously designed to optimize airflow, cooling, and power
distribution. All of this is critical for maintaining system stability, particularly under heavy computational loads,
as this board was designed for server operations. In particular, key components such as the CPU sockets, memory
slots, and PCIe slots are strategically positioned.
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Figure 2.3: The KGPE-D16, viewed from the top (CC BY-SA 4.0, 2024)

2.2 Chipset
Before diving into the specific components, it is essential to understand the roles of the northbridge and south-
bridge in traditional motherboard architecture. These chipsets historically managed communication between the
CPU and other critical components of the system [3].

The northbridge is a chipset on the motherboard that traditionally manages high-speed communication between
the CPU, memory (RAM), and graphics card (if applicable). It serves as a hub for data that needs to move quickly
between these components. On the ASUS KGPE-D16, the functions typically associated with the northbridge are
divided between the CPUs internal northbridge and an external SR5690 northbridge chip. The SR5690 specifically
acts as a translator and switch, handling the HyperTransport interface, a high-speed communication protocol used
by AMD processors, and converting it to ALink and PCIe interfaces, which are crucial for connecting peripherals
like graphics cards [12]. Additionally, the northbridge on the KGPE-D16 incorporates the IOMMU (Input-Output
Memory Management Unit), which is crucial for ensuring secure and efficient memory access by I/O devices. The
IOMMU allows for the virtualization of memory addresses, providing device isolation and preventing unauthorized
memory access, which is particularly important in environments that run multiple virtual machines [3][128].

The southbridge, on the other hand, is responsible for handling lower-speed, peripheral interfaces such as the PCI,
USB, and IDE/SATA connections, as well as managing onboard audio and network controllers. On the KGPE-D16,
these functions are managed by the SP5100 southbridge chip, which integrates several critical functions including
the LPC bridge, SATA controllers, and other essential I/O operations [3][131]. It is essentially an ALink bus con-
troller and includes the hardware interrupt controller, the IOAPIC. Interrupts from peripheral always pass through
the northbridge (fig. 2.4), since it translates ALink to HyperTransport for the CPUs and contains the IOMMU [12].

17



Figure 2.4: Functional diagram presenting the IOAPIC function of the SP5100, ASUS (2011)

In addition to the northbridge and southbridge, the KGPE-D16 also contains specialized chips for managing
input/output operations and system health monitoring. The WINBOND W83667HG-A Super I/O chip handles
traditional I/O functions such as legacy serial and parallel ports, keyboard, and mouse interfaces, but also the SPI
chip that contains the firmware [135]. Meanwhile, the Nuvoton W83795G/ADG Hardware Monitor oversees the
systems health by monitoring temperatures, voltages, and fan speeds, ensuring that the system operates within
safe parameters [79]. On the KGPE-D16, access to the Super I/O from a CPU core is done through the SR5690,
then the SP5100, as that can be observed on the functional diagram of the chipset (fig. 2.5) [12].

Figure 2.5: Functional diagram of the KGPE-D16 chipset (CC BY-SA 4.0, 2024)
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2.3 Processors
The ASUS KGPE-D16 supports AMD Family 10h processors, but it is important to note that Vikings, a known
vendor for libre-software-compatible hardware, does not recommend using the Opteron 6100 series due to the lack
of IOMMU support, which is critical for security. Fortunately, AMD Family 15h processors are also supported.
However, the Opteron 6300 series, while supported, requires proprietary microcode updates for stability, IOMMU
functionality, and fixes for specific vulnerabilities, including a gain-root- via-NMI exploit. The Opteron 6200 series
does not suffer from these problems and works properly without any proprietary microcode update needed [111].

Figure 2.6: Annotated photography of an Opteron 6200 series CPU (2024), from a photography by AMD Inc.
(2008)

The Opteron 6200 series, part of the Bulldozer microarchitecture, was designed to target high-performance server
applications. These processors feature 16 cores, organized into 8 Bulldozer modules, with each module containing
two integer cores that shared resources like the floating-point unit (FPU) and L2 cache (fig. 2.6, 2.7) [7][96].
The architecture of the Opteron 6200 series is built around AMD’s Bulldozer core design, which uses Clustered
Multithreading (CMT) to maximize resource utilization. This is a technique where each processor module con-
tains two integer cores that share certain resources like the floating-point unit (FPU), L2 cache, and instruction
fetch/decode stages. Unlike traditional multithreading, where each core handles multiple threads, CMT allows
two cores to share resources to improve parallel processing efficiency. This approach aims to balance performance
and resource usage, particularly in multi- threaded workloads, though it can lead to some performance trade-offs
in single-threaded tasks. In the Opteron 6272, the processor consists of eight modules, effectively creating 16
integer cores. Due to the CMT architecture, each Opteron 6272 chip functions as two CPUs within a single
processor, each with its own set of cores, L2 caches, and shared L3 cache. Here, one CPU is made by four mod-
ules, each module in it sharing certain components, such as the FPU and L2 cache, between two integer cores.
The L3 cache is shared across these modules. HyperTransport links provide high-speed communication between
the two sockets of the KGPE-D16. Shared L3 cache and direct memory access are provided by each socket [7][52].

This architecture also integrates a quad-channel DDR3 memory controller directly into the processor die, which
facilitates high bandwidth and low latency access to memory. This memory controller supports DDR3 memory
speeds up to 1600 MHz and connects directly to the memory modules via the memory bus. By integrating the
memory controller into the processor, the Opteron 6200 series reduces memory access latency, enhancing overall
performance [7][6]. It is interesting to note that Opterons incorporate the internal northbridge that we cited
previously. The traditional northbridge functions, such as memory controller and PCIe interface management,
are partially integrated into the processor. This integration reduces the distance data must travel between the
CPU and memory, decreasing latency and improving performance, particularly in memory-intensive applications [7].
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Figure 2.7: Functional diagram of an Opteron 6200 package (CC BY-SA 4.0, 2024)

Power efficiency was a key focus in the design of the Opteron 6200 series. Despite the high core count, the
processor includes several power management features, such as Dynamic Power Management (DPM) and Turbo
Core technology. These features allow the processor to adjust power usage based on workload demands, balancing
performance with energy consumption. However, the Bulldozer architecture’s focus on high clock speeds and
multi-threaded performance resulted in higher power consumption compared to competing architectures [96]. A
special model of the series, called high efficiency models, solve a bit this problem by proposing a bit less perfor-
mant processor but with a power consumption divided by a factor from 1.5 to 2.0 in some cases.

The processor connected to the I/O hub is known as the Bootstrap Processor (BSP). The BSP is responsible for
starting up the system by executing the initial firmware code from the reset vector, a specific memory address
where the CPU begins execution after a reset [4]. Core 0 of the BSP, called the Bootstrap Core (BSC), initiates
this process. During early initialization, the BSP performs several critical tasks, such as memory initialization, and
bringing other CPU cores online. One of its duties is storing Built-In Self-Test (BIST) information, which involves
checking the integrity of the processor’s internal components to ensure they are functioning correctly. The BSP
also determines the type of reset that has occurredwhether it’s a cold reset, which happens when the system is
powered on from an off state, or a warm reset, which is a restart without turning off the power. Identifying the
reset type is crucial for deciding which initialization procedures need to be executed [4][9].

2.4 Baseboard Management Controller
The Baseboard Management Controller (BMC) on the KGPE-D16 motherboard, specifically the ASpeed AST2050,
plays a role in the server’s architecture by managing out-of-band communication and control of the hardware. The
AST2050 is based on an ARM926EJ-S processor, a low-power 32-bit ARM architecture designed for embedded
systems [102]. This architecture is well-suited for BMCs due to its efficiency and capability to handle multiple
management tasks concurrently without significant resource demands from the main system.

The AST2050 features several key components that contribute to its functionality. It includes an integrated
VGA controller, which enables remote graphical management through KVM-over-IP (Keyboard, Video, Mouse),
a critical feature for administrators who need to interact with the system remotely, including BIOS updates and
troubleshooting [100]. Additionally, the AST2050 integrates a dedicated memory controller, which supports up to
256MB of DDR2 RAM. This allows it to handle complex tasks and maintain responsiveness during management
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operations [36]. The BMC also features a network interface controller (NIC) dedicated to management traffic, en-
suring that remote management does not interfere with the primary network traffic of the server. This separation
is vital for maintaining secure and uninterrupted system management, especially in environments where uptime is
critical [103]. Another important architectural aspect of the AST2050 is its support for multiple I/O interfaces,
including I2C, GPIO, UART, and USB, which allow it to interface with various sensors and peripherals on the
motherboard [104]. This versatility enables comprehensive monitoring of hardware health, such as temperature
sensors, fan speeds, and power supplies, all of which can be managed and configured through the BMC.

When combined with OpenBMC [129], a libre firmware that can be run on the AST2050 thanks to Raptor
Engineering [90], the architecture of the BMC becomes even more powerful. OpenBMC takes advantage of the
AST2050’s architecture, providing a flexible and customizable environment that can be tailored to specific use
cases. This includes adding or modifying features related to security, logging, and network management, all within
the BMC’s ARM architecture framework [57].

21



Chapter 3

Key components in modern firmware

3.1 General structure of coreboot
The firmware of the ASUS KGPE-D16 is crucial in ensuring the proper functioning and optimization of the main-
board’s hardware components. In this chapter and for the rest of this document, we’re basing our study on the
4.11 version of coreboot [27], which is the last version that supported the ASUS KGPE-D16 mainboard.

For the firmware tasks to be done efficiently, coreboot is organized in different stages (fig. 3.1) [87].

Figure 3.1: coreboot’s stages timeline, by coreboot project (CC BY-SA 4.0, 2009)

Being a complex project with ambitious goals, coreboot decided early on to establish an file-system-based archi-
tecture for its images (also called ROMs). This special file-system is CBFS (which stands for coreboot file system).
The CBFS architecture consists of a binary image that can be interpreted as a physical disk, referred to here as
ROM. A number of independent components, each with a header added to the data, are located within the ROM.
The components are nominally arranged sequentially, although they are aligned along a predefined boundary (fig.
3.2).

Each stage is compiled as a separate binary and inserted into the CBFS with custom compression. The bootblock
stage is usually not compressed, while the ramstage and the payload are compressed with LZMA. Each stage loads
the next stage at a given address (possibly decompressing it in the process).

Some stages are relocatable and can be placed anywhere in the RAM. These stages are typically cached in the
CBMEM for faster loading times during wake-up. The CBMEM is a specific memory area used by the coreboot
firmware to store important data structures and logs during the boot process. This area is typically allocated in
the system’s RAM and is used to store various types of runtime information that it might need to reference after
the initial boot stages.

In general, coreboot manages main memory through a structured memory map (fig. 3.1), allocating specific
address ranges for various hardware functions and system operations. The first 640KB of memory space is
typically unused by coreboot due to historical reasons. Graphics-related operations use the VGA address range
and the text mode address ranges. It also reserves the higher for operating system use, ensuring that critical
system components like the IOAPIC and TPM registers have dedicated address spaces. This structured approach
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helps maintain system stability and compatibility across different platforms and allows for a reset vector fixed at
an address (0xFFFFFFF0), regardless of the ROM size. Payloads are typically loaded into high memory, above the
reserved areas for hardware components and system resources. The exact memory location can vary depending on
the system’s configuration, but generally, payloads are placed in a region of memory that does not conflict with
the firmware code or the reserved memory map areas, such as the ROM mapping ranges. This placement ensures
that payloads have sufficient space to execute without interfering with other critical memory regions allocated
[26].

0x00000-0x9FFFF Low memory (first 640KB). Never used.
0xA0000-0xAFFFF VGA graphics address range.
0xB0000-0xB7FFF Monochrome text mode address range. Few

motherboards use it, but the KGPE-D16 does.
0xB8000-0xBFFFF Text mode address range.

0xFEC00000 IOAPIC address.
0xFED44000-0xFED4FFFF Address range for TPM registers.
0xFF000000-0xFFFFFFFF 16 MB ROM mapping address range.
0xFF800000-0xFFFFFFFF 8 MB ROM mapping address range.
0xFFC00000-0xFFFFFFFF 4 MB ROM mapping address range.

0xFEC00000-DEVICEMEMHIGH Reserved area for OS use.

Table 3.1: coreboot memory map

3.1.1 Bootblock
The bootblock is the first stage executed after the CPU reset. The beginning of this stage is written in assembly
language, and its main task is to set everything up for a C environment. The rest, of course, is written in C. This
stage occupies the last 20k (fig. 3.2) of the image and within it is a main header containing information about
the ROM, including the size, component alignment, and the offset of the start of the first CBFS component. This
block is a mandatory component as it also contains the entry point of the firmware.

Figure 3.2: coreboot ROM architecture (CC BY-SA 4.0, 2024)

Upon startup, the first responsibility of the bootblock is to execute the code from the reset vector located at
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the conventional reset vector in 16-bit real mode. This code is specific to the processor architecture and, for our
board, is stored in the architecture-specific sources for x86 within coreboot. The entry point into coreboot code
is defined in two files in the src/cpu/x86/16bit/ directory: reset16.inc and entry16.inc. The first file
serves as a jump to the _start16bit procedure defined in the second. Due to space constraints this function
must remain below the 1MB address space because the IOMMU has not yet been configured to allow anything else.

During this early initialization, the Bootstrap Core (BSC) performs several critical tasks while the other cores
remain dormant. These tasks include saving the results (and displaying them if necessary) of the Built-in Self-Test
(BIST), formerly known as POST; invalidating the TLB to prevent any address translation errors; determining the
type of reset (e.g., cold start or warm start); creating and loading an empty Interrupt Descriptor Table (IDT) to
prevent the use of "legacy" interrupts from real mode until protected mode is reached. In practice, this means that
at the slightest exception, the BSC will halt. The code then switches to 32-bit protected mode by mapping the first
4 GB of address space for code and data, and finally jumps to the 32-bit reset code labeled _protected_start.

Once in protected mode, which constitutes the "normal" operating mode for the processor, the next step is to
set up the execution environment. To achieve this, the code contained in src/cpu/x86/32bit/entry32.inc,
followed by src/cpu/x86/64bit/entry64.inc, and finally src/arch/x86/bootblock_crt0.S, establishes a
temporary stack, transitions to long mode (64-bit addressing) with paging enabled, and sets up a proper excep-
tion vector table. The execution then jumps to chipset-specific code via the bootblock_pre_c_entry procedure.
Once these steps are completed, the bootblock has a minimal C environment. The procedure now involves allo-
cating memory for the BSS, and decompressing and loading the next stage.

The jump to _bootblock_pre_entry leads to the code files src/soc/amd/common/block/cpu/car/cache_
as_ram.S and src/vendorcode/amd/agesa/f15tn/gcccar.inc, which are specific to AMD chipsets. It’s
worth noting that these files were developed by AMD’s engineers as part of the AGESA project. The operations
performed at this stage are related to pre-RAM memory initialization. All cores of all processors (up to a limit of
64 cores) are started. The Cache-As-Ram is configured using the Memory-type range registers. These registers
allow the specification of a specific configuration for a given memory area [9]. In this case, the area that should
correspond to physical memory is mapped to the cache, while other areas, such as PCI or other bus zones, are
configured accordingly. A specific stack is set up for each core of each processor (within the arbitrary limit of 64
cores and 7 nodes, meaning 7 Core 0s). Core 0s receive 16KB, while the Bootstrap Core (BSC) gets 64KB. The
other cores receive 4KB each. All cores except the BSC are halted and will restart during the romstage. Finally,
the execution jumps to the entry point of the bootblock written in C, labeled bootblock_c_entry. This entry
point is located in src/soc/amd/stoneyridge/bootblock/bootblock.c and is specific to AMD processors. It
is the first C routine executed, and its role is to verify that the current processor is indeed the BSC, allowing the
function bootblock_main_with_basetime to be called exclusively by the BSC.

We are now in the file src/lib/bootblock.c, written by Google’s team, and entering the bootblock_main_
with_basetime function, which immediately calls bootblock_main_with_timestamp. At this stage, the goal
is to start the romstage, but a few more tasks need to be completed.
The bootblock_soc_early_init function is called to initialize the I2C bus of the southbridge. The bootblock_
fch_early_init function is invoked to initialize the SPI buses (including the one for the ROM) and the serial and
"legacy" buses of the southbridge. The CMOS clock is then initialized, followed by the pre-initialization of the serial
console. The code then calls the bootblock_mainboard_init function, which enters, for the first time, the files
specific to the ASUS KGPE-D16 motherboard: src/mainboard/ASUS/kgpe-d16/bootblock.c. This code per-
forms the northbridge initialization via the bootblock_northbridge_init function found in src/northbridge/
amd/amdfam10/bootblock.c. This involves locating the HyperTransport bus and enabling the discovery of de-
vices connected to it (e.g., processors). The southbridge is initialized using the bootblock_southbridge_init
function from src/southbridge/amd/sb700/bootblock.c. This function, largely programmed by Timothy
Pearson from Raptor Engineering, who performed the first coreboot port for the ASUS KGPE-D16, finalizes
the activation of the SPI bus and the connection to the ROM memory via SuperIO. The state of a recovery
jumper is then checked (this jumper is intended to reset the CMOS content, although it is not fully functional
at the moment, as indicated by the FIXME comment in the code). Control then returns to bootblock_main in
src/lib/bootblock.c.

At this point, everything is ready to enter the romstage. coreboot has successfully started and can now continue
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its execution by calling the run_romstage function from src/lib/prog_loaders.c. This function begins by
locating the corresponding segment in the ROM via the southbridge and SPI bus using prog_locate, which
utilizes the SPI driver in src/drivers/cbfs_spi.c. The contents of the romstage are then copied into the
cache-as-ram by cbfs_prog_stage_load. Finally, the prog_run function transitions to the romstage after
switching back to 32-bit mode.

