
Faculté des Sciences et Ingénierie
Master Informatique

Systèmes Électroniques, Systèmes Informatiques

Laboratoire d’Informatique Paris 6 - CIAN

Hardware initialization of modern computers
A review on the importance of firmware in modern computing and a documentation on

the Asus KGPE-D16 RAM initialization

August, 2024

Adrien ’neox’ Bourmault (neox@gnu.org)

Under the supervision of Franck WAJSBÜRT (franck.wajsburt@lip6.fr)

mailto:neox@gnu.org
mailto:franck.wajsburt@lip6.fr

This is Edition 0.0.

Copyright (C) 2024 Adrien ’neox’ Bourmault <neox@gnu.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

2

mailto:neox@gnu.org

Contents

Abstract 5

1 Introduction to firmware and BIOS evolution 6

1.1 Historical context of BIOS . 6
1.1.1 Definition and origin . 6
1.1.2 Functionalities and limitations. 7

1.2 Modern BIOS and UEFI . 8
1.2.1 Transition from traditional BIOS to UEFI (Unified Extensible Firmware Interface) 8
1.2.2 An other way with coreboot . 8

1.3 Shift in firmware responsibilities . 10

2 Characteristics of ASUS KGPE-D16 mainboard 11

2.1 Overview of ASUS KGPE-D16 hardware . 12
2.2 Chipset . 13
2.3 Processors . 15
2.4 Baseboard Management Controller . 16

3 Key components in modern firmware 18

3.1 General structure of coreboot. 18
3.1.1 Bootblock stage . 19
3.1.2 Romstage . 21
3.1.3 Ramstage . 22

3.1.3.1 Advanced Configuration and Power Interface. 22
3.1.3.2 System Management Mode . 23

3.1.4 Payload . 23
3.2 AMD Platform Security Processor and Intel Management Engine . 24

4 Memory initialization and training algorithms [WIP] 26

4.1 Importance of memory initialization . 26
4.2 Memory training algorithms . 26
4.3 Practical examples . 27

4.3.1 RAM Initialization Preparation . 27
4.3.2 RAM Initialization . 27

4.3.2.1 Memory Controller Initialization . 27
4.3.2.2 Memory Module Training . 28

5 Firmware and hardware virtualization [WIP] 29

5.1 Introduction to hardware virtualization . 29
5.2 Role of BIOS/UEFI in virtualization. 29
5.3 Security and freedom considerations . 29
5.4 Future trends in firmware and virtualization . 29

3

Conclusion 30

5.5 Summary of key points . 30
5.6 Call for action . 30

Bibliography 31

List of Figures 37

List of Listings 38

GNU Free Documentation License 39

4

Abstract

The global trend is towards the scarcity of free software-compatible hardware, and soon there will be no computer
that will work without software domination by big companies, especially involving firmware like BIOSes.

A Basic Input Output System (BIOS) was originally a set of low-level functions contained in the read-only memory
of a computer’s mainboard, enabling it to perform basic operations when powered up. However, the definition
of a BIOS has evolved to include what used to be known as Power On Self Test (POST) for the presence of
peripherals, allocating resources for them to avoid conflicts, and then handing over to an operating system boot
loader. Nowadays, the bulk of the BIOS work is the initialization and training of RAM. This means, for example,
initializing the memory controller and optimizing timing and read/write voltage for optimal performance, making
the code complex, as its role is to optimize several parallel buses operating at high speeds and shared by many
CPU cores, and make them act as a homogeneous whole.

This document is the product of a project hosted by the LIP6 laboratory and supported by the GNU Boot Project
and the Free Software Foundation. It delves into the importance of firmware in the hardware initialization of mod-
ern computers and explores various aspects of firmware, such as Intel Management Engine (ME), AMD Platform
Security Processor (PSP), Advanced Configuration and Power Interface (ACPI), and System Management Mode
(SMM). Additionally, it provides an in-depth look at memory initialization and training algorithms, highlighting
their critical role in system stability and performance. Examples of the implementation in the ASUS KGPE-D16
mainboard are presented, describing its hardware characteristics, topology, and the crucial role of firmware in its
operation after the mainboard architecture is examined. Practical examples illustrate the impact of firmware on
hardware initialization, memory optimization, resource allocation, power management, and security. Specific algo-
rithms used for memory training and their outcomes are analyzed to demonstrate the complexity and importance of
firmware in achieving optimal system performance. Furthermore, this document explores the relationship between
firmware and hardware virtualization. Security considerations and future trends in firmware development are also
addressed, emphasizing the need for continued research and advocacy for free software-compatible hardware.

5

Chapter 1

Introduction to firmware and BIOS evolution

1.1 Historical context of BIOS

1.1.1 Definition and origin
The BIOS (Basic Input/Output System) is firmware, which is a type of software that is embedded into hardware
devices to control their basic functions, acting as a bridge between hardware and other software, ensuring that
the hardware operates correctly. Unlike regular software, firmware is usually stored in a non-volatile memory like
ROM or flash memory. The term "firmware" comes from its role: it is "firm" because it’s more permanent than
regular software (which can be easily changed) but not as rigid as hardware.

The BIOS is used to perform initialization during the booting process and to provide runtime services for
operating systems and programs. Being a critical component for the startup of personal computers, acting as an
intermediary between the computer’s hardware and its operating system, the BIOS is embedded on a chip on
the motherboard and is the first code that runs when a PC is powered on. The concept of BIOS has its roots
in the early days of personal computing. It was first developed by IBM for their IBM PC, which was introduced
in 1981 [38]. The term BIOS itself was coined by Gary Kildall, who developed the CP/M (Control Program
for Microcomputers) operating system [86]. In CP/M, BIOS was used to describe a component that interfaced
directly with the hardware, allowing the operating system to be somewhat hardware-independent.