3.1.2 Romstage
The romstage in coreboot serves the critical function of early initialization of peripherals, particularly system
memory. This stage is crucial for setting up the necessary components for the platform’s operation, ensuring
that everything is in place for subsequent stages of the boot process. During this phase, coreboot configures
the Advanced Programmable Interrupt Controller (APIC), which is responsible for correctly handling interrupts
across multiple CPUs, especially in systems using Symmetric Multiprocessing (SMP). This includes setting up the
Local APIC on each processor and the IOAPIC, part of the southbridge, to ensure that interrupts from peripherals
are routed to the appropriate CPUs. Additionally, the firmware configures the HyperTransport (HT) technology,
a high-speed communication protocol that facilitates data exchange between the processor and the northbridge,
ensuring smooth data flow between these components.

The romstage begins with a call to the _start function, defined in src/cpu/x86/32bit/entry32.inc via
src/arch/x86/assembly_entry.S. We then enter the cache_as_ram_setup procedure, written in assembly
language, located in src/cpu/amd/car/cache_as_ram.inc. This procedure configures the cache to load the fu-
ture ramstage and initialize memory based on the number of processors and cores present. Once this is completed,
the code calls cache_as_ram_main in src/mainboard/asus/kgpe-d16/romstage.c, which serves as the main
function of the romstage. In the cache_as_ram_main function, after reducing the speed of the HyperTransport
bus, only the Bootstrap Core (BSC) initializes the spinlocks for the serial console, the CMOS storage memory
(used for saving parameters), and the ROM. At this point, the HyperTransport bus is enumerated, and the PCI
bridges are temporarily disabled. The port 0x80 of the southbridge, used for motherboard debugging with Post
Codes, is also initialized. These codes indicate the status of the boot process and can be displayed using special
PCI cards connected to the system. The SuperIO is then initialized to activate the serial port, allowing the serial
console to follow coreboots progress in real-time. If everything proceeds as expected, the code 0x30 is sent, and
the boot process continues.

If the result of the Built-in Self-Test (BIST), saved during the bootblock, shows no anomalies, all cores of all
nodes are configured, and they are placed back into sleep mode (except for the Core 0s). If everything goes well,
the code 0x32 is sent, and the process continues. Using the enable_sr5650_dev8 function, the southbridges
P2P bridge is activated. Additionally, a check is performed to ensure that the number of physical processors
detected does not exceed the number of sockets available on the board. If any issues were detected during the
BIST, the machine will halt, and the error will be displayed on the console. Otherwise, the process continues, and
the default hardware information table is constructed, and the microcode of the physical processors is updated
if necessary. If everything proceeds correctly, the code 0x33 and then 0x34 is sent, and the process continues.
The information about the physical processors is retrieved using amd_ht_init, and communication between the
two sockets is configured via amd_ht_fixup. This process includes disabling any defective HT links (one per
socket in this AMD Family 15h chipset). If everything is working as expected, the code 0x35 is sent, and the boot
process continues. With the finalize_node_setup function, the PCI bus is initialized, and a mapping is created
(setup_mb_resource_map). If all goes well, the code 0x36 is sent. This is done in parallel across all Core 0s, so
the system waits for all cores to finish using the wait_all_core0_started function. The communication be-
tween the northbridge and southbridge is prepared using sr5650_early_setup and sb7xx_51xx_early_setup,
followed by the activation of all cores on all nodes, with the system waiting for all cores to be fully initialized. If
everything is successful, the code 0x38 is sent.

At this point, the timer is activated, and a warm reset is performed via the soft_reset function to validate all
configuration changes to the HT, PCI buses, and voltage/power settings of the processors and buses. This results
in a system reboot, passing again through the bootblock, but much faster this time since the system recognizes
the warm reset condition. Once this reboot is complete, the HyperTransport bus is reconfigured into isochronous
mode (switching from asynchronous mode), finalizing the configuration process.
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Memory training and optimization are also key functions of the firmware during the romstage. This process in-
volves adjusting memory settings, such as timings, frequencies, and voltages, to ensure that the installed memory
modules operate efficiently and stably. This step is crucial for achieving optimal performance, especially when
dealing with large amounts of RAM and many CPU cores, as supported by the KGPE-D16. We’ll see that in
detail during the next chapter.

After memory initialization, the process returns to the cache_as_ram_main function, where a memory test is
performed. This involves writing predefined values to specific memory locations and then verifying that the values
can be read back correctly. If everything passes successfully, the CBMEM is initialized and one sends code 0x41.
At this point, the configuration of the PCI bus is prepared, which will be completed during the ramstage by
configuring the PCI bridges. The system then exits cache_as_ram_main and returns to cache_as_ram_setup
to finalize the process.
coreboot then transitions to the next stage, known as the postcar stage, where it exits the cache-as-RAM mode
and begins using physical RAM.

3.1.3 Ramstage
The ramstage performs the general initialization of all peripherals, including the initialization of PCI devices,
on-chip devices, the TPM (if not done by verstage), graphics (optional), and the CPU (setting up the System
Management Mode). After this initialization, tables are written to inform the payload or operating system about
the existence and current state of the hardware. These tables include ACPI tables (specific to x86), SMBIOS
tables (specific to x86), coreboot tables, and updates to the device tree (specific to ARM). Additionally, the
ramstage locks down the hardware and firmware by applying write protection to boot media, locking security-
related registers, and locking SMM (specific to x86) [87]. Effective resource allocation is essential for system
stability, particularly in complex configurations involving multiple CPUs and peripherals. This stage manages
initial resource allocation, resolving any conflicts between hardware components to prevent resource contention
and ensure smooth operation and security, which is a major concern in modern systems. This includes support
for IOMMU, which is crucial for preventing unauthorized direct memory access (DMA) attacks, particularly in
virtualized environments (however there are still vulnerabilities that can be exploited, such as sub-page or IOTLB-
based attacks or even configuration weaknesses [74][72]).

3.1.3.1 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) is a critical component of modern computing systems,
providing an open standard for device configuration and power management by the operating system (OS). De-
veloped in 1996 by Intel, Microsoft, and Toshiba, ACPI replaced the older Advanced Power Management (APM)
standard with more advanced and flexible power management capabilities [31]. At its core, ACPI is implemented
through a series of data structures and executable code known as ACPI tables, which are provided by the system
firmware and interpreted by the OS. These tables describe various aspects of the system, including hardware
resources, device power states, and thermal zones. The ACPI Specification outlines these structures and provides
the necessary standardization for interoperability across different platforms and operating systems [49]. These
tables are used by the OS to perform low-level task, including managing power states of the CPU, controlling the
voltage and frequency scaling (also known as Dynamic Voltage and Frequency Scaling, or DVFS), and coordinat-
ing power delivery to peripherals.

The ACPI Component Architecture (ACPICA) is the reference implementation of ACPI, providing a common
codebase that can be used by OS developers to integrate ACPI support. ACPICA includes tools and libraries
that allow for the parsing and execution of ACPI Machine Language (AML) code, which is embedded within the
ACPI tables [86]. One of the key tools in ACPICA is the Intel ACPI Source Language (IASL) compiler, which
converts ACPI Source Language (ASL) code into AML bytecode, allowing firmware developers to write custom
ACPI methods [29]. The triggering of ACPI events is managed through a combination of hardware signals and
software routines. For example, when a user presses the power button on a system, an ACPI event is generated,
which is then handled by the OS. This event might trigger the system to enter a low-power state, such as sleep or
hibernation, depending on the configuration provided by the ACPI tables [49]. These power states are defined in
the ACPI specification, with global states (G0 to G3) representing different levels of system power consumption,
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and device states (D0 to D3) representing individual device power levels.

The ASUS KGPE-D16 mainboard, which is designed for server and high-performance computing environments,
needs ACPI for managing its power distribution across multiple CPUs and attached peripherals. ACPI is integral in
controlling the power states of various components, thereby optimizing performance and energy use. Additionally,
the firmware on the KGPE-D16 uses ACPI tables to manage system temperature and fan speed, ensuring reliable
operation under heavy workloads [16].

3.1.3.2 System Management Mode

System Management Mode (SMM) is a highly privileged operating mode provided by x86 processors for handling
system-level functions such as power management, hardware control, and other critical tasks that are to be iso-
lated from the OS and applications. Introduced by Intel, SMM operates in an environment separate from the
main operating system, offering a controlled space for executing sensitive operations [61].

SMM is triggered by a System Management Interrupt (SMI), which is a non-maskable interrupt that causes the
CPU to save its current state and switch to executing code stored in a protected area of memory called System
Management RAM (SMRAM). SMRAM is a specialized memory region that is isolated from the rest of the system,
making it inaccessible to the OS and preventing tampering or interference from other software [51]. Within SMM,
the firmware can execute various low-level functions that require direct hardware control or need to be protected
from the OS. This includes tasks such as thermal management, where the system monitors CPU temperature and
adjusts performance or power levels to prevent overheating, as well as power management routines that enable
efficient energy usage by adjusting power states based on system activity [58]. One of the critical security features
of SMM is its role in managing firmware updates and handling system-level security events. Because SMM oper-
ates in a privileged mode that is isolated from the OS, it can apply firmware updates and could respond to security
threats without being affected by potentially compromised system software [37]. However, the high privilege level
and isolation of SMM also present significant security challenges. If an attacker can compromise SMM, they gain
full control over the system, bypassing all security measures implemented by the OS [66]. Also, with a propri-
etary firmware, it means that this code with a very high priviledge level cannot be audited at all, nor even replaced.

The ASUS KGPE-D16 mainboard needs SMM to perform critical management tasks that need to be done in parallel
from the operating system. For example, SMM is used to monitor and manage system health by responding to
thermal events and adjusting power levels to maintain system stability. SMM operates independently of the main
operating system, allowing it to perform sensitive tasks securely. coreboot supports SMM, but its implementation
is typically minimal compared to traditional proprietary firmware. In coreboot, SMM initialization involves setting
up the System Management Interrupt (SMI) handler and configuring System Management RAM (SMRAM), the
memory region where SMM code executes[20]. The extent of SMM support in coreboot can vary significantly
depending on the hardware platform and the specific requirements of the system. coreboot’s design philosophy
emphasizes a lightweight and fast boot process, delegating more complex management tasks to payloads or the
operating system itself [91].
One of the key challenges with implementing SMM in coreboot is ensuring that SMI handlers are configured
correctly to manage necessary system tasks without compromising security or performance. coreboot’s approach
to SMM is consistent with its overall goal of providing a streamlined and efficient firmware solution, leaving more
intricate functionalities to be handled by subsequent software layers [78].

3.1.4 Payload
The payload is the software that executes after coreboot has completed its initialization tasks. It resides in the
CBFS and is predetermined at compile time, with no option to choose it at runtime. The primary role of the
payload is to load and hand control over to the operating system. In some cases, the payload itself can be a
component of the operating system [87]. Examples of payloads are GNU GRUB, SeaBIOS, memtest86+ or even
sometimes the Linux kernel itself.

TianoCore, a free implementation of the UEFI (Unified Extensible Firmware Interface) specification is often used
as a payload [105]. It provides a UEFI environment after coreboot has completed its initial hardware initialization.
This allows the system to benefit from the advanced features of UEFI, such as a more flexible boot manager,
enhanced features, and support for modern hardware. Indeed, UEFI, and by extension TianoCore, includes a driver
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model that allows hardware manufacturers to provide UEFI-compatible drivers. These drivers can be loaded at
boot time, allowing the firmware to support a wide range of modern devices that coreboot, with its more minimal-
istic and custom-tailored approach, might not support out of the box. For example, GOP drivers are responsible
for setting up the graphics hardware in UEFI environments. They replace the older VGA BIOS routines used in
legacy BIOS systems. With GOP drivers, the system can initialize the GPU and display a graphical interface even
before the operating system loads [83]. Hardware manufacturers can distribute proprietary UEFI drivers as part
of firmware updates, making it straightforward for end-users to install and use them. This is especially useful
for specialized hardware that requires specific drivers not included in the free software community. It also gives
hardware vendors more control over how their devices are initialized and used, which can be an advantage for
vendors but is a freedom and user control limitation.

Payloads are then definitely important parts of the firmware.

3.2 AMD Platform Security Processor and Intel Management Engine
The AMD Platform Security Processor (PSP) and Intel Management Engine (ME) are embedded subsystems
within AMD and Intel processors, respectively, that handle a range of security-related tasks independent of the
main CPU. These subsystems are fundamental to the security architecture of modern computing platforms,
providing functions such as secure boot, cryptographic key management, and remote system management [59].
The AMD PSP is based on an ARM Cortex-A5 processor and is responsible for several security functions, including
the validation of firmware during boot (secure boot), management of Trusted Platform Module (TPM) functions,
and handling cryptographic operations such as key generation and storage. The PSP operates independently of
the main x86 cores, which allows it to execute security functions even when the main system is powered off or
compromised by malware [59]. The PSP’s isolated environment ensures that sensitive operations are protected
from threats that could affect the main OS.

Similarly, the Intel Management Engine (ME) is a dedicated processor embedded within Intel chipsets that oper-
ates independently of the main CPU. The ME is a comprehensive subsystem that provides a variety of functions,
including out-of-band system management, security enforcement, and support for Digital Rights Management
(DRM) [30]. The ME’s firmware runs on an isolated environment that allows it to perform these tasks securely,
even when the system is powered off. This capability is crucial for enterprise environments where administrators
need to perform remote diagnostics, updates, and security checks without relying on the main OS. Intel ME
enforces Digital Rights Management (DRM) through a multifaceted approach leveraging its deeply embedded,
hardware-based capabilities. At the core is the Protected Execution Environment (PEE), which operates indepen-
dently from the main CPU and operating system. This isolation allows to privately manage cryptographic keys,
certificates, and other sensitive data critical for DRM, which can be very problematic from a user freedom perspec-
tive [44]. By handling encryption and decryption processes within this protected environment, Intel ME ensures
that DRM-protected content, such as video streams, remains secure and unreachable by the user, raising concerns
about the control users have over their own devices [80]. Intel ME also plays a significant role in maintaining
platform integrity through the secure boot process. During secure boot, Intel ME ensures that only digitally
signed and authorized operating systems and applications are loaded, which can prevent users from installing
alternative or modified software on their own hardware, further restricting their freedom [106]. This is further
reinforced by Intel ME’s remote attestation capabilities, where the systems state is reported to a remote server.
This process verifies that only systems meeting specific security standardsdictated by third partiesare allowed to
access DRM-protected content, potentially limiting users’ control over their own devices [19]. Moreover, Intel
ME supports High-bandwidth Digital Content Protection (HDCP), a technology that restricts how digital content
is transmitted over interfaces like HDMI or DisplayPort. By enforcing HDCP, Intel ME ensures that protected
digital content, such as high-definition video, is only transmitted to and displayed on authorized devices, effectively
preventing users from freely using the content they have legally acquired [64][82]. Together, these features enable
Intel ME to provide a comprehensive and robust DRM enforcement mechanism. However, this also means that
users have less control over their own hardware and digital content, raising serious concerns about privacy, user
autonomy, and the broader implications for freedom in computing [44][56].

Added to that, Intel ME has been a source of controversy due to its deep integration into the hardware and its
potential to be exploited if vulnerabilities are discovered. Researchers have demonstrated ways to hack into the
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ME, potentially gaining control over a system even when it is powered off [47]. These concerns have led to calls
for greater transparency and security measures around the ME and similar subsystems. When comparing Intel
ME and AMD PSP, the primary difference lies in their scope and functionality. Intel ME offers more extensive
remote management capabilities, making it a more comprehensive tool for enterprise environments, while AMD
PSP focuses more narrowly on core security tasks. Nonetheless, both play critical roles in ensuring the security
and integrity of modern computing systems.

The ASUS KGPE-D16 mainboard does not include AMD PSP nor Intel ME.
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Chapter 4

Memory initialization and training

4.1 Importance of DDR3 Memory Initialization
Memory modules are designed solely for storing data. The only valid operations on a memory device are reading
data stored in the device, writing (or storing) data into the device, and refreshing the data. Memory modules
consist of large rectangular arrays of memory cells, including circuits used to read and write data into the arrays,
and refresh circuits to maintain the integrity of the stored data. The memory arrays are organized into rows and
columns of memory cells, known as word lines and bit lines, respectively. Each memory cell has a unique location
or address defined by the intersection of a row and a column. A DRAM memory cell is a capacitor that is charged
to produce a 1 or a 0.

DDR3 (Double Data Rate Type 3) is a widely used type of SDRAM (Synchronous Dynamic Random-Access Mem-
ory) that offers significant performance improvements over its predecessors, DDR and DDR2. A DDR3 DIMM
module contains 240 contacts. Key features of DDR3 include higher data rates, lower power consumption, and
increased memory capacity, making it essential for high-performance computing environments [117]. One of the
critical aspects of DDR3 is its internal architecture, which supports data rates ranging from 800 to 1600 Mbps and
operates at a lower voltage of 1.5V. This enables faster data processing and more efficient power usage, crucial
for modern applications that require high-speed memory access [68]. Additionally, DDR3 memory modules are
available in larger capacities, allowing systems to handle larger datasets and more complex computing tasks [5].
However, the advanced features of DDR3 come with increased complexity in its initialization and operation. The
DDR3 memory interface, used by the ASUS KGPE-D16, is source-synchronous. Each memory module generates a
Data Strobe (DQS) pulse simultaneously with the data (DQ) it sends during a memory read operation. Similarly,
a DQS must be generated with its DQ information when writing to memory. The DQS differs between write and
read operations. Specifically, the DQS generated by the system for a write operation is centered in the data bit
period, while the DQS provided by the memory during a read operation is aligned with the edge of the data period
[68].

Due to this edge alignment, the read DQS timing can be adjusted to meet the setup and hold requirements of
the registers capturing the read data. To improve timing margins or reduce simultaneous switching noise in the
system, the DDR3 memory interface also allows various other timing parameters to be adjusted. If the system uses
dual-inline memory modules (DIMMs), as in our case, the interface provides write leveling: a timing adjustment
that compensates for variations in signal travel time [54]. To reduce simultaneous switching noise, DIMM modules
feature a fly-by architecture for routing the address, command, and clock signals, which causes command signals
to reach the different memory devices with a delay. The fly-by topology has a "daisy-chain" structure with either
very short stubs or no stubs at all. This structure results in fewer branches and point-to-point connections: every-
thing originates from the controller, passing through each module on the node, thereby increasing the throughput.
In this topology, signals are routed sequentially from the memory controller to each DRAM chip, reducing signal
reflections and improving overall signal integrity. It means that routing is done in the order of byte lane numbers,
and the data byte lanes are routed on the same layer. Routing can be simplified by swapping data bits within a
byte lane if necessary. The fly-by topology contrasts with the dual-T topology (fig. 4.1). This design is essential
for maintaining stability at the high speeds DDR3 operates at, but it also introduces timing challenges, such as
timing skew, that must be carefully managed [54].
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Figure 4.1: DDR3 fly-by versus T-topology (CC BY-SA 4.0, 2021)

Proper memory initialization ensures that the memory controller and the memory modules are correctly configured
to work together, allowing for efficient data transfer and reliable operation. The initialization process involves
setting various parameters, such as memory timings, voltages, and frequencies, which are critical for ensuring
that the memory operates within its optimal range [68]. Failure to initialize DDR3 memory correctly can lead to
several serious consequences, including system instability, data corruption, and reduced performance [101]. In the
worst-case scenario, improper memory initialization can prevent the system from booting entirely, as the memory
subsystem fails to function correctly. In the context of the ASUS KGPE-D16, a server motherboard designed
for high-performance applications, proper DDR3 memory initialization is particularly important. The KGPE-D16
supports up to 256GB of DDR3 memory across 16 DIMM slots, and any issues during memory initialization, if
non-fatal, could severely impact the system’s ability to handle large datasets or maintain stable operation under
heavy workloads [16]. Given the critical role that memory plays in the overall performance of the KGPE-D16,
ensuring that DDR3 memory is correctly initialized is essential for achieving the desired balance of performance,
reliability, and stability in demanding server environments.

4.1.1 General steps for DDR3 configuration
DDR3 memory initialization is a detailed and essential process that ensures both the stability and performance
of the system. The process involves several critical steps: detection and identification of memory modules, initial
configuration of the memory controller, adjustment of timing and voltage settings, and the execution of training
and calibration procedures.

The initialization begins with the detection and identification of the installed memory modules. During the BIST,
the firmware reads the Serial Presence Detect (SPD) data stored on each memory module. SPD data contains
crucial information about the memory module’s specifications, including size, speed, CAS latency (CL), RAS to
CAS delay (tRCD), row precharge time (tRP), and row cycle time (tRC). This data allows to configure the memory
controller for optimal compatibility and performance.

Indeed, once the memory modules have been identified, the firmware proceeds to the initial configuration of the
memory controller. This controller is governed by a state machine that manages the sequence of operations
required to initialize, maintain, and control memory access. This state machine consists of multiple states that
represent various phases of memory operation, such as reset, initialization, calibration, and data transfer. The
transitions between these states are either automatic or command-driven, depending on the specific requirements
of each phase [68][54]. This state machine is presented in the fig. 4.2. Automatic transitions, depicted by thick
arrows in the automaton, occur without external intervention. These typically include transitions that ensure the
memory enters a stable state, such as the transition from power-on to initialization, or from calibration to idle
states. These transitions are crucial for maintaining the integrity and stability of the memory system, as they
ensure that the controller progresses through necessary stages like ZQ calibration and write leveling, which are
essential for proper signal timing and impedance matching [68][54][22].

On the other hand, command-driven transitions, represented by normal arrows in the automaton, require specific
commands issued by the memory controller or the CPU to advance to the next state. For instance, the transition
from the idle state to the data transfer state requires explicit read or write commands. Similarly, transitioning from
the initialization state to the calibration state involves issuing mode register set (MRS) commands that configure
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the memorys operating parameters. These command-driven transitions are integral to the dynamic operation
of the memory system, allowing the controller to respond to the system’s operational needs and ensuring that
memory accesses are performed efficiently and accurately [68][54].

The memory controller configuration involves setting up fundamental parameters such as the memory clock
(MEMCLK) frequency and the memory channel configuration. The MEMCLK frequency is derived from the SPD
data, while the memory channels are configured to operate in single, dual, or quad-channel modes, depending
on the system architecture and the installed modules [22]. Proper configuration of the memory controller is vi-
tal to ensure synchronization with the memory modules, establishing a stable foundation for subsequent operations.

The first critical step, during the INIT phase involves the adjustment of timing and voltage settings. These
settings are essential for ensuring that DDR3 memory operates efficiently and reliably. Key timing parameters
include CAS Latency (CL), RAS to CAS Delay (tRCD), Row Precharge Time (tRP), and Row Cycle Time (tRC).
These parameters are finely tuned to balance speed and stability [68]. The BIOS uses the SPD data to set these
parameters and may also adjust them dynamically to achieve the best possible performance. Voltage settings,
such as DRAM voltage (typically 1.5V for DDR3) and termination voltage (VTT), are also configured to maintain
stable operation, especially under varying conditions such as temperature fluctuations [54].

Training and calibration are among the most complex and crucial stages of DDR3 memory initialization. The
fly-by topology used for address, command, and clock signals in DDR3 modules enhances signal integrity by
reducing the number of stubs and their lengths, but it also introduces skew between the clock (CK) and data
strobe (DQS) signals [54]. This skew must be compensated to ensure that data is written and read correctly. The
BIOS performs write leveling, which adjusts the timing of DQS relative to CK for each memory module. This
process ensures that the memory controller can write data accurately across all modules, even when they exhibit
slight variations in signal timing due to the physical layout [68].
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Figure 4.2: DDR3 controller state machine

ZQ calibration is another vital procedure that adjusts the output driver impedance and on-die termination (ODT)
to match the systems characteristic impedance [54]. This calibration is critical for maintaining signal integrity
under different operating conditions, such as voltage and temperature changes. During initialization, the memory
controller issues a ZQCL command to the DRAM modules, triggering the calibration sequence that optimizes
impedance settings. This ensures that the memory system can operate with tight timing tolerances, which is
crucial for systems requiring high reliability. Read training is also essential to ensure that data read from the
memory modules is interpreted correctly by the memory controller. This process involves adjusting the timing of
the read data strobe (DQS) to align perfectly with the data being received. Proper read training is necessary for
reliable data retrieval, which directly impacts system performance and stability.

ZQCS (ZQ Calibration Short) however is a procedure used to periodically adjust the DRAM’s ODT and output
driver impedance during normal operation. Unlike the full ZQCL (ZQ Calibration Long), which is performed dur-
ing initial memory initialization, ZQCS is a quicker, less comprehensive calibration that fine-tunes the impedance
settings in response to changes in temperature, voltage, or other environmental factors. This helps maintain op-
timal signal integrity and performance throughout the memory’s operation without the need for a full recalibration.

In summary, the DDR3 memory initialization process in systems like the ASUS KGPE-D16 involves a series of
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detailed and interdependent steps that are critical for ensuring system stability and performance. These include
the detection and identification of memory modules, the initial configuration of the memory controller, precise
adjustments of timing and voltage settings, and rigorous training and calibration procedures.

4.2 Memory initialization techniques

4.2.1 Memory training algorithms
Memory training algorithms are designed to fine-tune the operational parameters of memory modules, such as
timing, voltage, and impedance. These algorithms play a crucial role in achieving the optimal performance of
DDR3 memory systems, particularly in complex multi-core environments where synchronization and timing are
challenging. The primary algorithms used in memory training include ZQ calibration and write leveling. Optimiz-
ing timing and voltage settings is a critical aspect of memory training. The memory controller adjusts parameters
such as CAS latency, RAS to CAS delay, and other timing characteristics to ensure that data is read and written
with minimal delay and maximum accuracy. Voltage adjustments are also crucial, as they help stabilize the oper-
ation of memory modules by ensuring that the power supplied is within the optimal range, compensating for any
variations due to temperature or other factors [54][22][46].

ZQ calibration is a critical step in DDR3 memory initialization that ensures the proper impedance matching of
the output driver and on-die termination (ODT) resistance. Impedance matching is crucial for maintaining signal
integrity by minimizing reflections and ensuring reliable data transmission between the memory controller and the
DRAM modules. It is initiated by sending ZQCL (ZQ Calibration Long) commands to the DDR3 DIMMs. Each
ZQCL command triggers a long calibration cycle within the DRAM module. The purpose of this calibration is
to adjust the output driver impedance and the ODT resistance to match the specified target impedance. This
adjustment compensates for process variations, voltage fluctuations, and temperature changes that can affect the
impedance characteristics of the DRAM module [46].

A bit in the DRAM Controller Timing register is set to 1 to send the ZQCL command, and an address bit is
also set to 1 to indicate that the ZQCL command should be directed to the memory module. Upon receiving the
ZQCL command, the DRAM module begins the calibration process. This involves a series of internal adjustments
where the DRAM module measures its current impedance and compares it against the target impedance. The
module then modifies its internal settings to reduce the difference between the current and target impedance
values [46][68]. This process is iterative, meaning that it may require multiple adjustments to converge on the
optimal impedance settings. The calibration is designed to ensure that the DRAM module’s impedance remains
within a tight tolerance, which is critical for high-speed data communication. The ZQ calibration process is time-
sensitive. After issuing the ZQCL command, the system must wait for 512 memory clock cycles (MEMCLKs) to
allow the calibration to complete. This delay is necessary because the calibration involves both measurement and
adjustment phases, which require precise timing to ensure accuracy [46]. If the system does not wait the full 512
MEMCLKs, the calibration may be incomplete, leading to suboptimal impedance matching and potential signal
integrity issues, such as reflections or noise on the data lines.

During the ZQ calibration, the DRAM module adjusts its output driver impedance, which controls the strength
of the signals it sends out. The stronger the signal, the less susceptible it is to noise, but if the impedance is too
high or too low, it can cause signal distortion or reflections. The ODT resistance is also calibrated to properly
terminate signals that reach the end of a data line. Proper termination is essential to prevent signal reflections
that could interfere with the integrity of the data being transmitted. The ZQCL command adjusts these settings
by fine-tuning the resistance values based on the modules feedback, ensuring that the signal paths are optimized
for both transmission and termination. Once the ZQ calibration is complete, the DCT register bit is reset to
0, indicating that the calibration command has been processed. The memory controller then verifies that the
DRAM module has correctly adjusted its impedance settings. This verification process may involve additional
test signals sent across the memory bus to confirm that signal integrity meets the required standards. If the
calibration is successful, the memory subsystem is now properly calibrated and ready for normal operation. In
systems with LRDIMMs or RDIMMs, additional steps may be necessary to ensure that all ranks and channels are
calibrated correctly, particularly in multi-rank configurations where impedance matching can be more complex.
However, in systems with complex memory configurations, such as those using multiple DIMMs per channel or
operating at higher memory frequencies, the ZQ calibration process becomes even more critical. The calibration
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may need to be repeated at different operating points to ensure that the memory subsystem remains stable across
all conditions. This could involve performing multiple ZQCL calibrations at different memory frequencies, or under
different thermal conditions, to account for the dynamic nature of memory operation in modern systems.

In seed-based algorithms, an initial "seed" value is used as a reference point for the calibration process. The
memory controller iteratively adjusts the impedance based on feedback from the memory module, refining the
calibration with each iteration. This method provides a more precise calibration, particularly in systems where
fine-tuned impedance matching is critical for high-frequency operations [60]. Also, while seed-based methods can
accelerate the convergence of calibration, they require careful selection of initial seed values to avoid suboptimal
or even faulty impedance settings [46].

Write leveling is another critical aspect of memory training, particularly in DDR3 systems that use a fly-by topology.
It involves using the physical layer (PHY) to detect the edge of the Data Strobe (DQS) signal in synchronization
with the clock (CK) signal on the DIMM (Dual In-line Memory Module) during write access. The DQS signal is a
timing signal generated by the memory controller that accompanies data (DQ) during read and write operations.
For write operations, the DQS signal must be perfectly aligned with the CK signal to ensure that data is correctly
written to memory cells. Indeed, in systems using a fly-by topology, the DQS signal might arrive at different times
for different memory devices on the same module due to the signal traveling through different lengths of trace.
Write leveling compensates for this skew by adjusting the timing of the DQS signal relative to the CK signal for
each lane (a group of data lines) [22]. This training is performed on a per-channel and per-DIMM basis, ensuring
that each memory module is correctly synchronized with the memory controller, minimizing timing mismatches
that could lead to data corruption.

Write leveling implies to perform a DQS position training, a specific form of training focused on aligning the DQS
signal with the data (DQ) signals during write operations. In this process, the memory controller adjusts the
phase of the DQS signal to ensure that it is correctly aligned with the data signals across all data lanes, centering
the DQS signal within the "data eye" for optimal timing. This ensures that all data bits are written correctly and
consistently across the memory module, reducing the risk of timing errors and data corruption. Additionally, DQS
receiver training is also needed to ensure that the memory controller can correctly capture the DQS signal during
read operations [54]. The core operation is to make the MCT send out specific test patterns to the DRAM to
determine the timing relationship between the DQS and data signals, then the MCT adjusts the delay or phase
of the DQS signal relative to the clock signal (CK) and the data signals (DQ) while checking the integrity of the
test data in the DRAM.

Using seed-based algorithms, the memory controller sets an initial delay value and then iteratively adjusts it based
on the feedback received from the memory module. This process ensures that the DQS signal is correctly aligned
with the CK signal at the memory module’s pins, minimizing the risk of data corruption and ensuring reliable
write operations [68][46]. Seed-based write leveling offers improved precision but must be finely tuned to account
for the specific characteristics of the memory module and the overall system architecture [46].

In contrast to seed-based algorithms, seedless methods do not rely on an initial reference value. Instead, they
dynamically adjust the impedance and timing parameters during the calibration process. Seedless ZQ calibration
continuously monitors the impedance of the memory module and makes real-time adjustments to maintain optimal
matching. This approach can be beneficial in environments where the operating conditions are highly variable, as it
allows for more flexible and adaptive calibration [60]. Similarly, seedless write leveling dynamically adjusts the DQS
timing based on real-time feedback from the memory module. This method is particularly useful in systems where
the memory configuration is frequently changed or where the operating conditions vary significantly [54][46]. The
traditional ZQ calibration methods, while effective, often struggle with matching impedance perfectly across all
conditions. A master thesis by Gopikrishna [46] builds upon these traditional methods by proposing enhancements
that involve more sophisticated calibration approaches, leading to better impedance matching and overall memory
performance [46].

4.2.2 BIOS and Kernel Developer Guide (BKDG) recommendations
The BIOS and Kernel Developer Guide (BKDG from AMD [9]) is a technical manual aimed at BIOS developers
and operating system kernel programmers. It provides in-depth documentation on the AMD processor architec-
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ture, system initialization processes, and configuration guidelines. The document is essential for understanding
the proper initialization sequences, including those for DDR3 memory, to ensure system stability and performance,
particularly for AMD Family 15h processors.

The initialization of DDR3 memory begins with configuring the DDR supply voltage regulator, which ensures that
the memory modules receive the correct power levels. Following this, the Northbridge (NB) P-state is forced to
NBP0, a state that guarantees stable operation during the initial configuration phases. Once these preliminary
steps are completed, the initialization of the DDR physical layer (PHY) begins, which is critical for setting up
the communication interface between the memory controller and the DDR3 modules. PHY fence training deals
with overall signal alignment at the physical interface, while ZQ calibration focuses on impedance matching, and
write leveling addresses timing alignment during write operations. Each process involves different methods as
PHY fence training uses iterative timing adjustments, ZQ calibration uses impedance adjustments via the ZQ pin,
and write leveling adjusts DQS timing relative to CK during writes. These processes are critical for configuring
DDR3 DIMMs and ensuring stable and reliable operation, especially when booting from an unpowered state such
as ACPI S4 (hibernation), S5 (soft off), or G3 (mechanical off).

4.2.2.1 DDR3 initialization procedure

DDR3 initialization is a multi-step process that prepares both the memory controllers and the DIMMs for operation.
This initialization is essential to set up the memory configuration and to ensure that the memory subsystem
operates correctly under various conditions.

• Enable DRAM initialization: The process begins by enabling DRAM initialization. This is done by
setting the EnDramInit bit in the D18F2x7C_dct register to 1. The D18F2x7C_dct register is a specific
configuration register within the memory controller that controls various aspects of the DRAM initialization
process. Enabling this bit initiates the sequence of operations required to prepare the memory for use. After
setting this bit, the system waits for 200 microseconds to allow the initialization command to propagate
and stabilize.