Figure 1.1: The eight-striped wordmark of IBM (1967, public domain, trademarked)

IBM’s implementation of BIOS became a de facto standard in the industry, as it was part of the IBM PC’s open
architecture [40][14], which refers to the design philosophy adopted by IBM when developing the IBM Personal
Computer (PC), introduced in 1981. This architecture is characterized by the use of off-the-shelf components and
publicly available specifications, which allowed other manufacturers to create compatible hardware and software.
It was in fact a departure from the proprietary systems prevalent at the time, where companies closely guarded
their designs to maintain control over the hardware and software ecosystem. For example, IBM used the Intel
8088 CPU, a well-documented and widely available processor, and also the Industry Standard Architecture (ISA)
bus, which defined how various components like memory, storage, and peripherals communicated with the CPU.
This open architecture allowed other manufacturers to create IBM-compatible computers, also known as "clones",
which further popularized the BIOS concept. As a result, the IBM PC BIOS set the stage for a standardized
method of interacting with computer hardware, which has evolved over the years but remains fundamentally the
same in principle. IBM also published detailed technical documentation at that time, including circuit diagrams,

6

BIOS listings, and interface specifications. This transparency allowed other companies to understand and replicate
the IBM PC’s functionality [38].

1.1.2 Functionalities and limitations
When a computer is powered on, the BIOS executes a Power-On Self-Test (POST), a diagnostic sequence that
verifies the integrity and functionality of critical hardware components such as the CPU, RAM, disk drives,
keyboard, and other peripherals [103]. This process ensures that all essential hardware components are operational
before the system attempts to load the operating system. If any issues are detected, the BIOS generates error
messages or beep codes to alert the user. Following the successful completion of POST, the BIOS runs the
bootstrap loader, a small program that identifies the operating system’s bootloader on a storage device, such
as a hard drive, floppy disk, or optical drive. The bootstrap loader then transfers control to the OS bootloader,
initiating the process of loading the operating system into the computer’s memory and starting it. This step
effectively bridges the gap between hardware initialization and operating system execution. The BIOS also
provides a set of low-level software routines known as interrupts. These routines enable software to perform basic
input/output operations, such as reading from the keyboard, writing to the display, and accessing disk drives,
without needing to manage the hardware directly. By providing standardized interfaces for hardware components,
the BIOS simplifies software development and improves compatibility across different hardware configurations [14].

Figure 1.2: An AMI BIOS chip from a Dell 310, by Jud McCranie (CC BY-SA 4.0, 2018)

Despite its essential role, the early BIOS had several limitations. One significant limitation was its limited storage
capacity. Early BIOS firmware was stored in Read-Only Memory (ROM) chips with very limited storage, often
just a few kilobytes. This constrained the complexity and functionality of the BIOS, limiting it to only the
most essential tasks needed to start the system and provide basic hardware control. The original BIOS was
also non-extensible. ROM chips were typically soldered onto the motherboard, making updates difficult and
costly. Bug fixes, updates for new hardware support, or enhancements required replacing the ROM chip, leading
to challenges in maintaining and upgrading systems. Furthermore, the early BIOS was tailored for the specific
hardware configurations of the initial IBM PC models, which included a limited set of peripherals and expansion
options. As new hardware components and peripherals were developed, the BIOS often needed to be updated to
support them, which was not always feasible or timely. Performance bottlenecks were another limitation. The BIOS
provided basic input/output operations that were often slower than direct hardware access methods. For example,
disk I/O operations through BIOS interrupts were slower compared to later direct access methods provided by
operating systems, resulting in performance bottlenecks, especially for disk-intensive operations. This inflexibility
restricts the ability to support new hardware and technologies efficiently[13]. Early BIOS implementations also
had minimal security features. There were no mechanisms to verify the integrity of the BIOS code or to protect
against unauthorized modifications, leaving systems vulnerable to attacks that could alter the BIOS and potentially
compromise the entire system, such as rootkits and firmware viruses. Added to that, the traditional BIOS operates
in 16-bit real mode, a constraint that limits the amount of code and memory it can address. This limitation hinders
the performance and complexity of firmware, making it less suitable for modern computing needs [26]. Additionally,
BIOS relies on the Master Boot Record (MBR) partitioning scheme, which supports a maximum disk size of 2
terabytes and allows only four primary partitions [33][83]. This constraint has become a significant drawback
as storage capacities have increased. Furthermore, the traditional BIOS has limited flexibility and is challenging
to update or extend. This inflexibility restricts the ability to support new hardware and technologies efficiently
[13][1].

7

1.2 Modern BIOS and UEFI

1.2.1 Transition from traditional BIOS to UEFI (Unified Extensible Firmware Interface)
All the limitations listed earlier caused a transition to a more modern firmware interface, designed to address
the shortcomings of the traditional BIOS. This section delves into the historical context of this shift, the driving
factors behind it, and the advantages UEFI offers over the traditional BIOS.

The development of UEFI began in the mid-1990s as part of the Intel Boot Initiative, which aimed to modernize the
boot process and overcome the limitations of the traditional BIOS. By 2005, the Unified EFI Forum, a consortium
of technology companies including Intel, AMD, and Microsoft, had formalized the UEFI specification [33]. UEFI
was designed to address the shortcomings of the traditional BIOS, providing several key improvements.

Figure 1.3: The UEFI logo (public domain, 2010)

One of the most significant advancements of UEFI is its support for 32-bit and 64-bit modes, allowing it to
address more memory and run more complex firmware programs. This capability enables UEFI to handle the
increased demands of modern hardware and software [26][85]. Additionally, UEFI uses the GUID Partition Table
(GPT) instead of the MBR, supporting disks larger than 2 terabytes and allowing for a nearly unlimited number
of partitions [27][83].
Improved boot performance is another driving factor. UEFI provides faster boot times compared to the traditional
BIOS, thanks to its efficient hardware and software initialization processes. This improvement is particularly
beneficial for systems with complex hardware configurations, where quick boot times are essential [26]. UEFI’s
modular architecture makes it more extensible and easier to update compared to the traditional BIOS. This design
allows for the addition of drivers, applications, and other components without requiring a complete firmware
overhaul, providing greater flexibility and adaptability to new technologies [1]. UEFI also includes enhanced
security features such as Secure Boot, which ensures that only trusted software can be executed during the boot
process, thereby protecting the system from unauthorized modifications and malware [13][19].

The industry-wide support and standardization of UEFI have accelerated its adoption across various platforms and
devices. Major industry players, including Intel, AMD, and Microsoft, have adopted UEFI as the new standard for
firmware interfaces, ensuring broad compatibility and interoperability [33].

1.2.2 An other way with coreboot
While UEFI has become the dominant firmware interface for modern computing systems, it is not without its
critics. Some of the primary concerns about UEFI include its complexity, potential security vulnerabilities, and the
degree of control it provides to hardware manufacturers over the boot process. Originally known as LinuxBIOS,
coreboot, is a free firmware project initiated in 1999 by Ron Minnich and his team at the Los Alamos National
Laboratory. The project’s primary goal was to create a fast, lightweight, and flexible firmware solution that could
initialize hardware and boot operating systems quickly, while remaining transparent and auditable[77]. As an
alternative to UEFI, coreboot offers a different approach to firmware that aims to address some of these concerns
and continue the evolution of BIOS.

8

One of the main advantages of coreboot over UEFI is its simplicity, as it is designed to perform only the
minimal tasks required to initialize hardware and pass control to a payload, such as a bootloader or operating
system kernel. This minimalist approach reduces the attack surface and potential for security vulnerabilities,
as there is less code that could be exploited by malicious actors [82]. Another significant benefit of coreboot
is its libre nature. Unlike UEFI, which is controlled by a consortium of hardware and software vendors,
coreboot’s source code is freely available and can be audited, modified, and improved by anyone. This
transparency ensures that security researchers and developers can review the code for potential vulnerabilities
and contribute to its improvement, fostering a community-driven approach to firmware development[77].
This project also supports a wide range of bootloaders, called payloads, allowing users to customize their
boot process to suit their specific needs. Popular payloads include SeaBIOS, which provides legacy BIOS
compatibility, and Tianocore, which offers UEFI functionality within the coreboot framework. This flexibility
allows coreboot to be used in a variety of environments, from embedded systems to high-performance servers [76].

Figure 1.4: The coreboot logo, by Konsult Stuge & coresystems (coreboot logo license, 2008)

Despite its advantages, coreboot is not without its challenges. The project relies heavily on community con-
tributions, and support for new hardware often lags behind that of UEFI. Additionally, the minimalist design of
coreboot means that some advanced features provided by UEFI are not available by default. However, the core-
boot community continues to work on adding new features and improving compatibility with modern hardware
or security issues [64]. For example, it provides a verified boot function, allowing to prevent rootkits and other
attacks based on firmware modifications [75]. However, it’s important to note that coreboot is not entirely free in
all aspects. Many modern processors and chipsets require proprietary blobs, short for Binary Large Object, which
is a collection of binary data stored as a single entity. These blobs are necessary for coreboot to function correctly
on a wide range of hardware, but they compromise the goal of having a fully free firmware one day [59], since
these blobs are used for certain functionalities such as memory initialization and hardware management.

Figure 1.5: The GNU Boot logo, by Jason Self (CC0, 2020)

To address these concerns, the GNU Project has developed GNU Boot, a fully free distribution of firmware,
including coreboot, that aims to be entirely free by avoiding the use of proprietary binary blobs. GNU Boot
is committed to using only free software for all aspects of firmware, making it a preferred choice for users and
organizations that prioritize software freedom and transparency [60].

9

1.3 Shift in firmware responsibilities
Initially, the BIOS’s primary function was to perform the POST, a basic diagnostic testing process to check the
system’s hardware components and ensure they were functioning correctly. This included verifying the CPU,
memory, and essential peripherals before passing control to the operating system’s bootloader. This process was
relatively simple, given the limited capabilities and straightforward architecture of early computer systems [13].
As computer systems advanced, particularly with the advent of more sophisticated memory technologies, the role
of firmware expanded significantly. Modern memory modules operate at much higher speeds and capacities than
their predecessors, requiring precise configuration to ensure stability and optimal performance. Firmware now
plays a critical role in managing the memory controller, which is responsible for regulating data flow between
the processor and memory modules. This includes configuring memory frequencies, voltage levels, and timing
parameters to match the specifications of the installed memory [33][9]. Beyond memory management, firmware
responsibilities have broadened to encompass a wide range of system-critical tasks. One key area is power
management, where firmware is responsible for optimizing energy consumption across various components of
the system. Efficient power management is essential not only for extending battery life in portable devices but
also for reducing thermal output and ensuring system longevity in desktop and server environments. Moreover,
modern firmware takes on significant roles in hardware initialization and configuration, which were traditionally
handled by the operating system. For example, the initialization of USB controllers, network interfaces, and
storage devices is now often managed by the firmware during the early stages of the boot process. This shift
ensures that the operating system can seamlessly interact with hardware from the moment it takes control,
reducing boot times and improving overall system reliability [33]. Security has also become a paramount concern
for modern firmware. UEFI (Unified Extensible Firmware Interface), which has largely replaced traditional BIOS
in modern systems, includes features which prevents unauthorized or malicious software from loading during the
boot process. This helps protect the system from rootkits and other low-level malware that could compromise
the integrity of the operating system before it even starts [33]. In the context of performance tuning, firmware
sometimes also plays a key role in enabling and managing overclocking, particularly for the memory subsystem.
By allowing adjustments to memory frequencies, voltages, and timings, firmware provides tools for enthusiasts
to push their systems beyond default limits. At the same time, it includes safeguards to manage the risks of
instability and hardware damage, balancing performance gains with system reliability [13].

In summary, the evolution of firmware from simple hardware initialization routines to complex management
systems reflects the increasing sophistication of modern computer architectures. Firmware is now a critical layer
that not only ensures the correct functioning of hardware components but also optimizes performance, manages
power consumption, and enhances system security, making it an indispensable part of contemporary computing.

This document will focus on coreboot during the next parts to study how modern firmware interact with hardware
and also as a basis for improvements.