• Deassert memory reset: Next, the memory reset signal, known as MemRstX, is deasserted by setting
the DeassertMemRstX bit in the D18F2x7C_dct register to 1. Deasserting MemRstX effectively takes the
memory components out of their reset state, allowing them to begin normal operation. The system then
waits for an additional 500 microseconds to ensure that the memory reset is fully deasserted and the memory
components are stable.

• Assert clock enable (CKE): The next step involves asserting the clock enable signal, known as ‘CKE‘, by
setting the AssertCke bit in the D18F2x7C_dct register to 1. The CKE signal is critical because it enables
the clocking of the DRAM modules, allowing them to synchronize with the memory controller. The system
must wait for 360 nanoseconds after asserting CKE to ensure that the clocking is correctly established.

• Registered DIMMs and LRDIMMs initialization: For systems using registered DIMMs (RDIMMs) or
Load Reduced DIMMs (LRDIMMs), additional initialization steps are necessary. RDIMMs and LRDIMMs
have buffering mechanisms that reduce electrical loading and improve signal integrity, especially in systems
with multiple memory modules. During initialization, the BIOS programs the ParEn bit in the D18F2x90_dct
register based on whether the DIMM is buffered or unbuffered. For RDIMMs, specific Register Control
(RC) commands, such as RC0 through RC7, are sent to initialize the memory module’s control registers.
Similarly, LRDIMMs require a series of Flexible Register Control (FRC) commands, such as F0RC and F1RC,
to initialize their internal registers according to the manufacturers specifications.

• Mode Register Set (MRS): The initialization process also involves sending Mode Register Set (MRS)
commands. These commands are used to configure various operational parameters of the DDR3 memory
modules, such as burst length, latency timings, and operating modes. Each MRS command targets a specific
mode register within the memory module, and the exact sequence of commands is crucial for setting up the
DIMMs according to the systems requirements and the DIMM manufacturers guidelines.

4.2.2.2 ZQ calibration process

ZQ calibration is a key step in DDR3 initialization, responsible for calibrating the output driver impedance and
on-die termination (ODT) resistance of the DDR3 modules. Proper impedance matching is essential for main-
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taining signal integrity, reducing signal reflections, and ensuring reliable data communication between the memory
controller and the memory modules. It is important to note that ZQ calibration is done directly by the memory
controller, and that the firmware is simply triggering it.

• Sending ZQCL commands: The BIOS initiates ZQ calibration by sending two ZQCL (ZQ Calibration
Long) commands to each DDR3 DIMM. ZQCL commands instruct the memory module to perform a
long calibration cycle, during which the module adjusts its output driver impedance and ODT resistance
to match the desired target impedance. This process compensates for variations due to manufacturing
differences, voltage fluctuations, and temperature changes. To send a ZQCL command, the BIOS programs
the SendZQCmd bit in the D18F2x7C_dct register to 1 and sets the MrsAddress[10] bit to 1, indicating
that the ZQCL command should be sent to the memory module.

• Calibration timing: After sending the ZQCL command, the system must wait for 512 memory clock cycles
(MEMCLKs) to allow the calibration process to complete. During this time, the memory module adjusts
its internal impedance to ensure it matches the specified target impedance. This timing is critical, as
inadequate wait times could result in incomplete or inaccurate calibration, leading to signal integrity issues
and potential data errors.

• Finalization of initialization: Once the ZQ calibration is complete, the BIOS deactivates the DRAM initial-
ization process by setting the EnDramInit bit in the D18F2x7C_dct register to 0. For LRDIMMs, additional
configuration steps are required to finalize the initialization process. These steps include programming the
DCT registers to monitor for errors and ensure that the LRDIMMs are operating correctly.

4.2.2.3 Write leveling process

The BIOS and Kernel Developer Guide (BKDG) provides information on the write leveling process, which is es-
sential for ensuring correct data alignment during write operations in DDR3 memory systems. Write leveling is
particularly crucial in systems utilizing a fly-by topology, where timing skew between the clock and data signals can
introduce significant challenges. This kind of algorithms were not necessary for DDR2, for example. If the target
operating frequency is higher than the lowest supported MEMCLK frequency, the BIOS must perform multiple
passes to achieve proper write leveling. The MEMCLK is the clock signal that synchronizes the communication
between the memory controller and the memory modules.

During each pass, the memory subsystem is configured for a progressively higher operating frequency:

• Pass 1: The memory subsystem is configured for the lowest supported MEMCLK, ensuring that initial
timing adjustments are made under the most stable conditions.

• Pass 2: The subsystem is then adjusted for the second-lowest MEMCLK, gradually increasing the operating
frequency while fine-tuning the alignment of the DQS and CK signals.

• Pass N: This process continues until the highest MEMCLK supported by the system is reached, ensuring
that the memory operates reliably at its maximum speed.

This step-wise configuration ensures that the memory system is stable across all supported operating frequencies,
minimizing the risk of timing errors during write operations, especially as frequencies increase and timing mar-
gins become tighter. The configuration process varies depending on whether the DIMM is a Registered DIMM
(RDIMM) or an Unregistered DIMM (UDIMM). RDIMMs include an additional buffer to improve signal integrity,
which is particularly important in systems with multiple DIMMs. The steps common to both types include a
preparation with the DDR3 Mode Register Commands (see fig. 4.2). For RDIMMs, a 4-rank module is treated as
two separate DIMMs, where each rank is essentially a separate memory module within the same DIMM. The first
two ranks are the primary target for the initial configuration. The remaining two ranks are treated as non-target
and are configured separately.

Mode registers in DDR3 memory are used to configure various operational parameters such as latency settings,
burst length, and write leveling. One of the key mode registers is MR1_dct, which is specific to DDR3 and controls
certain features of the memory module, including write leveling. MR1_dct is used to enable or disable specific
functions such as write leveling and output driver settings. The dct suffix refers to the Data Control Timing that
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is specific to this register’s function in managing the timing and control of data operations within the memory
module.

Then, these steps are followed, still common to both RDIMMs and UDIMMs:

• Step 1A: Output Driver and ODT configuration for target DIMM:

– For the first rank (target):
∗ Set MR1_dct[1:0][Level]=1 to enable write leveling.
∗ Set MR1_dct[1:0][Qoff]=0 to ensure the output drivers are active.

– For other ranks:
∗ Set MR1_dct[1:0][Level]=1 to prepare for write leveling.
∗ Set MR1_dct[1:0][Qoff]=1 to deactivate the output drivers for ranks that are not currently

being leveled.
– If there are two or more DIMMs per channel, or if there is one DIMM per three channels:

∗ Program the target ranks RttNom (nominal termination resistance value) for RttWr termination,
which helps in managing signal integrity during the write process by ensuring the correct impedance
matching.

• Step 1B: Configure non-target RttNom to normal operation:

– After the initial configuration, the RttNom values for the non-target ranks are set to their normal
operating states.

– A wait time of 40 MEMCLKs is observed to ensure the configuration settings are stable before pro-
ceeding.

• Step 3: PHY configuration:

– The PHY is then configured to measure and adjust the timing delays accurately for each data lane.
The PHY layer is responsible for converting the signals from the memory controller into a form that
can be transmitted over the physical connections to the memory modules.

• Step 4: Perform write leveling:

– The actual write leveling process is executed, where the DQS signal timing is adjusted to ensure it aligns
perfectly with the CK signal at the memory modules pins, ensuring that data is written accurately.

• Step 5: Disable PHY configuration post-measurement:

– After completing the write leveling process, the PHY configuration is disabled to stop further timing
measurements and adjustments, locking in the calibrated settings.

• Step 6: Program the DIMM to normal operation:

– Finally, the DIMM is reprogrammed to its normal operational state, resetting Qoff and Level to 0 to
conclude the write leveling process and return to standard operation.

For each DIMM, the BIOS must calculate the coarse and fine delays for each lane in the DQS Write Timing
register:

• Coarse Delay Calculation: This involves setting a basic delay based on a seed value specific to the platform.
The seed value is determined during initial system configuration and serves as a starting point for further
delay adjustments.

• Critical Delay Determination: The minimum of the coarse delays for each lane and DIMM is considered
the critical delay. This delay is crucial for ensuring that all data lanes are correctly synchronized.

• Platform-Specific Seed: The seed ranges between -1.20ns and +1.20ns, providing a small adjustment
range to fine-tune the timing based on the specific characteristics of the platform. This seed value can
differ for the first pass compared to subsequent passes, allowing for incremental adjustments as the system
stabilizes.
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1 void fill_mem_ctrl(u32 controllers,
2 struct mem_controller *ctrl_a,
3 const u8 *spd_addr)
4 {
5 int i;
6 int j;
7 int index = 0;
8 struct mem_controller *ctrl;
9 for (i = 0; i < controllers; i++) {

10 ctrl = &ctrl_a[i];
11 ctrl->node_id = i;
12 ctrl->f0 = NODE_PCI(i, 0);
13 ctrl->f1 = NODE_PCI(i, 1);
14 ctrl->f2 = NODE_PCI(i, 2);
15 ctrl->f3 = NODE_PCI(i, 3);
16 ctrl->f4 = NODE_PCI(i, 4);
17 ctrl->f5 = NODE_PCI(i, 5);
18

19 if (spd_addr == (void *)0) continue;
20

21 ctrl->spd_switch_addr = spd_addr[index++];
22

23 for (j = 0; j < 8; j++) {
24 ctrl->spd_addr[j] = spd_addr[index++];
25

26 }
27 }
28 }
29

Listing 4.1: fill_mem_ctrl(), extract from src/northbridge/amd/amdfam10/raminit_sysinfo_in_ram.c

4.3 Current implementation and potential improvements

4.3.1 Current implementation in coreboot on the KGPE-D16
In this part as for the rest of this document, we’re basing our study on the 4.11 version of coreboot [27], which
is the last version that supported the ASUS KGPE-D16 mainboard.

The process starts in src/mainboard/asus/kgpe-d16/romstage.c, in the cache_as_ram_main function by
calling fill_mem_ctrl from src/northbridge/amd/amdfam10/raminit_sysinfo_in_ram.c (lst. 4.1). At
this current step, only the BSC is running the firmware code. This function iterates over all memory controllers
(one per node) and initializes their corresponding structures with the system information needed for the RAM to
function. This includes the addresses of PCI nodes (important for DMA operations) and SPD addresses, which are
internal ROMs in each memory slot containing crucial information for detecting and initializing memory modules.

If successful, the system posts codes 0x3D and then 0x40. The raminit_amdmct function from src/northbridge/
amd/amdfam10/raminit_amdmct.c is then called. This function, in turn, calls mctAutoInitMCT_D (lst. 4.2)
from src/northbridge/amd/amdmct/mct_ddr3/mct_d.c, which is responsible for the initial memory initializa-
tion, predominantly written by Raptor Engineering.
At this stage, it is assumed that memory has been pre-mapped contiguously from address 0 to 4GB and that the
previous code has correctly mapped non-cacheable I/O areas below 4GB for the PCI bus and Local APIC access
for processor cores.

The following prerequisites must be in place from the previous steps:

39



• The HyperTransport bus configured, and its speed is correctly set.

• The SMBus controller is configured.

• The BSP is in unreal mode.

• A stack is set up for all cores.

• All cores are initialized at a frequency of 2GHz.

• If we were using saved values, the NVRAM would have been verified with checksums.

The memory controller for the BSP is queried to check if it can manage ECC memory, which is a type of memory
that includes error-correcting code to detect and correct common types of data corruption (lst. 4.3).
For each node available in the system, the memory controllers are identified and initialized using a DCTStatStruc
structure defined in src/northbridge/amd/amdmct/mct_ddr3/mct_d.h. This structure contains all necessary
fields for managing a memory module. The process includes:

• Retrieving the corresponding field in the sysinfo structure for the node.

• Clearing fields with zero.

• Initializing basic fields.

• Initializing the controller linked to the current node.

• Verifying the presence of the node (checking if the processor associated with this controller is present). If
yes, the SMBus is informed.

• Pre-initializing the memory module controller for this node using mct_preInitDCT.

The memory modules must be initialized. All modules present on valid nodes are configured with 1.5V voltage
(lst. 4.4). The ZQ calibration is triggered at this stage.

Now, present memory modules are detected using mct_initDCT (lst. 4.6). The memory modules existence is
checked and the machine halts immediately after displaying a message if there is no memory. coreboot waits for
all modules to be available using SyncDCTsReady_D.

The firmware maps the physical memory address ranges into the address space with HTMemMapInit_D as con-
tiguously as possible while also constructing the physical memory map. If there is an area occupied by something
else, it is ignored, and a memory hole is created.

Mapping the address ranges into the cache is done with CPUMemTyping_D either as WriteBack (cacheable) or
Uncacheable, depending on whether the area corresponds to physical memory or a memory hole.

The external northbridge is notified of this new memory configuration.

The coreboot code compensates for the delay between DQS and DQ signals, as well as between CMD and DQ.
This is handled by the DQSTiming_D function (lst. 4.7). The initialization can be done again if needed after that,
otherwise the channels and nodes are interleaved and ECC is enabled (if supported by every module).

After that being done, the DRAM can be mapped into the address space with cacheability, and the init process
finishes with validation of every populated DCT node (lst. 4.8).

Finally, if the RAM is of the ECC type, error-correcting codes are enabled, and the function ends by activating
power-saving features if requested by the user.
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1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 /*
5 * Memory may be mapped contiguously all the way up to 4GB
6 * (depending on setup options). It is the responsibility of PCI
7 * subsystem to create an uncacheable IO region below 4GB and to adjust
8 * TOP_MEM downward prior to any IO mapping or accesses. It is the same
9 * responsibility of the CPU sub-system prior to accessing LAPIC.

10 *
11 * Slot Number is an external convention, and is determined by OEM with
12 * accompanying silk screening. OEM may choose to use Slot number
13 * convention which is consistent with DIMM number conventions.
14 * All AMD engineering platforms do.
15 *
16 * Build Requirements:
17 * 1. MCT_SEG0_START and MCT_SEG0_END macros to begin and end the code
18 * segment, defined in mcti.inc.
19 *
20 * Run-Time Requirements:
21 * 1. Complete Hypertransport Bus Configuration
22 * 2. SMBus Controller Initialized
23 * 1. BSP in Big Real Mode
24 * 2. Stack at SS:SP, located somewhere between A000:0000 and F000:FFFF
25 * 3. Checksummed or Valid NVRAM bits
26 * 4. MCG_CTL = -1, MC4_CTL_EN = 0 for all CPUs
27 * 5. MCi_STS from shutdown/warm reset recorded (if desired) prior to entry
28 * 6. All var MTRRs reset to zero
29 * 7. State of NB_CFG.DisDatMsk set properly on all CPUs
30 * 8. All CPUs at 2GHz Speed (unless DQS training is not installed).
31 * 9. All cHT links at max Speed/Width (unless DQS training is not
32 * installed).
33 *
34 * Global relationship between index values and item values:
35 *
36 * pDCTstat.CASL pDCTstat.Speed
37 * j CL(j) k F(k)
38 * --------------------------
39 * 0 2.0 - -
40 * 1 3.0 1 200 MHz
41 * 2 4.0 2 266 MHz
42 * 3 5.0 3 333 MHz
43 * 4 6.0 4 400 MHz
44 * 5 7.0 5 533 MHz
45 * 6 8.0 6 667 MHz
46 * 7 9.0 7 800 MHz
47 */
48 [...]
49 }

Listing 4.2: Beginning of mctAutoInitMCT_D(), extract from src/northbridge/amd/amdmct/mct_ddr3/mct_
d.c
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1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 [...]
5 restartinit:
6 if (!mctGet_NVbits(NV_ECC_CAP) || !mctGet_NVbits(NV_ECC))
7 pMCTstat->try_ecc = 0;
8 else
9 pMCTstat->try_ecc = 1;

10 [...]
11 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
12 struct DCTStatStruc *pDCTstat;
13 pDCTstat = pDCTstatA + Node;
14 /* Zero out data structures to avoid false detection of DIMMs */
15 memset(pDCTstat, 0, sizeof(struct DCTStatStruc));
16 /* Initialize data structures */
17 pDCTstat->Node_ID = Node;
18 pDCTstat->dev_host = PA_HOST(Node);
19 pDCTstat->dev_map = PA_MAP(Node);
20 pDCTstat->dev_dct = PA_DCT(Node);
21 pDCTstat->dev_nbmisc = PA_NBMISC(Node);
22 pDCTstat->dev_link = PA_LINK(Node);
23 pDCTstat->dev_nbctl = PA_NBCTL(Node);
24 pDCTstat->NodeSysBase = node_sys_base;
25 if (mctGet_NVbits(NV_PACK_TYPE) == PT_GR) {
26 uint32_t dword;
27 pDCTstat->Dual_Node_Package = 1;
28 /* Get the internal node number */
29 dword = Get_NB32(pDCTstat->dev_nbmisc, 0xe8);
30 dword = (dword >> 30) & 0x3;
31 pDCTstat->Internal_Node_ID = dword;
32 } else {
33 pDCTstat->Dual_Node_Package = 0;
34 }
35 printk(BIOS_DEBUG, "%s: mct_init Node %d\n", __func__, Node);
36 mct_init(pMCTstat, pDCTstat);
37 mctNodeIDDebugPort_D();
38 pDCTstat->NodePresent = NodePresent_D(Node);
39 if (pDCTstat->NodePresent) {
40 pDCTstat->LogicalCPUID = mctGetLogicalCPUID_D(Node);
41 printk(BIOS_DEBUG, "%s: mct_InitialMCT_D\n", __func__);
42 mct_InitialMCT_D(pMCTstat, pDCTstat);
43 printk(BIOS_DEBUG, "%s: mctSMBhub_Init\n", __func__);
44 /* Switch SMBUS crossbar to proper node */
45 mctSMBhub_Init(Node);
46 printk(BIOS_DEBUG, "%s: mct_preInitDCT\n", __func__);
47 mct_preInitDCT(pMCTstat, pDCTstat);
48 }
49 node_sys_base = pDCTstat->NodeSysBase;
50 node_sys_base += (pDCTstat->NodeSysLimit + 2) & ~0x0F;
51 }
52 [...]
53 }