10

Chapter 2

Characteristics of ASUS KGPE-D16
mainboard

Figure 2.1: The KGPE-D16 (CC BY-SA 4.0, 2021)

11

2.1 Overview of ASUS KGPE-D16 hardware
The ASUS KGPE-D16 server mainboard is a dual-socket motherboard designed to support AMD Family 10h/15h
series processors. Released in 2009, this mainboard was later awarded the Respects Your Freedom (RYF)
certification in March 2017, underscoring its commitment to fully free software compatibility [36]. Indeed, this
mainboard can be operated with a fully free firmware such as GNU Boot [61].

This mainboard is equipped with robust hardware components designed to meet the demands of high-performance
computing. It features 16 DDR3 DIMM slots, capable of supporting up to 256GB of memory, although certain
configurations may be limited to 192GB, with some reports suggesting the potential to support 256GB under
specific conditions. In terms of expandability, the KGPE-D16 includes multiple PCIe slots, with five physical slots
available, although only four can be used simultaneously due to slot sharing. For storage, the mainboard provides
several SATA ports. Networking capabilities are enhanced by integrated dual gigabit Ethernet ports, which
provide high-speed connectivity essential for data-intensive tasks and network communication [15]. Additionally,
the board is equipped with various peripheral interfaces, including USB ports, audio outputs, and other I/O
ports, ensuring compatibility with a wide range of external devices.

Figure 2.2: Basic schematics of the ASUS KGPE-D16 Mainboard, ASUS (2011)

The physical layout of the ASUS KGPE-D16 is meticulously designed to optimize airflow, cooling, and power
distribution. All of this is critical for maintaining system stability, particularly under heavy computational loads,
as this board was designed for server operations. In particular, key components such as the CPU sockets, memory
slots, and PCIe slots are strategically positioned.

12

Figure 2.3: The KGPE-D16, viewed from the top (CC BY-SA 4.0, 2024)

2.2 Chipset
Before diving into the specific components, it is essential to understand the roles of the northbridge and
southbridge in traditional motherboard architecture. These chipsets historically managed communication between
the CPU and other critical components of the system [3].

The northbridge is a chipset on the motherboard that traditionally manages high-speed communication between
the CPU, memory (RAM), and graphics card (if applicable). It serves as a hub for data that needs to move quickly
between these components. On the ASUS KGPE-D16, the functions typically associated with the northbridge are
divided between the CPUs internal northbridge and an external SR5690 northbridge chip. The SR5690 specifically
acts as a translator and switch, handling the HyperTransport interface, a high-speed communication protocol
used by AMD processors, and converting it to ALink and PCIe interfaces, which are crucial for connecting
peripherals like graphics cards [11]. Additionally, the northbridge on the KGPE-D16 incorporates the IOMMU
(Input-Output Memory Management Unit), which is crucial for ensuring secure and efficient memory access
by I/O devices. The IOMMU allows for the virtualization of memory addresses, providing device isolation and
preventing unauthorized memory access, which is particularly important in environments that run multiple virtual
machines [3][115].

The southbridge, on the other hand, is responsible for handling lower-speed, peripheral interfaces such as the PCI,
USB, and IDE/SATA connections, as well as managing onboard audio and network controllers. On the KGPE-D16,
these functions are managed by the SP5100 southbridge chip, which integrates several critical functions including
the LPC bridge, SATA controllers, and other essential I/O operations [3][118]. It is essentially an ALink bus con-
troller and includes the hardware interrupt controller, the IOAPIC. Interrupts from peripheral always pass through
the northbridge (fig. 2.4), since it translates ALink to HyperTransport for the CPUs and contains the IOMMU [11].

13

Figure 2.4: Functional diagram presenting the IOAPIC function of the SP5100, ASUS (2011)

In addition to the northbridge and southbridge, the KGPE-D16 also contains specialized chips for managing
input/output operations and system health monitoring. The WINBOND W83667HG-A Super I/O chip handles
traditional I/O functions such as legacy serial and parallel ports, keyboard, and mouse interfaces, but also the SPI
chip that contains the firmware [122]. Meanwhile, the Nuvoton W83795G/ADG Hardware Monitor oversees the
systems health by monitoring temperatures, voltages, and fan speeds, ensuring that the system operates within
safe parameters [68]. On the KGPE-D16, access to the Super I/O from a CPU core is done through the SR5690,
then the SP5100, as that can be observed on the functional diagram of the chipset (fig. 2.5) [11].

Figure 2.5: Functional diagram of the KGPE-D16 chipset (CC BY-SA 4.0, 2024)

14

2.3 Processors
The ASUS KGPE-D16 supports AMD Family 10h processors, but it is important to note that Vikings, a known
vendor for libre-software-compatible hardware, does not recommend using the Opteron 6100 series due to the lack
of IOMMU support, which is critical for security. Fortunately, AMD Family 15h processors are also supported.
However, the Opteron 6300 series, while supported, requires proprietary microcode updates for stability, IOMMU
functionality, and fixes for specific vulnerabilities, including a gain-root- via-NMI exploit. The Opteron 6200 se-
ries does not suffer from these problems and works properly without any proprietary microcode update needed [98].

Figure 2.6: Annotated photography of an Opteron 6200 series CPU (2024), from a photography by AMD Inc.
(2008)

The Opteron 6200 series, part of the Bulldozer microarchitecture, was designed to target high-performance server
applications. These processors feature 16 cores, organized into 8 Bulldozer modules, with each module containing
two integer cores that shared resources like the floating-point unit (FPU) and L2 cache (fig. 2.6, 2.7) [7][84].
The architecture of the Opteron 6200 series is built around AMD’s Bulldozer core design, which uses Clustered
Multithreading (CMT) to maximize resource utilization. This is a technique where each processor module contains
two integer cores that share certain resources like the floating-point unit (FPU), L2 cache, and instruction
fetch/decode stages. Unlike traditional multithreading, where each core handles multiple threads, CMT allows
two cores to share resources to improve parallel processing efficiency. This approach aims to balance performance
and resource usage, particularly in multi- threaded workloads, though it can lead to some performance trade-offs
in single-threaded tasks. In the Opteron 6272, the processor consists of eight modules, effectively creating 16
integer cores. Due to the CMT architecture, each Opteron 6272 chip functions as two CPUs within a single
processor, each with its own set of cores, L2 caches, and shared L3 cache. Here, one CPU is made by four
modules, each module in it sharing certain components, such as the FPU and L2 cache, between two integer cores.
The L3 cache is shared across these modules. HyperTransport links provide high-speed communication between
the two sockets of the KGPE-D16. Shared L3 cache and direct memory access are provided by each socket [7][44].

This architecture also integrates a quad-channel DDR3 memory controller directly into the processor die, which
facilitates high bandwidth and low latency access to memory. This memory controller supports DDR3 memory
speeds up to 1600 MHz and connects directly to the memory modules via the memory bus. By integrating the
memory controller into the processor, the Opteron 6200 series reduces memory access latency, enhancing overall
performance [7][6]. It is interesting to note that Opterons incorporate the internal northbridge that we cited
previously. The traditional northbridge functions, such as memory controller and PCIe interface management,
are partially integrated into the processor. This integration reduces the distance data must travel between the
CPU and memory, decreasing latency and improving performance, particularly in memory-intensive applications [7].

15

Figure 2.7: Functional diagram of an Opteron 6200 package (CC BY-SA 4.0, 2024)

Power efficiency was a key focus in the design of the Opteron 6200 series. Despite the high core count,
the processor includes several power management features, such as Dynamic Power Management (DPM)
and Turbo Core technology. These features allow the processor to adjust power usage based on workload
demands, balancing performance with energy consumption. However, the Bulldozer architecture’s focus on high
clock speeds and multi-threaded performance resulted in higher power consumption compared to competing
architectures [84]. A special model of the series, called high efficiency models, solve a bit this problem by propos-
ing a bit less performant processor but with a power consumption divided by a factor from 1.5 to 2.0 in some cases.

The processor connected to the I/O hub is known as the Bootstrap Processor (BSP). The BSP is responsible for
starting up the system by executing the initial firmware code from the reset vector, a specific memory address
where the CPU begins execution after a reset [4]. Core 0 of the BSP, called the Bootstrap Core (BSC), initiates
this process. During early initialization, the BSP performs several critical tasks, such as memory initialization, and
bringing other CPU cores online. One of its duties is storing Built-In Self-Test (BIST) information, which involves
checking the integrity of the processor’s internal components to ensure they are functioning correctly. The BSP
also determines the type of reset that has occurredwhether it’s a cold reset, which happens when the system is
powered on from an off state, or a warm reset, which is a restart without turning off the power. Identifying the
reset type is crucial for deciding which initialization procedures need to be executed [4][9].

2.4 Baseboard Management Controller
The Baseboard Management Controller (BMC) on the KGPE-D16 motherboard, specifically the ASpeed
AST2050, plays a role in the server’s architecture by managing out-of-band communication and control of
the hardware. The AST2050 is based on an ARM926EJ-S processor, a low-power 32-bit ARM architecture
designed for embedded systems [89]. This architecture is well-suited for BMCs due to its efficiency and capabil-
ity to handle multiple management tasks concurrently without significant resource demands from the main system.

The AST2050 features several key components that contribute to its functionality. It includes an integrated
VGA controller, which enables remote graphical management through KVM-over-IP (Keyboard, Video, Mouse),
a critical feature for administrators who need to interact with the system remotely, including BIOS updates and
troubleshooting [87]. Additionally, the AST2050 integrates a dedicated memory controller, which supports up to
256MB of DDR2 RAM. This allows it to handle complex tasks and maintain responsiveness during management

16

operations [29]. The BMC also features a network interface controller (NIC) dedicated to management traffic,
ensuring that remote management does not interfere with the primary network traffic of the server. This
separation is vital for maintaining secure and uninterrupted system management, especially in environments
where uptime is critical [90]. Another important architectural aspect of the AST2050 is its support for multiple
I/O interfaces, including I2C, GPIO, UART, and USB, which allow it to interface with various sensors and
peripherals on the motherboard [91]. This versatility enables comprehensive monitoring of hardware health, such
as temperature sensors, fan speeds, and power supplies, all of which can be managed and configured through the
BMC.

When combined with OpenBMC [116], a libre firmware that can be run on the AST2050 thanks to Raptor
Engineering [78], the architecture of the BMC becomes even more powerful. OpenBMC takes advantage of the
AST2050’s architecture, providing a flexible and customizable environment that can be tailored to specific use
cases. This includes adding or modifying features related to security, logging, and network management, all within
the BMC’s ARM architecture framework [48].

17

Chapter 3

Key components in modern firmware

3.1 General structure of coreboot
The firmware of the ASUS KGPE-D16 is crucial in ensuring the proper functioning and optimization of the
mainboard’s hardware components. For this to be done efficiently, coreboot is organized in different stages (fig.
3.1) [75].

Figure 3.1: coreboot’s stages timeline, by coreboot project (CC BY-SA 4.0, 2009)

Being a complex project with ambitious goals, coreboot decided early on to establish an file-system-based
architecture for its images (also called ROMs). This special file-system is CBFS (which stands for coreboot file
system). The CBFS architecture consists of a binary image that can be interpreted as a physical disk, referred to
here as ROM. A number of independent components, each with a header added to the data, are located within
the ROM. The components are nominally arranged sequentially, although they are aligned along a predefined
boundary (fig. 3.2).

Each stage is compiled as a separate binary and inserted into the CBFS with custom compression. The bootblock
stage is usually not compressed, while the ramstage and the payload are compressed with LZMA. Each stage
loads the next stage at a given address (possibly decompressing it in the process).

Some stages are relocatable and can be placed anywhere in the RAM. These stages are typically cached in the
CBMEM for faster loading times during wake-up. The CBMEM is a specific memory area used by the coreboot
firmware to store important data structures and logs during the boot process. This area is typically allocated in
the system’s RAM and is used to store various types of runtime information that it might need to reference after
the initial boot stages.