Listing 4.3: DIMM initialization in mctAutoInitMCT_D(), extract from src/northbridge/amd/amdmct/mct_
ddr3/mct_d.c

42



1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 [...]
5 /* If the boot fails make sure training is attempted after reset */
6 nvram = 0;
7 set_option("allow_spd_nvram_cache_restore", &nvram);
8

9 #if CONFIG(DIMM_VOLTAGE_SET_SUPPORT)
10 printk(BIOS_DEBUG, "%s: DIMMSetVoltage\n", __func__);
11 /* Set the DIMM voltages (mainboard specific) */
12 DIMMSetVoltages(pMCTstat, pDCTstatA);
13 #endif
14 if (!CONFIG(DIMM_VOLTAGE_SET_SUPPORT)) {
15 /* Assume 1.5V operation */
16 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
17 struct DCTStatStruc *pDCTstat;
18 pDCTstat = pDCTstatA + Node;
19 if (!pDCTstat->NodePresent)
20 continue;
21 for (dimm = 0; dimm < MAX_DIMMS_SUPPORTED; dimm++) {
22 if (pDCTstat->DIMMValid & (1 << dimm))
23 pDCTstat->DimmConfiguredVoltage[dimm] = 0x1;
24 }
25 }
26 }
27 [...]
28 }
29

30

Listing 4.4: Voltage control in mctAutoInitMCT_D(), extract from src/northbridge/amd/amdmct/mct_ddr3/
mct_d.c
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1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 [...]
5 /* If DIMM configuration has not changed since last boot restore
6 * training values */
7 allow_config_restore = 1;
8 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
9 struct DCTStatStruc *pDCTstat;

10 pDCTstat = pDCTstatA + Node;
11

12 if (pDCTstat->NodePresent)
13 if (!pDCTstat->spd_data.nvram_spd_match)
14 allow_config_restore = 0;
15 }
16 /* FIXME
17 * Stability issues have arisen on multiple Family 15h systems
18 * when configuration restoration is enabled. In all cases these
19 * stability issues resolved by allowing the RAM to go through a
20 * full training cycle.
21 *
22 * Debug and reenable this!
23 */
24 allow_config_restore = 0;
25 [...]
26 }
27

28

Listing 4.5: mctAutoInitMCT_D() does not allow restoring previous training values, extract from src/
northbridge/amd/amdmct/mct_ddr3/mct_d.c

44



1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 [...]
5 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
6 struct DCTStatStruc *pDCTstat;
7 pDCTstat = pDCTstatA + Node;
8 if (pDCTstat->NodePresent) {
9 printk(BIOS_DEBUG, "%s: mctSMBhub_Init\n", __func__);

10 /* Switch SMBUS crossbar to proper node*/
11 mctSMBhub_Init(Node);
12

13 printk(BIOS_DEBUG, "%s: mct_initDCT\n", __func__);
14 mct_initDCT(pMCTstat, pDCTstat);
15 if (pDCTstat->ErrCode == SC_FatalErr) {
16 goto fatalexit; /* any fatal errors?*/
17 } else if (pDCTstat->ErrCode < SC_StopError) {
18 NodesWmem++;
19 }
20 }
21 }
22 if (NodesWmem == 0) {
23 printk(BIOS_ALERT, "Unable to detect valid memory on any nodes. Halting!\n");
24 goto fatalexit;
25 }
26 printk(BIOS_DEBUG, "mctAutoInitMCT_D: SyncDCTsReady_D\n");
27 /* Make sure DCTs are ready for accesses.*/
28 SyncDCTsReady_D(pMCTstat, pDCTstatA);
29 printk(BIOS_DEBUG, "mctAutoInitMCT_D: HTMemMapInit_D\n");
30 /* Map local memory into system address space.*/
31 HTMemMapInit_D(pMCTstat, pDCTstatA);
32 mctHookAfterHTMap();
33 printk(BIOS_DEBUG, "mctAutoInitMCT_D: mctHookAfterCPU\n");
34 /* Setup external northbridge(s) */
35 mctHookAfterCPU();
36 [...]
37 return;
38 fatalexit:
39 die("mct_d: fatalexit");
40 }

Listing 4.6: Preparing SMBus, DCTs and NB in mctAutoInitMCT_D() from src/northbridge/amd/amdmct/
mct_ddr3/mct_d.c
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1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 [...]
5 /* FIXME
6 * Previous training values should only be used if the current desired
7 * speed is the same as the speed used in the previous boot.
8 * How to get the desired speed at this point in the code?
9 */

10 printk(BIOS_DEBUG, "mctAutoInitMCT_D: DQSTiming_D\n");
11 /* Get Receiver Enable and DQS signal timing*/
12 DQSTiming_D(pMCTstat, pDCTstatA, allow_config_restore);
13 if (!allow_config_restore) {
14 printk(BIOS_DEBUG, "mctAutoInitMCT_D: :OtherTiming\n");
15 mct_OtherTiming(pMCTstat, pDCTstatA);
16 }
17 /* RESET# if 1st pass of DIMM spare enabled*/
18 if (ReconfigureDIMMspare_D(pMCTstat, pDCTstatA)) {
19 goto restartinit;
20 }
21 InterleaveNodes_D(pMCTstat, pDCTstatA);
22 InterleaveChannels_D(pMCTstat, pDCTstatA);
23 ecc_enabled = 1;
24 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
25 struct DCTStatStruc *pDCTstat;
26 pDCTstat = pDCTstatA + Node;
27 if (pDCTstat->NodePresent)
28 if (!is_ecc_enabled(pMCTstat, pDCTstat))
29 ecc_enabled = 0;
30 }
31 if (ecc_enabled) {
32 printk(BIOS_DEBUG, "mctAutoInitMCT_D: ECCInit_D\n");
33 /* Setup ECC control and ECC check-bits*/
34 if (!ECCInit_D(pMCTstat, pDCTstatA)) {
35 /* Memory was not cleared during ECC setup */
36 /* mctDoWarmResetMemClr_D(); */
37 printk(BIOS_DEBUG, "mctAutoInitMCT_D: MCTMemClr_D\n");
38 MCTMemClr_D(pMCTstat,pDCTstatA);
39 }
40 }
41 [...]
42 return;
43 fatalexit:
44 die("mct_d: fatalexit");
45 }

Listing 4.7: Get DQS, reset and activate ECC in mctAutoInitMCT_D() from src/northbridge/amd/amdmct/
mct_ddr3/mct_d.c
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1 void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
2 struct DCTStatStruc *pDCTstatA)
3 {
4 [...]
5 printk(BIOS_DEBUG, "mctAutoInitMCT_D: CPUMemTyping_D\n");
6 /* Map dram into WB/UC CPU cacheability */
7 CPUMemTyping_D(pMCTstat, pDCTstatA);
8 printk(BIOS_DEBUG, "mctAutoInitMCT_D: UMAMemTyping_D\n");
9 /* Fix up for UMA sizing */

10 UMAMemTyping_D(pMCTstat, pDCTstatA);
11 printk(BIOS_DEBUG, "mctAutoInitMCT_D: mct_ForceNBPState0_Dis_Fam15\n");
12 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
13 struct DCTStatStruc *pDCTstat;
14 pDCTstat = pDCTstatA + Node;
15 mct_ForceNBPState0_Dis_Fam15(pMCTstat, pDCTstat);
16 }
17 enable_cc6 = 0;
18 if (get_option(&nvram, "cpu_cc6_state") == CB_SUCCESS)
19 enable_cc6 = !!nvram;
20 if (enable_cc6) {
21 uint8_t num_nodes;
22 num_nodes = 0;
23 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
24 struct DCTStatStruc *pDCTstat;
25 pDCTstat = pDCTstatA + Node;
26 if (pDCTstat->NodePresent)
27 num_nodes++;
28 }
29 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
30 struct DCTStatStruc *pDCTstat;
31 pDCTstat = pDCTstatA + Node;
32 if (pDCTstat->NodePresent)
33 set_up_cc6_storage_fam15(pMCTstat, pDCTstat, num_nodes);
34 }
35 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
36 struct DCTStatStruc *pDCTstat;
37 pDCTstat = pDCTstatA + Node;
38 if (pDCTstat->NodePresent) {
39 set_cc6_save_enable(pMCTstat, pDCTstat, 1);
40 lock_dram_config(pMCTstat, pDCTstat);
41 }
42 }
43 }
44 mct_FinalMCT_D(pMCTstat, pDCTstatA);
45 printk(BIOS_DEBUG, "mctAutoInitMCT_D Done: Global Status: %x\n", pMCTstat->GStatus);
46 return;
47 fatalexit:
48 die("mct_d: fatalexit");
49 }

Listing 4.8: Mapping DRAM with cache, validating DCT nodes and finishing the init process in mctAutoInitMCT_
D() from src/northbridge/amd/amdmct/mct_ddr3/mct_d.c
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4.3.1.1 Details on the DQS training function

The DQSTiming_D function is a critical part of the firmware responsible for initializing and training the system’s
memory. The function primarily handles the DQS timing, which is essential for ensuring data integrity and
synchronization between the memory controller and the DRAM. Proper DQS training is crucial to align the data
signals correctly with the clock signals.
The function begins by declaring local variables, which are used throughout the function for various operations. It
also includes an early exit condition to bypass DQS training if a specific status flag (GSB_EnDIMMSpareNW) is set,
indicating that a DIMM spare feature is enabled (lst. 4.9). These spare DIMMs are not used for normal memory
operations but are kept in reserve for redundancy.

1 if (pMCTstat->GStatus & (1 << GSB_EnDIMMSpareNW)) {
2 return;
3 }

Listing 4.9: Early exit check, extract from the DQSTiming_D function in src/northbridge/amd/amdmct/mct_
ddr3/mct_d.c

Next, the function initializes the TCWL (CAS Write Latency) offset to zero for each node and DCT. This ensures
that the memory write latency is properly aligned before the DQS training begins (lst. 4.10).

1 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
2 uint8_t dct;
3 struct DCTStatStruc *pDCTstat;
4 pDCTstat = pDCTstatA + Node;
5 for (dct = 0; dct < 2; dct++)
6 pDCTstat->tcwl_delay[dct] = 0;
7 }

Listing 4.10: Setting initial TCWL offset to zero for all nodes and DCTs, extract from the DQSTiming_D function
in src/northbridge/amd/amdmct/mct_ddr3/mct_d.c

A retry mechanism is introduced to handle potential errors during DQS training and the pre-training function are
called (lst. 4.11).

1 retry_dqs_training_and_levelization:
2 nv_DQSTrainCTL = !allow_config_restore;
3

4 mct_BeforeDQSTrain_D(pMCTstat, pDCTstatA);
5 phyAssistedMemFnceTraining(pMCTstat, pDCTstatA, -1);

Listing 4.11: Retry mechanism initialization and pre-training operations, extract from the DQSTiming_D function
in src/northbridge/amd/amdmct/mct_ddr3/mct_d.c

For AMD’s Fam15h processors, additional PHY compensation is needed for each node and valid DCT (lst. 4.12).
This is necessary to fine-tune the electrical characteristics of the memory interface. For more information about
the PHY training, see the earlier sections about RAM training algorithm.
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1 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
2 pDCTstat = pDCTstatA + Node;
3 if (pDCTstat->NodePresent) {
4 if (pDCTstat->DIMMValidDCT[0])
5 InitPhyCompensation(pMCTstat, pDCTstat, 0);
6 if (pDCTstat->DIMMValidDCT[1])
7 InitPhyCompensation(pMCTstat, pDCTstat, 1);
8 }
9 }

Listing 4.12: PHY compensation initialization, extract from the DQSTiming_D function in src/northbridge/
amd/amdmct/mct_ddr3/mct_d.c

Before proceeding with the main DQS training, the function invokes a hook function that allows for additional
configurations or custom operations: mctHookBeforeAnyTraining.

The nv_DQSTrainCTL variable is set based on the allow_config_restore parameter, determining whether
to restore a previous configuration or proceed with fresh training. This is however not working on the cur-
rent implementation of ASUS KGPE-D16 firmware (lst. 4.5). If nv_DQSTrainCTL indicates that fresh training
should proceed, the function performs the main DQS training in multiple passes, including receiver enable train-
ing with TrainReceiverEn_D, write leveling with mct_WriteLevelization_HW, DQS position training with
mct_TrainDQSPos_D and the maximum read latency calculation with TrainMaxRdLatency_En_D (lst. 4.13).
Write leveling is done in two passes, with a DQS receiver training between and another pass of receiver training
after. After that, a DQS position training is done and the process finished with the maximum read latency, i.e
the delay between the request for data and the delivery of that data by the DRAM.

1 if (nv_DQSTrainCTL) {
2 mct_WriteLevelization_HW(pMCTstat, pDCTstatA, FirstPass);
3 TrainReceiverEn_D(pMCTstat, pDCTstatA, FirstPass);
4 mct_WriteLevelization_HW(pMCTstat, pDCTstatA, SecondPass);
5

6 /* TODO: Determine why running TrainReceiverEn_D in SecondPass mode yields
7 * less stable training values than when run in FirstPass mode as in the HACK
8 * below.*/
9 TrainReceiverEn_D(pMCTstat, pDCTstatA, FirstPass);

10 mct_TrainDQSPos_D(pMCTstat, pDCTstatA);
11 [...]
12 TrainMaxRdLatency_En_D(pMCTstat, pDCTstatA);
13 } else {
14 mct_WriteLevelization_HW(pMCTstat, pDCTstatA, FirstPass);
15 mct_WriteLevelization_HW(pMCTstat, pDCTstatA, SecondPass);
16 #if CONFIG(HAVE_ACPI_RESUME)
17 printk(BIOS_DEBUG, "mctAutoInitMCT_D: Restoring DIMM training configuration"
18 "from NVRAM\n");
19 if (restore_mct_information_from_nvram(1) != 0)
20 printk(BIOS_CRIT, "%s: ERROR: Unable to restore DCT configuration from"
21 "NVRAM\n", __func__);
22 #endif
23 exit_training_mode_fam15(pMCTstat, pDCTstatA);
24 pMCTstat->GStatus |= 1 << GSB_ConfigRestored;"
25 }

Listing 4.13: Main DQS training process in multiple passes, extract from the DQSTiming_D function in src/
northbridge/amd/amdmct/mct_ddr3/mct_d.c
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1 retry_requested = 0;
2 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
3 struct DCTStatStruc *pDCTstat;
4 pDCTstat = pDCTstatA + Node;
5

6 if (pDCTstat->NodePresent) {
7 if (pDCTstat->TrainErrors & (1 << SB_FatalError)) {
8 printk(BIOS_ERR, "DIMM training FAILED! Restarting system...");
9 soft_reset();

10 }
11 if (pDCTstat->TrainErrors & (1 << SB_RetryConfigTrain)) {
12 retry_requested = 1;
13

14 pDCTstat->TrainErrors &= ~(1 << SB_RetryConfigTrain);
15 pDCTstat->TrainErrors &= ~(1 << SB_NODQSPOS);
16 pDCTstat->ErrStatus &= ~(1 << SB_RetryConfigTrain);
17 pDCTstat->ErrStatus &= ~(1 << SB_NODQSPOS);
18 }
19 }
20 }
21

22 if (retry_requested) {
23 printk(BIOS_DEBUG, "%s: Restarting training on algorithm request\n",
24 __func__);
25 /* Reset frequency to minimum */
26 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
27 struct DCTStatStruc *pDCTstat;
28 pDCTstat = pDCTstatA + Node;
29 if (pDCTstat->NodePresent) {
30 uint8_t original_target_freq = pDCTstat->TargetFreq;
31 uint8_t original_auto_speed = pDCTstat->DIMMAutoSpeed;
32 pDCTstat->TargetFreq = mhz_to_memclk_config(mctGet_NVbits(NV_MIN_MEMCLK));
33 pDCTstat->Speed = pDCTstat->DIMMAutoSpeed = pDCTstat->TargetFreq;
34 SetTargetFreq(pMCTstat, pDCTstatA, Node);
35 pDCTstat->TargetFreq = original_target_freq;
36 pDCTstat->DIMMAutoSpeed = original_auto_speed;
37 }
38 }
39 /* Apply any DIMM timing changes */
40 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
41 struct DCTStatStruc *pDCTstat;
42 pDCTstat = pDCTstatA + Node;
43 if (pDCTstat->NodePresent) {
44 AutoCycTiming_D(pMCTstat, pDCTstat, 0);
45 if (!pDCTstat->GangedMode)
46 if (pDCTstat->DIMMValidDCT[1] > 0)
47 AutoCycTiming_D(pMCTstat, pDCTstat, 1);
48 }
49 }
50 goto retry_dqs_training_and_levelization;
51 }

Listing 4.14: Error detection and retry mechanism during DQS training, extract from the DQSTiming_D function
in src/northbridge/amd/amdmct/mct_ddr3/mct_d.c
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The function checks for any errors during the DQS training. If errors are detected, it may request a retrain, reset
certain parameters, and restart the training process and even restart the whole system if needed (lst. 4.14). If
the training process it to be restarted, the firmware sets the DIMMs frequencies to minimum and applies timing
changes to DIMMs before jumping to the retry label (lst. 4.11).