In general, coreboot manages main memory through a structured memory map (fig. 3.1), allocating specific
address ranges for various hardware functions and system operations. The first 640KB of memory space is
typically unused by coreboot due to historical reasons. Graphics-related operations use the VGA address range
and the text mode address ranges. It also reserves the higher for operating system use, ensuring that critical
system components like the IOAPIC and TPM registers have dedicated address spaces. This structured approach
helps maintain system stability and compatibility across different platforms and allows for a reset vector fixed at
an address (0xFFFFFFF0), regardless of the ROM size. Payloads are typically loaded into high memory, above the

18

reserved areas for hardware components and system resources. The exact memory location can vary depending on
the system’s configuration, but generally, payloads are placed in a region of memory that does not conflict with
the firmware code or the reserved memory map areas, such as the ROM mapping ranges. This placement ensures
that payloads have sufficient space to execute without interfering with other critical memory regions allocated
[22].

0x00000 - 0x9FFFF Low memory (first 640KB). Never used.
0xA0000 - 0xAFFFF VGA graphics address range.
0xB0000 - 0xB7FFF Monochrome text mode address range. Few

motherboards use it, but the KGPE-D16 does.
0xB8000 - 0xBFFFF Text mode address range.

0xFEC00000 IOAPIC address.
0xFED44000 - 0xFED4FFFF Address range for TPM registers.
0xFF000000 - 0xFFFFFFFF 16 MB ROM mapping address range.
0xFF800000 - 0xFFFFFFFF 8 MB ROM mapping address range.
0xFFC00000 - 0xFFFFFFFF 4 MB ROM mapping address range.

0xFEC00000 - DEVICE MEM HIGH Reserved area for OS use.

Table 3.1: coreboot memory map

3.1.1 Bootblock stage
The bootblock is the first stage executed after the CPU reset. The beginning of this stage is written in assembly
language, and its main task is to set everything up for a C environment. The rest, of course, is written in C. This
stage occupies the last 20k (fig. 3.2) of the image and within it is a main header containing information about
the ROM, including the size, component alignment, and the offset of the start of the first CBFS component.
This block is a mandatory component as it also contains the entry point of the firmware.

Figure 3.2: coreboot ROM architecture (CC BY-SA 4.0, 2024)

Upon startup, the first responsibility of the bootblock is to execute the code from the reset vector located at
the conventional reset vector in 16-bit real mode. This code is specific to the processor architecture and, for our
board, is stored in the architecture-specific sources for x86 within coreboot. The entry point into coreboot code

19

is defined in two files in the src/cpu/x86/16bit/ directory: reset16.inc and entry16.inc. The first file
serves as a jump to the _start16bit procedure defined in the second. Due to space constraints this function
must remain below the 1MB address space because the IOMMU has not yet been configured to allow anything else.

During this early initialization, the Bootstrap Core (BSC) performs several critical tasks while the other cores
remain dormant. These tasks include saving the results (and displaying them if necessary) of the Built-in Self-Test
(BIST), formerly known as POST; invalidating the TLB to prevent any address translation errors; determining
the type of reset (e.g., cold start or warm start); creating and loading an empty Interrupt Descriptor Table
(IDT) to prevent the use of "legacy" interrupts from real mode until protected mode is reached. In practice, this
means that at the slightest exception, the BSC will halt. The code then switches to 32-bit protected mode by
mapping the first 4 GB of address space for code and data, and finally jumps to the 32-bit reset code labeled
_protected_start.

Once in protected mode, which constitutes the "normal" operating mode for the processor, the next step is to
set up the execution environment. To achieve this, the code contained in src/cpu/x86/32bit/entry32.inc,
followed by src/cpu/x86/64bit/entry64.inc, and finally src/arch/x86/bootblock_crt0.S, establishes
a temporary stack, transitions to long mode (64-bit addressing) with paging enabled, and sets up a proper
exception vector table. The execution then jumps to chipset-specific code via the bootblock_pre_c_entry
procedure. Once these steps are completed, the bootblock has a minimal C environment. The procedure now
involves allocating memory for the BSS, and decompressing and loading the next stage.

The jump to _bootblock_pre_entry leads to the code files src/soc/amd/common/block/cpu/car/cache_
as_ram.S and src/vendorcode/amd/agesa/f15tn/gcccar.inc, which are specific to AMD chipsets. It’s
worth noting that these files were developed by AMD’s engineers as part of the AGESA project. The operations
performed at this stage are related to pre-RAM memory initialization. All cores of all processors (up to a limit of
64 cores) are started. The Cache-As-Ram is configured using the Memory-type range registers. These registers
allow the specification of a specific configuration for a given memory area [9]. In this case, the area that should
correspond to physical memory is mapped to the cache, while other areas, such as PCI or other bus zones, are
configured accordingly. A specific stack is set up for each core of each processor (within the arbitrary limit of 64
cores and 7 nodes, meaning 7 Core 0s). Core 0s receive 16KB, while the Bootstrap Core (BSC) gets 64KB. The
other cores receive 4KB each. All cores except the BSC are halted and will restart during the romstage. Finally,
the execution jumps to the entry point of the bootblock written in C, labeled bootblock_c_entry. This entry
point is located in src/soc/amd/stoneyridge/bootblock/bootblock.c and is specific to AMD processors. It
is the first C routine executed, and its role is to verify that the current processor is indeed the BSC, allowing the
function bootblock_main_with_basetime to be called exclusively by the BSC.
We are now in the file src/lib/bootblock.c, written by Google’s team, and entering the
bootblock_main_with_basetime function, which immediately calls bootblock_main_with_timestamp. At
this stage, the goal is to start the romstage, but a few more tasks need to be completed.
The bootblock_soc_early_init function is called to initialize the I2C bus of the southbridge. The
bootblock_fch_early_init function is invoked to initialize the SPI buses (including the one for the ROM)
and the serial and "legacy" buses of the southbridge. The CMOS clock is then initialized, followed by the pre-
initialization of the serial console. The code then calls the bootblock_mainboard_init function, which enters,
for the first time, the files specific to the ASUS KGPE-D16 motherboard: src/mainboard/ASUS/kgpe-d16/
bootblock.c. This code performs the northbridge initialization via the bootblock_northbridge_init func-
tion found in src/northbridge/amd/amdfam10/bootblock.c. This involves locating the HyperTransport bus
and enabling the discovery of devices connected to it (e.g., processors). The southbridge is initialized using the
bootblock_southbridge_init function from src/southbridge/amd/sb700/bootblock.c. This function,
largely programmed by Timothy Pearson from Raptor Engineering, who performed the first coreboot port for the
ASUS KGPE-D16, finalizes the activation of the SPI bus and the connection to the ROM memory via SuperIO.
The state of a recovery jumper is then checked (this jumper is intended to reset the CMOS content, although it
is not fully functional at the moment, as indicated by the FIXME comment in the code). Control then returns to
bootblock_main in src/lib/bootblock.c.
At this point, everything is ready to enter the romstage. coreboot has successfully started and can now continue
its execution by calling the run_romstage function from src/lib/prog_loaders.c. This function begins by
locating the corresponding segment in the ROM via the southbridge and SPI bus using prog_locate, which
utilizes the SPI driver in src/drivers/cbfs_spi.c. The contents of the romstage are then copied into the