Once the training is successfully completed without errors, the function finalizes the process by setting the maxi-
mum read latency and exiting the training mode. For systems with allow_config_restore enabled, it restores
the previous configuration from NVRAM instead of performing a fresh training (lst. 4.13).

Finally, the function performs a cleanup operation specific to Fam15h processors, where it switches the DCT
control register as required by a known erratum from AMD for the BKDG (Erratum 505) [11]. This is followed
by a post-training hook that allows for any additional necessary actions (lst. 4.15).

1 for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
2 pDCTstat = pDCTstatA + Node;
3 if (pDCTstat->NodePresent) {
4 fam15h_switch_dct(pDCTstat->dev_map, 0);
5 }
6 }
7

8 /* FIXME - currently uses calculated value
9 * TrainMaxReadLatency_D(pMCTstat, pDCTstatA); */

10 mctHookAfterAnyTraining();

Listing 4.15: Post-training cleanup and final hook execution, extract from the DQSTiming_D function in src/
northbridge/amd/amdmct/mct_ddr3/mct_d.c

4.3.1.2 Details on the write leveling implementation

The WriteLevelization_HW function is responsible for performing hardware-level write leveling on DRAM mod-
ules during the memory initialization process. Write leveling ensures that the DQS signals are correctly aligned
with the clock signals, preventing timing mismatches during write operations.

The function begins by initializing pointers to key data structures, linking the memory controller (MCT) and
DRAM controller timing (DCT) data for subsequent operations.

Auto-refresh and short ZQ calibration are temporarily disabled to prevent interference during the critical timing
adjustments of write leveling. The memory controller is prepared for write leveling by configuring necessary pa-
rameters with PrepareC_MCT, then the main operation can begin.

In the first pass (lst. 4.16), the function repeatedly attempts to align the DQS signals with PhyWLPass1, retrying
if invalid values are detected. This phase ensures basic alignment for further fine-tuning. The function retries up
to 8 times if it detects invalid timing values.

During the second pass (lst. 4.17), the function first checks if the target memory frequency (TargetFreq) is
higher than the minimum memory clock frequency stored in the non-volatile bits (NV_MIN_MEMCLK). If so, the
memory frequency is incrementally adjusted toward the final target f requency. This step-by-step approach is cru-
cial, especially for AMD Fam15h processors, where the frequency must be gradually stepped up to avoid instability.

For each frequency step, the write leveling process is recalibrated by invoking the PhyWLPass2 function. This
function adjusts the DQS timing for each data channel (DCT) and validates the results. The function retries up
to 8 times if it detects invalid timing values. The global status (global_phy_training_status) aggregates the
results of each step, tracking any persistent issues.
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The PhyWLPass1 and PhyWLPass1 function relyon AgesaHwWlPhase1, AgesaHwWlPhase2 and AgesaHwWlPhase3
for this.

Once the target frequency is reached and all write leveling adjustments are made, the final timing values are
stored. The gross and fine delays from the previous passes are copied into the final pass structures. This ensures
that the DQS timings are consistent and stable across all data channels.

If any issues persist after retries, the function logs a warning. This indicates that the system may continue to
operate, but with a potential risk of instability due to imperfect write leveling calibration.

After leveling, the function re-enables auto-refresh and short ZQ calibration, ensuring the memory subsystem is
correctly configured for normal operation.

1 if (Pass == FirstPass) {
2 timeout = 0;
3 do {
4 status = 0;
5 timeout++;
6 status |= PhyWLPass1(pMCTstat, pDCTstat, 0);
7 status |= PhyWLPass1(pMCTstat, pDCTstat, 1);
8 if (status)
9 printk(BIOS_INFO, "%s: Retrying write levelling due to invalid "

10 "value(s) detected in first phase\n", __func__);
11 } while (status && (timeout < 8));
12 if (status)
13 printk(BIOS_INFO, "%s: Uncorrectable invalid value(s) detected in first "
14 "phase of write levelling\n", __func__);
15 }

Listing 4.16: Write leveling (first pass), extract from the WriteLevelization_HW function in src/northbridge/
amd/amdmct/mct_ddr3/mcthwl.c
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1 if (Pass == SecondPass) {
2 if (pDCTstat->TargetFreq > mhz_to_memclk_config(mctGet_NVbits(NV_MIN_MEMCLK))) {
3 uint8_t global_phy_training_status = 0;
4 final_target_freq = pDCTstat->TargetFreq;
5

6 while (pDCTstat->Speed != final_target_freq) {
7 if (is_fam15h())
8 pDCTstat->TargetFreq =
9 fam15h_next_highest_memclk_freq(pDCTstat->Speed);

10 else
11 pDCTstat->TargetFreq = final_target_freq;
12 SetTargetFreq(pMCTstat, pDCTstatA, Node);
13 timeout = 0;
14 do {
15 status = 0;
16 timeout++;
17 status |= PhyWLPass2(pMCTstat, pDCTstat, 0,
18 (pDCTstat->TargetFreq == final_target_freq));
19 status |= PhyWLPass2(pMCTstat, pDCTstat, 1,
20 (pDCTstat->TargetFreq == final_target_freq));
21 if (status)
22 printk(BIOS_INFO,
23 "%s: Retrying write levelling due to invalid value(s) "
24 "detected in last phase\n",
25 __func__);
26 } while (status && (timeout < 8));
27 global_phy_training_status |= status;
28 }
29

30 pDCTstat->TargetFreq = final_target_freq;
31

32 if (global_phy_training_status)
33 printk(BIOS_WARNING,
34 "%s: Uncorrectable invalid value(s) detected in second phase of "
35 "write levelling; "
36 "continuing but system may be unstable!\n",
37 __func__);
38

39 uint8_t dct;
40 for (dct = 0; dct < 2; dct++) {
41 sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
42 memcpy(pDCTData->WLGrossDelayFinalPass,
43 pDCTData->WLGrossDelayPrevPass,
44 sizeof(pDCTData->WLGrossDelayPrevPass));
45 memcpy(pDCTData->WLFineDelayFinalPass,
46 pDCTData->WLFineDelayPrevPass,
47 sizeof(pDCTData->WLFineDelayPrevPass));
48 pDCTData->WLCriticalGrossDelayFinalPass =
49 pDCTData->WLCriticalGrossDelayPrevPass;
50 }
51 }
52 }

Listing 4.17: Write Leveling (second pass), extract from the WriteLevelization_HW function in
src/northbridge/amd/amdmct/mct_ddr3/mcthwl.c.
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1 set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
2 DRAM_ADD_DCT_PHY_CONTROL_REG, TrDimmSelStart,
3 TrDimmSelEnd, (u32)dimm);

Listing 4.18: Target DIMM selection for write leveling.

1 train_both_nibbles = 0;
2 if (pDCTstat->Dimmx4Present)
3 if (is_fam15h())
4 train_both_nibbles = 1;

Listing 4.19: Handling of x4 DIMMs and nibble training.

4.3.1.3 Details on the write leveling implementation

4.3.2 Write Leveling on AMD Fam15h G34 Processors with RDIMMs
Write leveling is a crucial process in memory initialization for DDR3 systems, ensuring that the DQS signals are
correctly aligned with the clock signals during write operations. This is particularly important in systems using
AMD Fam15h processors with G34 sockets and RDIMM. The write leveling process is divided into three distinct
phases, each managed by a specific function: AgesaHwWlPhase1, AgesaHwWlPhase2, and AgesaHwWlPhase3.
These phases work together to fine-tune the timing delays (gross and fine) for each byte lane, ensuring reliable
data transmission.

The write leveling process begins by selecting the target DIMM. This is accomplished by programming the
TrDimmSel register to ensure that the subsequent operations apply to the correct DIMM.

In the case of x4 DIMMs, which are common in high-density memory configurations, write leveling must be per-
formed separately for each nibble (4-bit group). The function checks if x4 DIMMs are present and, if so, prepares
to train both nibbles.

The DIMMs are prepared for write leveling by issuing Mode Register (MR) commands. These commands configure
the DIMMs to enter a state where write leveling can be performed.

The procConfig function is called to configure the processor’s DDR PHY (Physical Layer) for write leveling. This
configuration includes setting initial seed values for gross and fine delays, which are essential for the subsequent
timing adjustments.

procConfig generates initial seed values for gross and fine delays. These seeds are calculated based on several
factors:

• Processor Type: For Fam15h processors, specific tables from the Fam15h BKDG [9] are referenced to
select appropriate seed values for different package types (e.g., Socket G34, Socket C32).

• DIMM Type: The seed values are adjusted based on whether the RDIMMs are registered or load-reduced,
with different base values used for these configurations.

• Memory Clock Frequency: The seeds are further adjusted based on the current memory clock frequency
(MemClkFreq), ensuring that the timing is correct for the operating speed of the memory.

1 prepareDimms(pMCTstat, pDCTstat, dct, dimm, TRUE);

Listing 4.20: Preparing DIMMs for write leveling.
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1 Seed_Total = (int32_t) (((((int64_t) Seed_Total) *
2 fam15h_freq_tab[MemClkFreq] * 100) / (mctGet_NVbits(NV_MIN_MEMCLK) * 100)));
3

4 Seed_Gross = (Seed_Total >> 5) & 0x1f;
5 Seed_Fine = Seed_Total & 0x1f;

Listing 4.21: Seed generation in procConfig.

1 set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
2 DRAM_ADD_DCT_PHY_CONTROL_REG, WrtLvTrEn, WrtLvTrEn, 1);

Listing 4.22: Initiating write leveling training.

The calculated seed values are then scaled to the minimum supported memory frequency and stored in the
WLSeedGrossDelay and WLSeedFineDelay arrays for each byte lane.

Write leveling is initiated by enabling the WrtLvTrEn bit. This allows the DDR PHY to begin adjusting the DQS
signals relative to the clock signals.

After a delay to allow the leveling process to stabilize, the function reads the gross and fine delay values from
the relevant registers and stores them. These values represent the initial timing adjustments necessary for correct
DQS alignment.

If the DIMM is not x4, the function skips the nibble training loop, as it is unnecessary.

4.3.2.1 Details on the DQS position training function

The DQS position training is a crucial step in the memory initialization process, ensuring that both read and write
operations are correctly aligned with the clock signal.

The function TrainDQSRdWrPos_D_Fam15 orchestrates this process by iterating over memory lanes and adjusting
timing parameters to find optimal settings. It is called by mct_TrainDQSPos_D.

The function begins by initializing several variables and settings necessary for the training process. These include:

• Errors: A variable to track any errors encountered during the training.

• dual_rank: A flag to indicate whether the current DIMM has two ranks.

• passing_dqs_delay_found: An array to track whether a passing DQS delay has been found for each lane.

• dqs_results_array: A multi-dimensional array to store the results of the DQS delay tests across different
write and read steps.

The function then loops over each receiver (loosely associated with chip selects) to perform the training for each
rank within each DIMM.

For each lane in the memory channel, the function iterates over possible write and read delay values to find the
optimal configuration. This is done by:

1 for (ByteLane = 0; ByteLane < lane_count; ByteLane++) {
2 getWLByteDelay(pDCTstat, dct, ByteLane, dimm, pass, nibble, lane_count);
3 }

Listing 4.23: Reading and storing delay values after write leveling.
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1 if ((pDCTstat->Dimmx4Present & (1 << (dimm + dct))) == 0)
2 break;

Listing 4.24: Exit for non-x4 DIMMs.

1 for (Receiver = receiver_start; Receiver < receiver_end; Receiver++) {
2 dimm = (Receiver >> 1);
3 ...
4 if (!mct_RcvrRankEnabled_D(pMCTstat, pDCTstat, dct, Receiver)) {
5 continue;
6 }

Listing 4.25: Initialization of variables and looping over each receiver.

1. Iterating over the write data delay values from the initial value to the initial value plus 1 UI (Unit Interval).

2. For each write data delay, iterating over possible read DQS delay values from 0 to 1 UI.

3. For each combination of write and read delays, testing the configuration by writing a training pattern to
the memory and reading it back to check if it passes or fails.

During each iteration, the results are recorded in the dqs_results_array, which tracks whether the combination
of write and read delays was successful (pass) or not (fail). The results are stored for both the primary rank and,
if applicable, the secondary rank when dual rank DIMMs are used.

After iterating over all possible delay values, the function processes the results to determine the best DQS delay
settings.

This is done by:

• Finding the longest consecutive string of passing values for both read and write operations.

• Calculating the center of the passing region and using this as the optimal delay setting.

• If the center of the region is below a threshold, issuing a warning that a negative DQS recovery delay was
detected, which could lead to instability.

Finally, the function checks if any lane did not find a valid passing region. If any lanes failed to find a pass-
ing DQS delay, the Errors flag is set, and this error is propagated through the pDCTstat->TrainErrors and

1 for (current_write_data_delay[lane] = initial_write_dqs_delay[lane];
2 current_write_data_delay[lane] < (initial_write_dqs_delay[lane] + 0x20);
3 current_write_data_delay[lane]++) {
4 ...
5 for (current_read_dqs_delay[lane] = 0;
6 current_read_dqs_delay[lane] < 0x20;
7 current_read_dqs_delay[lane]++) {
8 ...
9 write_dqs_read_data_timing_registers(current_read_dqs_delay, dev, dct, dimm, index_reg);

10 read_dram_dqs_training_pattern_fam15(pMCTstat, pDCTstat, dct, Receiver, lane, ((check_antiphase == 0)?1:0));
11 ...
12 }
13 }

Listing 4.26: Iteration over write and read delay values for each lane.
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1 if (best_count > 2) {
2 uint16_t region_center = (best_pos + (best_count / 2));
3 if (region_center < 16) {
4 printk(BIOS_WARNING, "TrainDQSRdWrPos: negative DQS recovery delay detected!");
5 region_center = 0;
6 } else {
7 region_center -= 16;
8 }
9 ...

10 current_read_dqs_delay[lane] = region_center;
11 passing_dqs_delay_found[lane] = 1;
12 write_dqs_read_data_timing_registers(current_read_dqs_delay, dev, dct, dimm, index_reg);
13 }

Listing 4.27: Processing the results to determine the best DQS delay settings.

1 for (lane = lane_start; lane < lane_end; lane++) {
2 if (!passing_dqs_delay_found[lane]) {
3 Errors |= 1 << SB_NODQSPOS;
4 }
5 }
6 pDCTstat->TrainErrors |= Errors;
7 pDCTstat->ErrStatus |= Errors;
8 return !Errors;

Listing 4.28: Final error handling and return value.

pDCTstat->ErrStatus variables.

The function returns 1 if no errors were encountered, and 0 otherwise, which is unusual.

The DQS position training algorithm implemented in the TrainDQSRdWrPos_D_Fam15 function systematically
explores the possible delay settings for reading and writing operations in the memory system. By iterating over
a range of values, the function identifies the optimal delays that result in reliable data transfer. The results are
carefully processed to ensure that the best possible settings are applied, with checks and balances in place to
handle edge cases and potential errors.

4.3.2.2 Details on the DQS receiver training function

In AMD Fam15h G34 processors, the DQS receiver enable training is a critical step in ensuring that the memory
subsystem operates correctly and reliably. This training aligns the DQS signal with the clock signal, ensuring
proper data capture during memory reads.

The DQS receiver enable training algorithm is executed twice: first at the lowest supported MEMCLK fre-
quency and then at the highest supported MEMCLK frequency. The purpose of this training is to fine-tune
the timing parameters so that the memory controller can reliably read data from the memory modules. The
algorithm is implemented in the function dqsTrainRcvrEn_SW_Fam15 from src/northbridge/.../mctsrc.c,
which orchestrates the entire process, called by the mct_TrainRcvrEn_D function, which has been called itself
by TrainReceiverEn_D from src/northbridge/.../mctdqs_d.c.

Here, seeds are initial delay values used to set up the memory controller’s timing parameters. These seeds are
generated based on the specific characteristics of the memory configuration, such as the package type (e.g., G34,
C32), the type of DIMMs installed (Registered, Load Reduced, etc.), and the maximum number of DIMMs that
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1 uint8_t MaxDimmsInstallable = mctGet_NVbits(NV_MAX_DIMMS_PER_CH);
2

3 if (pDCTstat->Status & (1 << SB_Registered)) {
4 if (package_type == PT_GR) {
5 // Socket G34: Fam15h BKDG v3.14 Table 99
6 if (MaxDimmsInstallable == 1) {
7 if (channel == 0)
8 seed = 0x43;
9 else if (channel == 1)

10 seed = 0x3f;
11 else if (channel == 2)
12 seed = 0x3a;
13 else if (channel == 3)
14 seed = 0x35;
15 }
16 ...
17 }
18 ...
19 } else if (pDCTstat->Status & (1 << SB_LoadReduced)) {
20 // Load Reduced DIMM configuration
21 if (package_type == PT_GR) {
22 // Socket G34: Fam15h BKDG v3.14 Table 99
23 if (MaxDimmsInstallable == 1) {
24 if (channel == 0)
25 seed = 0x123;
26 ...
27 }
28 }
29 }

Listing 4.29: Seed generation for DQS receiver enable training based on DIMM type and configuration.

1 initial_seed = (uint16_t) (((((uint64_t) initial_seed) *
2 fam15h_freq_tab[mem_clk] * 100) / (min_mem_clk * 100)));

Listing 4.30: Adjusting the seed values based on the operating frequency of the memory.

can be installed in a channel.

The seed generation is handled by the function fam15_receiver_enable_training_seed. This function gen-
erates a base seed value for each memory channel, based on predefined tables in the BKDG [9]. The base seed
values are specific to the memory configuration and are adjusted based on the type of DIMM and the number of
DIMMs in each channel.

The generated seed values are then adjusted based on the operating frequency of the memory (MEMCLK). The
adjustment scales the seed values to account for the difference between the current memory frequency and the
minimum supported frequency. This ensures that the training can be accurately performed across different oper-
ating conditions.

Once the seeds are generated and adjusted, they are used to set the initial delay values for the DQS receiver enable
training. The delay values are split into two components: gross delay and fine delay. The gross delay determines
the overall timing offset, while the fine delay adjusts the timing with finer granularity.

These delay values are then written to the appropriate registers to configure the memory controller for the DQS
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1 for (lane = 0; lane < lane_count; lane++) {
2 seed_gross[lane] = (seed[lane] >> 5) & 0x1f;
3 seed_fine[lane] = seed[lane] & 0x1f;
4

5 if (seed_gross[lane] & 0x1)
6 seed_pre_gross[lane] = 1;
7 else
8 seed_pre_gross[lane] = 2;
9

10 // Set the gross delay
11 current_total_delay[lane] = ((seed_gross[lane] & 0x1f) << 5);
12 }

Listing 4.31: Setting initial delay values based on the generated seed values.

1 fam15EnableTrainingMode(pMCTstat, pDCTstat, ch, 1);
2 _DisableDramECC = mct_DisableDimmEccEn_D(pMCTstat, pDCTstat);

Listing 4.32: Initialization phase: Enabling training mode and disabling ECC.

receiver enable training. The training is performed in multiple steps, iteratively refining the delay values until the
DQS signal is correctly aligned with the clock signal.

During the initialization phase, the memory controller is prepared for training. This includes enabling the training
mode, configuring the memory channels, and disabling certain features such as ECC (Error-Correcting Code) to
prevent interference during training.

The training phase is where the actual alignment of the DQS signal occurs. The memory controller iterates over
each DIMM and each lane, applying the seed values and adjusting the delay registers accordingly. For each DIMM,
the training is performed twice: once for the first nibble (lower 4 bits) and once for the second nibble (upper 4
bits) if the DIMM is x4.

During the training, the controller issues read requests to the memory to observe the timing of the DQS signal.
The observed delays are then averaged and adjusted to ensure the DQS signal is correctly aligned across all lanes
and ranks.

In the finalization phase, the memory controller exits the training mode, and the computed delay values are writ-
ten back to the appropriate registers. This ensures that the DQS signal remains correctly aligned during normal
operation.

1 for (rank = 0; rank < (_2Ranks + 1); rank++) {
2 for (nibble = 0; nibble < (train_both_nibbles + 1); nibble++) {
3 ...
4 write_dqs_receiver_enable_control_registers(current_total_delay, dev, Channel, dimm, index_reg);
5 ...
6 }
7 }

Listing 4.33: Training phase: Iterating over ranks and nibbles to apply delay values.
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1 Calc_SetMaxRdLatency_D_Fam15(pMCTstat, pDCTstat, 0, 0);
2 Calc_SetMaxRdLatency_D_Fam15(pMCTstat, pDCTstat, 1, 0);
3 if (Pass == FirstPass) {
4 mct_DisableDQSRcvEn_D(pDCTstat);
5 }

Listing 4.34: Finalization phase: Exiting training mode and setting read latency.

1 uint8_t addr_prelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */

Listing 4.35: TODO comment indicating an unimplemented feature in the seed adjustment logic.

4.3.3 Potential enhancements

4.3.3.1 DQS receiver training

While the DQS receiver enable training implementation for AMD Fam15h G34 processors can perform its intended
function in some cases, there are several areas where the code is either incomplete, suboptimal, or potentially
problematic.

The presence of TODO comments in the code indicates areas where the implementation is either incomplete or
lacks certain necessary functionality. These unaddressed tasks can lead to performance issues, potential bugs, or
incomplete training, which could compromise the stability and reliability of the memory subsystem.

In the seed adjustment section for the second pass of training, the code includes a TODO comment regarding
fetching the correct value from RC2[0] for the addr_prelaunch variable:
This unimplemented feature suggests that the training process may not be fully optimized, as the correct prelaunch
address setting is not being applied. This could result in incorrect seed values being used during the training,
leading to suboptimal alignment of the DQS signal.

The code contains another TODO comment indicating that the support for Load Reduced DIMMs (LRDIMMs) is
unimplemented:
This omission is significant because LRDIMMs are commonly used in server environments where high memory
capacity is required. The lack of support for LRDIMMs could lead to incorrect training or even failures when such
DIMMs are installed, severely impacting the reliability of the system.

FIXME comments in the code are often indicators of known issues or temporary workarounds that need to be
addressed. In this implementation, there are several such comments that highlight critical areas where the current
approach may be flawed or incomplete.

The first FIXME comment questions the usage of the SSEDIS setting during the training process:
The concern here is that disabling the SSEDIS (SSE Disable) bit could have unintended side effects, particularly
in environments where SSE instructions are expected to be enabled. This could impact the performance of the
system during training and potentially lead to instability.

1 else if ((pDCTstat->Status & (1 << SB_LoadReduced))) {
2 /* TODO
3 * Load reduced DIMM support unimplemented
4 */
5 register_delay = 0x0;
6 }

Listing 4.36: TODO comment indicating that LRDIMM support is unimplemented.
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1 lo &= ~(1 << 15); /* SSEDIS */
2 _WRMSR(msr, lo, hi); /* Setting wrap32dis allows 64-bit memory references in real mode */

Listing 4.37: FIXME comment questioning the use of SSEDIS in the MSR setting.

1 /* NOTE: While the BKDG states to only program DqsRcvEnGrossDelay, this appears
2 * to have been a misprint as DqsRcvEnFineDelay should be set to zero as well.
3 */

Listing 4.38: FIXME comment questioning a possible misprint in the BKDG regarding delay settings.

The code also highlights a potential misprint in the BKDG regarding the WrDqDqsEarly value:
This indicates that the implementation may be based on incorrect or incomplete documentation, leading to po-
tential errors in setting the delay values. If this is indeed a misprint in the BKDG, the correction should be verified
with updated documentation, and the implementation should be adjusted accordingly.

In addition to the explicit TODO and FIXME comments, there are other aspects of the implementation that could
impact performance and stability.

The logic for adjusting the seed values based on the memory frequency and the platform’s minimum supported
frequency is complex and prone to errors, especially when combined with the incomplete TODO features. The risk
here is that incorrect seed values could be used, leading to timing mismatches during the training process. It
seems that that seeds for used for DQS training should be extensively determined for each motherboard, and the
BKDG [9] does not tell otherwise. Moreover, seeds can be configured uniquely for every possible socket, channel,
DIMM module, and even byte lane combination. The current implementation is here only using the recommended
seeds from the table 99 of the BKDG [9], which is not sufficient and absolutely not adapted to every DIMM
module in the market.

The current implementation also has limited error handling and reporting. While some errors are detected during
training, the code does not have robust mechanisms for recovering from or correcting these errors.

This approach might lead to further complications in high-load scenarios or when the memory configuration
changes, as the underlying issues are not resolved.

4.3.3.2 Write leveling

While the current implementation of write leveling on AMD Fam15h G34 processors with RDIMMs can be func-
tional in some cases and provides the necessary steps to align DQS signals correctly during write operations,
there are several areas where the implementation is either incomplete, relies on temporary workarounds, or may
introduce stability and performance issues.

One of the most significant concerns with the current implementation is the presence of unresolved TODO and
FIXME comments throughout the code. These comments indicate areas where the implementation is either in-
complete or has known issues that have not been fully resolved.

In the procConfig function, a TODO comment mentions that the current implementation may not be using the
correct or final value for this variable, potentially leading to inaccuracies in the seed values used during write
leveling. This inaccuracy can result in timing mismatches, which may cause data corruption or other stability
issues.

In AgesaHwWlPhase2, there is a FIXME comment that suggests that the Critical Gross Delay adjustment has been
temporarily disabled due to conflicts with RDIMM training. Disabling this adjustment can lead to less precise DQS
alignment, especially in complex memory configurations like those using RDIMMs, potentially causing instability
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1 if (pDCTstat->Status & (1 << SB_Registered)) {
2 if (package_type == PT_GR) {
3 /* Socket G34: Fam15h BKDG v3.14 Table 99 */
4 if (MaxDimmsInstallable == 1) {
5 if (channel == 0)
6 seed = 0x43;
7 else if (channel == 1)
8 seed = 0x3f;
9 else if (channel == 2)

10 seed = 0x3a;
11 else if (channel == 3)
12 seed = 0x35;
13 } else if (MaxDimmsInstallable == 2) {
14 if (channel == 0)
15 seed = 0x54;
16 else if (channel == 1)
17 seed = 0x4d;
18 else if (channel == 2)
19 seed = 0x45;
20 else if (channel == 3)
21 seed = 0x40;
22 } else if (MaxDimmsInstallable == 3) {
23 if (channel == 0)
24 seed = 0x6b;
25 else if (channel == 1)
26 seed = 0x5e;
27 else if (channel == 2)
28 seed = 0x4b;
29 else if (channel == 3)
30 seed = 0x3d;
31 }

Listing 4.39: Seeds used for DQS Receiver training.

1 initial_seed = (uint16_t) (((((uint64_t) initial_seed) *
2 fam15h_freq_tab[mem_clk] * 100) / (min_mem_clk * 100)));

Listing 4.40: Complex seed adjustment logic that could lead to timing mismatches.

1 uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */

Listing 4.41: TODO indicating incomplete seed generation implementation.
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1 /* FIXME: For now, disable CGD adjustment as it seems to interfere with registered DIMM training */

Listing 4.42: FIXME indicating disabled CGD adjustment due to conflicts.

1 /* FIXME: Ignore WrDqDqsEarly for now to work around training issues */

Listing 4.43: FIXME indicating the omission of WrDqDqsEarly parameter.

or degraded performance.

Another FIXME in the code indicates that the WrDqDqsEarly parameter, which is critical for fine-tuning the DQS
signals timing during write operations, is being ignored due to unresolved issues. This omission can result in less
accurate timing adjustments, leading to potential marginal instability in systems where tight timing margins are
critical.

In AgesaHwWlPhase2, the function bypasses certain critical adjustments if the memory speed is being tuned (e.g.,
during frequency stepping). This bypass is noted as a temporary measure due to problems encountered during
testing, where the first pass values were found to cause issues with PHY training on all Family 15h processors
tested. This approach indicates a lack of robustness in the implementation, particularly in handling dynamic
changes in memory frequency, which is essential for server environments where performance tuning is common.

The current implementation attempts to compensate for noise and instability by overriding faulty values with seed
values in AgesaHwWlPhase2. However, this approach is somewhat blunt and reactive, addressing the symptoms
rather than the underlying causes of instability. This method does not ensure that noise or instability is sufficiently
mitigated, potentially leading to marginal or sporadic failures during normal operation.

The current implementation uses generic or "stock" seed values for certain configurations, such as Socket G34.
Without mainboard-specific overrides, the memory initialization process might not be fully optimized for the par-
ticular motherboard in use. This could result in suboptimal performance or stability issues in specific environments,
particularly in server applications where memory performance is critical.

The handling of x4 DIMMs, with separate training for each nibble, introduces additional complexity. While nec-
essary for these configurations, the logic is fragmented, with several points where the function branches based on
whether the DIMM is x4. This complexity increases the risk of bugs or missed conditions, particularly if future
changes or enhancements are made to the code. The overcomplicated logic can also make the code more difficult
to maintain and extend.

4.3.4 DQS position training
While the DQS position training algorithm implemented in the TrainDQSRdWrPos_D_Fam15 function may work
in some cased to ensure optimal data strobe alignment, there are several critical flaws and issues within the
implementation that could impact its effectiveness and reliability.

Throughout the function, there is an overreliance on hardcoded constants and magic numbers, such as:

• The use of 0x20 to represent 1 UI (Unit Interval) in multiple places.

1 /* FIXME: Using the Pass 1 training values causes major phy training problems on
2 * all Family 15h processors I tested (Pass 1 values are randomly too high,
3 * and Pass 2 cannot lock). Figure out why this is and fix it, then remove the bypass code below... */

Listing 4.44: FIXME indicating the bypass of critical adjustments during speed tuning.
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1 if (faulty_value_detected) {
2 pDCTData->WLGrossDelay[index+ByteLane] = pDCTData->WLSeedGrossDelay[index+ByteLane];
3 pDCTData->WLFineDelay[index+ByteLane] = pDCTData->WLSeedFineDelay[index+ByteLane];
4 status = 1;
5 }

Listing 4.45: Reactive error handling to compensate for noise and instability.

1 /* FIXME: Implement mainboard-specific seed and WrDqsGrossDly base overrides.
2 * 0x41 and 0x0 are the "stock" values */

Listing 4.46: FIXME indicating the need for mainboard-specific seed overrides.

• The constant 16 used in the adjustment of region_center during the processing of results.

• Magic numbers like 32 and 48 in the array dimensions for dqs_results_array.

These values should be replaced with named constants or variables that clearly indicate their purpose, improving
code readability and maintainability. Additionally, using well-defined constants would allow easier adjustments if
the algorithm needs to be adapted for different hardware configurations or future revisions of the architecture.

The error handling within the function is rudimentary, with errors being flagged primarily by setting bits in the
Errors variable. However, the function does not provide detailed diagnostics or recovery strategies when an error
occurs. For example:

• If no passing DQS delay is found for a lane, the function simply sets an error bit without attempting any
corrective actions or providing detailed information on what went wrong.

• The early abort mechanism based on the value read from the 0x264 register does not offer a robust fallback
or retry mechanism, which could lead to situations where minor, recoverable issues cause the entire training
process to fail.

Improving the error handling to include detailed diagnostics, logging, and potentially corrective actions (such as
retrying the training with adjusted parameters) would make the function more resilient and reliable.

The function contains several areas where the logic is more complex than necessary, which can lead to difficulties
in understanding and maintaining the code. Examples include:

• The nested loops for iterating over write and read delays are deeply nested, making it challenging to follow
the flow of the code and understand the interactions between different parts of the algorithm.

• The use of multiple copies of delay settings (e.g., current_write_data_delay, initial_write_data_timing,
and initial_write_dqs_delay) introduces redundancy and increases the likelihood of errors or inconsis-
tencies.

Refactoring the code to simplify the logic, reduce redundancy, and make the flow of operations clearer would
improve both the readability and reliability of the implementation.

The current implementation does not adequately handle edge cases and boundary conditions, such as:

• The warning issued when a negative DQS recovery delay is detected suggests that the function continues
despite recognizing a potentially critical issue, which could lead to system instability.

• The averaging of delay values for dual-rank DIMMs does not account for the possibility of significant
discrepancies between the ranks, which could result in suboptimal or unstable settings.

• The function does not include comprehensive checks for situations where the calculated delay settings might
exceed hardware limitations or cause timing violations.
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Improving the handling of edge cases and boundary conditions, possibly by incorporating more robust validation
checks and conservative fallback mechanisms, would make the algorithm more reliable in a wider range of scenarios.

The code contains several TODO and FIXME comments that indicate incomplete or problematic parts of the
implementation:

• The comment TODO: Fetch the correct value from RC2[0] suggests that critical configuration val-
ues are not correctly initialized, which could compromise the entire training process.

• The FIXME comments related to early abort checks and DQS recovery delay calculations indicate that there
are known issues with the current approach that have not been resolved, potentially leading to incorrect or
unstable results.

• The handling of antiphase results, particularly with respect to checking for early aborts, is incomplete and
could lead to situations where incorrect results are accepted without proper validation.

The current implementation’s approach to iterating over every possible combination of write and read delays is
exhaustive but may be inefficient. The function performs multiple reads and writes to hardware registers for every
iteration, which could be time-consuming, especially on systems with a large number of lanes or complex memory
configurations.

Consideration should be given to optimizing the algorithm, possibly by narrowing the search space based on prior
knowledge or implementing more efficient search techniques, to reduce the time required for DQS position training
without compromising accuracy.

4.3.5 On a wider scale...

4.3.5.1 Saving training values in NVRAM

The function mctAutoInitMCT_D is responsible for automatically initializing the memory controller training (MCT)
process, which involves configuring various memory parameters and performing training routines to ensure stable
and efficient memory operation. However, the fact that mctAutoInitMCT\_D does not allow for the restoration
of training data from NVRAM (lst. 4.5) poses several significant problems.

Memory training is a time-consuming process that involves multiple iterations of read/write operations, delay
adjustments, and calibration steps. By not restoring previously saved training data from NVRAM, the system is
forced to re-run the full training sequence every time it boots up. This leads to longer boot times, which can be
particularly problematic in environments where quick system restarts are critical, such as in servers or embedded
systems.

Each time memory training is performed, it puts additional stress on the memory modules and the memory con-
troller. Repeatedly executing the training process at every boot can contribute to the wear and tear of hardware
components, potentially reducing their lifespan. This issue is especially concerning in systems that frequently
power cycle or reboot.

Memory training is sensitive to various factors, such as temperature, voltage, and load conditions. As a result, the
training results can vary slightly between different boot cycles. Without the ability to restore previously validated
training data, there is a risk of inconsistency in memory performance across reboots. This could lead to instability
or suboptimal memory operation, affecting the overall performance of the system.

If the memory training process fails during boot, the system may be unable to operate properly or may fail to
boot entirely. By restoring validated training data from NVRAM, the system can bypass the training process
altogether, reducing the risk of boot failures caused by training issues. Without this feature, any minor issue that
affects training could result in system downtime.