20

cache-as-ram by cbfs_prog_stage_load. Finally, the prog_run function transitions to the romstage after
switching back to 32-bit mode.

3.1.2 Romstage
The romstage in coreboot serves the critical function of early initialization of peripherals, particularly system
memory. This stage is crucial for setting up the necessary components for the platform’s operation, ensuring
that everything is in place for subsequent stages of the boot process. During this phase, coreboot configures the
Advanced Programmable Interrupt Controller (APIC), which is responsible for correctly handling interrupts across
multiple CPUs, especially in systems using Symmetric Multiprocessing (SMP). This includes setting up the Local
APIC on each processor and the IOAPIC, part of the southbridge, to ensure that interrupts from peripherals are
routed to the appropriate CPUs. Additionally, the firmware configures the HyperTransport (HT) technology, a
high-speed communication protocol that facilitates data exchange between the processor and the northbridge,
ensuring smooth data flow between these components.

The romstage begins with a call to the _start function, defined in src/cpu/x86/32bit/entry32.inc via
src/arch/x86/assembly_entry.S. We then enter the cache_as_ram_setup procedure, written in assembly
language, located in src/cpu/amd/car/cache_as_ram.inc. This procedure configures the cache to load
the future ramstage and initialize memory based on the number of processors and cores present. Once this is
completed, the code calls cache_as_ram_main in src/mainboard/asus/kgpe-d16/romstage.c, which serves
as the main function of the romstage. In the cache_as_ram_main function, after reducing the speed of the
HyperTransport bus, only the Bootstrap Core (BSC) initializes the spinlocks for the serial console, the CMOS
storage memory (used for saving parameters), and the ROM. At this point, the HyperTransport bus is enumerated,
and the PCI bridges are temporarily disabled. The port 0x80 of the southbridge, used for motherboard debugging
with Post Codes, is also initialized. These codes indicate the status of the boot process and can be displayed
using special PCI cards connected to the system. The SuperIO is then initialized to activate the serial port,
allowing the serial console to follow coreboots progress in real-time. If everything proceeds as expected, the code
0x30 is sent, and the boot process continues. If the result of the Built-in Self-Test (BIST), saved during the
bootblock, shows no anomalies, all cores of all nodes are configured, and they are placed back into sleep mode
(except for the Core 0s). If everything goes well, the code 0x32 is sent, and the process continues. Using the
enable_sr5650_dev8 function, the southbridges P2P bridge is activated. Additionally, a check is performed to
ensure that the number of physical processors detected does not exceed the number of sockets available on the
board. If any issues were detected during the BIST, the machine will halt, and the error will be displayed on
the console. Otherwise, the process continues, and the default hardware information table is constructed, and
the microcode of the physical processors is updated if necessary. If everything proceeds correctly, the code 0x33
and then 0x34 is sent, and the process continues. The information about the physical processors is retrieved
using amd_ht_init, and communication between the two sockets is configured via amd_ht_fixup. This process
includes disabling any defective HT links (one per socket in this AMD Family 15h chipset). If everything is
working as expected, the code 0x35 is sent, and the boot process continues. With the finalize_node_setup
function, the PCI bus is initialized, and a mapping is created (setup_mb_resource_map). If all goes well, the
code 0x36 is sent. This is done in parallel across all Core 0s, so the system waits for all cores to finish using the
wait_all_core0_started function. The communication between the northbridge and southbridge is prepared
using sr5650_early_setup and sb7xx_51xx_early_setup, followed by the activation of all cores on all nodes,
with the system waiting for all cores to be fully initialized. If everything is successful, the code 0x38 is sent.

At this point, the timer is activated, and a warm reset is performed via the soft_reset function to validate all
configuration changes to the HT, PCI buses, and voltage/power settings of the processors and buses. This results
in a system reboot, passing again through the bootblock, but much faster this time since the system recognizes
the warm reset condition. Once this reboot is complete, the HyperTransport bus is reconfigured into isochronous
mode (switching from asynchronous mode), finalizing the configuration process.

Memory training and optimization are also key functions of the firmware during the romstage. This process
involves adjusting memory settings, such as timings, frequencies, and voltages, to ensure that the installed
memory modules operate efficiently and stably. This step is crucial for achieving optimal performance, especially
when dealing with large amounts of RAM and many CPU cores, as supported by the KGPE-D16. We’ll see that
in detail during the next chapter.

21

After memory initialization, the process returns to the cache_as_ram_main function, where a memory test is
performed. This involves writing predefined values to specific memory locations and then verifying that the values
can be read back correctly. If everything passes successfully, the CBMEM is initialized and one sends code 0x41.
At this point, the configuration of the PCI bus is prepared, which will be completed during the ramstage by
configuring the PCI bridges. The system then exits cache_as_ram_main and returns to cache_as_ram_setup
to finalize the process.
coreboot then transitions to the next stage, known as the postcar stage, where it exits the cache-as-RAM mode
and begins using physical RAM.