Finally, modern memory controllers often include power-saving features that are fine-tuned during the training
process. By reusing validated training data from NVRAM, the system can quickly return to an optimized state
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with lower power consumption. The inability to restore this data forces the system to operate at a potentially less
efficient state until training is complete, leading to higher power consumption during the boot process.

4.3.5.2 A seedless DQS position training algorithm

An algorithm to find the best timing for the DQS so that the memory controller can reliably read data from the
memory could be done without relying on any pre-known starting values (seeds). This would allow for better
reliability and wider support for different situations. The algorithm could be describe as follows.

• Prepare Memory Controller: The memory controller needs to be in a state where it can safely adjust the
DQS timing without affecting the normal operation of the system. By blocking the DQS signal locking, we
ensure that the adjustments made during training do not interfere with the controllers ability to capture
data until the optimal settings are found.

• Initialize Variables: Set up variables to store the various timing settings and test results for each bytelane.
This setup is crucial because each bytelane might require a different optimal timing, and keeping track of
these values ensures that the algorithm can correctly determine the best delay settings later.

The main loop is the core of the algorithm, where different timing settings are systematically explored. By looping
through possible delay settings, the algorithm ensures that it doesn’t miss any potential optimal timings. The
loop structure allows a methodical test of a range of delays to find the most reliable one.

The gross delay is here the coarse adjustment to the timing of the DQS signal. It shifts the timing window by a
large amount, helping to broadly align the DQS with the data lines (DQ). The fine delay, which is the smaller,
more precise change to the timing of the DQS signal once the coarse alignment (through gross delay) has been
achieved, would then be computed.

To compute a delay, here would be the steps:

• Set a delay: Setting an initial delay allows the algorithm to start testing. The initial delay might be zero or
another default value, providing a baseline from which to begin the search for the optimal timing.

• Test it: After setting the delay, it is essential to test whether the memory controller can read data correctly.
This step is critical because it indicates whether the current delay setting is within the acceptable range for
reliable data capture.

• Check the result: If the memory controller successfully reads data, it means the current delay setting is
valid. This information is crucial because it helps define the range of acceptable timings. If the test fails,
it indicates that the curren t delay setting is outside the range where the memory controller can reliably
capture data.

• Increase/decrease delay: By incrementally adjusting the delay, either increasing or decreasing, the algorithm
can explore different timing settings in a controlled manner. This ensures that the entire range of possible
delays is covered without skipping over any potential good delays.

• Test again: Re-testing after each adjustment ensures that the exact point where the DQS timing goes from
acceptable (pass) to unacceptable (fail) is caught. This step helps in identifying the transition point, which
is often the optimal place to set the DQS delay.

• Look for a transition: The transition from pass to fail is where the DQS timing crosses the boundary of
the valid timing window. This transition is crucial because it marks the end of the reliable range. The best
timing is usually just before this transition.

• Record the best setting: Storing the best delay setting for each bytelane ensures that a reliable timing
configuration is available when the training is complete.

• Confirm all bytelanes: Before finalizing the settings, it is important to ensure that the chosen delays work
for all bytelanes. This step serves as a final safeguard against errors, ensuring that every part of the data
bus is correctly aligned.
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Each bytelane (8-bit segment of data) may require a different optimal delay setting. By repeating the process for
all bytelanes, the algorithm ensures that the entire data bus is correctly timed. Misalignment in even one bytelane
can lead to data errors, making it essential to tune every bytelane individually.

Once the best settings are confirmed, they need to be applied to the memory controller for use during normal
operation. This step locks in the most reliable timing configuration found during the training process.

After the optimal settings are applied, it is necessary to allow the DQS signal locking mechanism to resume. This
locks in the delay settings, ensuring stable operation going forward.

Finally, the algorithm needs to indicate whether it was successful in finding reliable timing settings for all byte-
lanes. This feedback is crucial for determining whether the memory system is correctly configured or if further
adjustments or troubleshooting are needed.
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Chapter 5

Virtualization of the operating system
through firmware abstraction

In contemporary computing systems, the operating system (OS) no longer interacts directly with hardware in
the same way it did in earlier computing architectures. Instead, the OS operates within a highly abstracted
environment, where critical functions are managed by various firmware components such as ACPI, SMM, UEFI,
Intel Management Engine (ME), and AMD Platform Security Processor (PSP). This layered abstraction has led
to the argument that the OS is effectively running in a virtualized environment, akin to a virtual machine (VM).

5.1 ACPI and abstraction of hardware control
The Advanced Configuration and Power Interface (ACPI) provides a standardized method for the OS to manage
hardware configuration and power states, effectively abstracting the underlying hardware complexities. ACPI ab-
stracts hardware details, allowing the OS to interact with hardware components without needing direct control
over them. This abstraction is similar to how a hypervisor abstracts physical hardware for VMs, enabling a con-
sistent interface regardless of the underlying hardware specifics.

According to Bellosa [18], the abstraction provided by ACPI not only simplifies the OS’s interaction with hard-
ware but also limits the OS’s ability to fully control the hardware, which is instead managed by ACPI-compliant
firmware. This layer of abstraction contributes to the virtualization-like environment in which the OS operates.

More importantly, the ACPI Component Architecture (ACPICA) is a critical component integrated into the Linux
kernel, serving as the foundation for the system’s ACPI implementation [28]. ACPICA provides the core ACPI
functionalities, such as hardware configuration, power management, and thermal management, which are essential
for modern computing platforms. However, its integration into the Linux kernel has brought significant complexity
and code overhead, making Linux heavily dependent on ACPICA for managing ACPI-related tasks.
ACPICA is a large and complex project, with its codebase encompassing a wide range of functionalities required to
implement ACPI standards. The integration of ACPICA into the Linux kernel significantly increases the kernel’s
overall code size. An example of that can easily be reproduced with a small experiment (lst. 5.47).

1 $ git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
2 $ cd linux/drivers/acpi
3 $ find . -name "*.c" -o -name "*.h" | xargs wc -l
4 [...]
5 168970 total

Listing 5.47: How to estimate the impact of ACPICA in Linux

As of recent statistics, ACPICA comprises between 100,000 to 200,000 lines of code, making it one of the larger
subsystems within the Linux kernel. This size is indicative of the extensive range of features and capabilities
ACPICA must support, including but not limited to the ACPI interpreter, AML (ACPI Machine Language) parser,
and various hardware-specific drivers. The ACPICA codebase is not monolithic; it is highly modular and consists
of various components, each responsible for specific ACPI functions. For instance, ACPICA includes components
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for managing ACPI tables, interpreting AML bytecode, handling events, and interacting with hardware. This
modularity, while beneficial for isolating different functionalities, also contributes to the overall complexity of the
system. The separation of ACPICA into multiple modules necessitates careful coordination and integration with
the rest of the Linux kernel, adding to the kernel’s complexity.

ACPICA’s integration into the Linux kernel is designed to maintain a clear separation between the core ACPI
functionalities and the kernel’s other subsystems [28]. This separation is achieved through well-defined interfaces
and abstraction layers, allowing the Linux kernel to interact with ACPICA without being tightly coupled to its
internal implementation details. For example, ACPICA provides an API that the Linux kernel can use to interact
with ACPI tables, execute ACPI methods, and manage power states. This API abstracts the underlying complexity
of the ACPI implementation, making it easier for kernel developers to incorporate ACPI support without delving
into the intricacies of ACPICA’s internals. Moreover, ACPICA’s role in interpreting AML bytecode, which is
essentially a form of low-level programming language embedded in ACPI tables, adds a layer of abstraction. The
Linux kernel relies on ACPICA to execute AML methods and manage hardware resources according to the ACPI
specifications. This reliance further underscores the idea that ACPI acts as a virtualizing environment, shielding
the kernel from the complexities of directly interfacing with hardware components.

5.2 SMM as a hidden execution layer
System Management Mode (SMM) is a special-purpose operating mode provided by x86 processors, designed to
handle system-wide functions such as power management, thermal monitoring, and hardware control, independent
of the OS. SMM operates transparently to the OS, executing code that the OS cannot detect or control, similar
to how a hypervisor controls the execution environment of VMs.

Research by Huang and Smith [53] argues that SMM introduces a hidden layer of execution that diminishes the
OS’s control over the hardware, creating a virtualized environment where the OS is unaware of and unable to
influence certain system-level operations. This hidden execution layer reinforces the idea that the OS runs in an
environment similar to a VM, with the firmware acting as a hypervisor.

5.3 UEFI and persistence
The Unified Extensible Firmware Interface (UEFI) has largely replaced the traditional BIOS in modern systems,
providing a sophisticated environment that includes a kernel-like structure capable of running drivers and applica-
tions independently of the OS. UEFI remains active even after the OS has booted, continuing to manage certain
hardware functions, which abstracts these functions away from the OS.

McClean [73] discusses how UEFI creates a persistent execution environment that overlaps with the OS’s opera-
tion, effectively placing the OS in a position where it runs on top of another controlling layer, much like a guest
OS in a VM. This persistence and the ability of UEFI to manage hardware resources independently further blur
the lines between traditional OS operation and virtualized environments. Indeed, as we studied in a precedent
chapter, UEFI is designed as a modular and extensible firmware interface that sits between the computer’s hard-
ware and the operating system. Unlike the monolithic BIOS, UEFI is composed of several layers and components,
each responsible for different aspects of the system’s boot and runtime processes. The core components of UEFI
include the Pre-EFI Initialization (PEI), Driver Execution Environment (DXE), Boot Device Selection (BDS), and
Runtime Services. Each of these components plays a critical role in initializing the hardware, managing drivers,
selecting boot devices, and providing runtime services to the OS.

The PEI (Pre-EFI Initialization) phase is responsible for initializing the CPU, memory, and other essential hardware
components. It ensures that the system is in a stable state before handing control to the DXE phase. In the DXE
phase, the system loads and initializes various drivers required for the OS to interact with the hardware. The DXE
phase also constructs the UEFI Boot Services, which provide the OS with interfaces to the hardware during the
boot process. The BDS (Boot Device Selection) phase is responsible for selecting the device from which the OS
will boot. It interacts with the UEFI Boot Manager to determine the correct boot path and load the OS. After
the OS has booted, UEFI provides Runtime Services that remain accessible to the OS. These services include
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interfaces for managing system variables, time, and hardware. UEFI also supports the execution of standalone
applications, which can be used for system diagnostics, firmware updates, or other tasks. These applications
operate independently of the OS, highlighting UEFI’s capabilities as a minimalistic OS.

UEFI abstracts the underlying hardware from the OS, providing a standardized interface for the OS to interact
with different hardware components. This abstraction simplifies the development of OSes and drivers, as they
do not need to be tailored for specific hardware configurations. UEFI’s hardware abstraction is one of the key
features that enable it to act as a virtualizing environment for the OS [73].

5.3.1 Memory Management
UEFI provides a detailed memory map to the OS during the boot process, which includes information about
available, reserved, and used memory regions. The OS uses this memory map to manage its own memory allocation
and paging mechanisms. The overlap in memory management functions highlights UEFI’s role in preparing the
system for OS operation. This memory map includes all the memory regions in the system, categorized into
different types, such as usable memory, reserved memory, and memory-mapped I/O. The OS relies on this map to
understand the system’s memory layout and avoid conflicts [84]. The OS extends UEFI’s memory management by
implementing its own memory allocation, paging, and virtual memory mechanisms. However, the OS’s memory
management is built on the foundation provided by UEFI, demonstrating the close relationship between the two.

5.3.2 File System Management
UEFI includes its own file system management capabilities, which overlap with those of the OS. The most notable
example is the EFI System Partition (ESP), a special partition formatted with the FAT file system that UEFI uses
to store bootloaders, drivers, and other critical files [40]. The ESP is a mandatory partition in UEFI systems,
containing the bootloaders, firmware updates, and other files necessary for system initialization. UEFI accesses
the ESP independently of the OS, but the OS can also access and manage files on the ESP, creating an overlap
in file system management functions [61]. UEFI natively supports the FAT file system, allowing it to read and
write files on the ESP. This support overlaps with the OS’s file system management, as both UEFI and the OS
can manipulate files on the ESP.

5.3.3 Device Drivers
As we studied in an earlier chapter, UEFI includes its own driver model, allowing it to load and execute drivers
independently of the OS. This capability overlaps with the OS’s driver management functions, as both UEFI and
the OS manage hardware devices through drivers. UEFI drivers are typically used during the boot process to
initialize and control hardware devices. These drivers provide the necessary interfaces for the OS to interact with
the hardware once it has booted [61]. After the OS has booted, it loads its own drivers for hardware devices.
However, the OS often relies on the initial hardware setup performed by UEFI drivers.

5.3.4 Power Management
UEFI provides power management services that overlap with the OS’s power management functions. These
services allow UEFI to manage power states and transitions independently of the OS [40]. These services ensure
that the system conserves power during periods of inactivity and can quickly resume operation when needed The
OS extends UEFI’s power management by implementing its own power-saving mechanisms, such as CPU throttling
and dynamic voltage scaling.

5.4 Intel and AMD: control beyond the OS
Intel Management Engine (ME) and AMD Platform Security Processor (PSP) are embedded microcontrollers
within Intel and AMD processors, respectively. These components run their own firmware and operate indepen-
dently of the main CPU, handling tasks such as security enforcement, remote management, and digital rights
management (DRM).

Bulygin [21] highlights how these microcontrollers have control over the system that supersedes the OS, managing
hardware and security functions without the OS’s knowledge or consent. This level of control is reminiscent of a
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hypervisor that manages the resources and security of VMs. The OS, in this context, operates similarly to a VM
that does not have full control over the hardware it ostensibly manages.

5.5 The OS as a virtualized environment
The combined effect of these firmware components (ACPI, SMM, UEFI, Intel ME, and AMD PSP) creates an
environment where the OS operates in a virtualized or highly abstracted layer. The OS does not directly manage
the hardware; instead, it interfaces with these firmware components, which themselves control the hardware re-
sources. This situation is analogous to a virtual machine, where the guest OS operates on virtualized hardware
managed by a hypervisor.

Smith and Chen [99] argues that modern OS environments, influenced by these firmware components, should
be considered virtualized environments. The firmware acts as an intermediary layer that abstracts and controls
hardware resources, thereby limiting the OS’s direct access and control.

The presence and operation of modern firmware components such as ACPI, SMM, UEFI, Intel ME, and AMD
PSP contribute to a significant abstraction of hardware from the OS. This abstraction creates an environment
that parallels the operation of a virtual machine, where the OS functions within a controlled, virtualized layer
managed by these firmware systems. The growing body of research supports this perspective, suggesting that
the traditional notion of an OS directly managing hardware is increasingly outdated in the face of these complex,
autonomous firmware components.
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Conclusion

This document has explored the evolution and current state of firmware, particularly focusing on the transition
from traditional BIOS to more advanced firmware interfaces such as UEFI and coreboot. The evolution from a
simple set of routines stored in ROM to complex systems like UEFI and coreboot highlights the growing impor-
tance of firmware in modern computing. Firmware now plays a critical role not only in hardware initialization but
also in memory management, security, and system performance optimization.

The study of the ASUS KGPE-D16 mainboard illustrates how firmware, particularly coreboot, plays a crucial role
in the efficient and secure operation of high-performance systems. The KGPE-D16, with its support for free
software-compatible firmware, exemplifies the potential of libre firmware to deliver both high performance and
freedom from proprietary constraints. However, it is important to acknowledge that the KGPE-D16 is not without
its imperfections. The detailed analysis of firmware components, such as the bootblock, romstage, and especially
the RAM initialization and training algorithms, reveals areas where the firmware can be further refined to enhance
system stability and performance. These improvements are not only beneficial for the KGPE-D16 but can also be
applied to other boards, extending the impact of these optimizations across a broader range of hardware.

Moreover, the discussion on modern firmware components such as ACPI, SMM, UEFI, Intel ME, and AMD PSP
demonstrates how these elements abstract hardware from the operating system, creating a virtualized environment
where the OS operates more like a guest in a hypervisor-controlled system. This abstraction raises important con-
siderations about control, security, and user freedom in contemporary computing. As we continue to witness the
increasing complexity and influence of firmware in computing, it becomes crucial to advocate for free software-
compatible hardware. The dependence on proprietary firmware and the associated restrictions on user freedom
are growing concerns that need to be addressed. The development and adoption of libre firmware solutions, such
as coreboot and GNU Boot, are essential steps towards ensuring that users retain control over their hardware and
software environments.

It is imperative that the community of developers, researchers, and users come together to support and contribute
to the development of free firmware. By fostering innovation and collaboration in this field, we can advance
towards a future where free software-compatible hardware becomes the norm, ensuring that computing remains
open, secure, and under the control of its users. The significance of a libre BIOS cannot be overstated, it is
the foundation upon which a truly free and open computing ecosystem can be built [109]. The importance of
the GNU Boot project cannot be overstated. As a fully free firmware initiative, GNU Boot represents a criti-
cal step towards achieving truly libre BIOSes, ensuring that users can maintain full control over their hardware
and firmware environments. The continued development and support of GNU Boot are essential for advancing
the goals of free software and protecting user freedoms in the increasingly complex landscape of modern computing.
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Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.
We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be
a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.
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A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specifica-
tion is available to the general public, that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use the
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latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifi-
cations in the Modified Version, together with at least five of the principal authors of the Document (all of
its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was based
on. These may be placed in the “History” section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers
to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.
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O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.
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8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt
of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt
of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See https://www.gnu.org/licenses/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a
proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance
of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.
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An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the
MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at
any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.” line with
this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.
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