3.1.3 Ramstage
The ramstage performs the general initialization of all peripherals, including the initialization of PCI devices,
on-chip devices, the TPM (if not done by verstage), graphics (optional), and the CPU (setting up the System
Management Mode). After this initialization, tables are written to inform the payload or operating system
about the existence and current state of the hardware. These tables include ACPI tables (specific to x86),
SMBIOS tables (specific to x86), coreboot tables, and updates to the device tree (specific to ARM). Additionally,
the ramstage locks down the hardware and firmware by applying write protection to boot media, locking
security-related registers, and locking SMM (specific to x86) [75]. Effective resource allocation is essential for
system stability, particularly in complex configurations involving multiple CPUs and peripherals. This stage
manages initial resource allocation, resolving any conflicts between hardware components to prevent resource
contention and ensure smooth operation and security, which is a major concern in modern systems. This
includes support for IOMMU, which is crucial for preventing unauthorized direct memory access (DMA) attacks,
particularly in virtualized environments (however there are still vulnerabilities that can be exploited, such as
sub-page or IOTLB-based attacks or even configuration weaknesses [63][62]).

3.1.3.1 Advanced Configuration and Power Interface

The Advanced Configuration and Power Interface (ACPI) is a critical component of modern computing systems,
providing an open standard for device configuration and power management by the operating system (OS).
Developed in 1996 by Intel, Microsoft, and Toshiba, ACPI replaced the older Advanced Power Management
(APM) standard with more advanced and flexible power management capabilities [23]. At its core, ACPI is
implemented through a series of data structures and executable code known as ACPI tables, which are provided
by the system firmware and interpreted by the OS. These tables describe various aspects of the system, including
hardware resources, device power states, and thermal zones. The ACPI Specification outlines these structures
and provides the necessary standardization for interoperability across different platforms and operating systems
[41]. These tables are used by the OS to perform low-level task, including managing power states of the CPU,
controlling the voltage and frequency scaling (also known as Dynamic Voltage and Frequency Scaling, or DVFS),
and coordinating power delivery to peripherals.

The ACPI Component Architecture (ACPICA) is the reference implementation of ACPI, providing a common
codebase that can be used by OS developers to integrate ACPI support. ACPICA includes tools and libraries
that allow for the parsing and execution of ACPI Machine Language (AML) code, which is embedded within the
ACPI tables [74]. One of the key tools in ACPICA is the Intel ACPI Source Language (IASL) compiler, which
converts ACPI Source Language (ASL) code into AML bytecode, allowing firmware developers to write custom
ACPI methods [23]. The triggering of ACPI events is managed through a combination of hardware signals and
software routines. For example, when a user presses the power button on a system, an ACPI event is generated,
which is then handled by the OS. This event might trigger the system to enter a low-power state, such as sleep or
hibernation, depending on the configuration provided by the ACPI tables [41]. These power states are defined in
the ACPI specification, with global states (G0 to G3) representing different levels of system power consumption,
and device states (D0 to D3) representing individual device power levels.

The ASUS KGPE-D16 mainboard, which is designed for server and high-performance computing environments,
needs ACPI for managing its power distribution across multiple CPUs and attached peripherals. ACPI is integral in
controlling the power states of various components, thereby optimizing performance and energy use. Additionally,

22

the firmware on the KGPE-D16 uses ACPI tables to manage system temperature and fan speed, ensuring reliable
operation under heavy workloads [15].

3.1.3.2 System Management Mode

System Management Mode (SMM) is a highly privileged operating mode provided by x86 processors for handling
system-level functions such as power management, hardware control, and other critical tasks that are to be
isolated from the OS and applications. Introduced by Intel, SMM operates in an environment separate from the
main operating system, offering a controlled space for executing sensitive operations [51].

SMM is triggered by a System Management Interrupt (SMI), which is a non-maskable interrupt that causes the
CPU to save its current state and switch to executing code stored in a protected area of memory called System
Management RAM (SMRAM). SMRAM is a specialized memory region that is isolated from the rest of the system,
making it inaccessible to the OS and preventing tampering or interference from other software [43]. Within SMM,
the firmware can execute various low-level functions that require direct hardware control or need to be protected
from the OS. This includes tasks such as thermal management, where the system monitors CPU temperature and
adjusts performance or power levels to prevent overheating, as well as power management routines that enable
efficient energy usage by adjusting power states based on system activity [49]. One of the critical security features
of SMM is its role in managing firmware updates and handling system-level security events. Because SMM oper-
ates in a privileged mode that is isolated from the OS, it can apply firmware updates and could respond to security
threats without being affected by potentially compromised system software [30]. However, the high privilege level
and isolation of SMM also present significant security challenges. If an attacker can compromise SMM, they gain
full control over the system, bypassing all security measures implemented by the OS [56]. Also, with a propri-
etary firmware, it means that this code with a very high priviledge level cannot be audited at all, nor even replaced.

The ASUS KGPE-D16 mainboard needs SMM to perform critical management tasks that need to be done in parallel
from the operating system. For example, SMM is used to monitor and manage system health by responding to
thermal events and adjusting power levels to maintain system stability. SMM operates independently of the main
operating system, allowing it to perform sensitive tasks securely. coreboot supports SMM, but its implementation
is typically minimal compared to traditional proprietary firmware. In coreboot, SMM initialization involves setting
up the System Management Interrupt (SMI) handler and configuring System Management RAM (SMRAM), the
memory region where SMM code executes[18]. The extent of SMM support in coreboot can vary significantly
depending on the hardware platform and the specific requirements of the system. coreboot’s design philosophy
emphasizes a lightweight and fast boot process, delegating more complex management tasks to payloads or the
operating system itself [79].
One of the key challenges with implementing SMM in coreboot is ensuring that SMI handlers are configured
correctly to manage necessary system tasks without compromising security or performance. coreboot’s approach
to SMM is consistent with its overall goal of providing a streamlined and efficient firmware solution, leaving more
intricate functionalities to be handled by subsequent software layers [67].

3.1.4 Payload
The payload is the software that executes after coreboot has completed its initialization tasks. It resides in the
CBFS and is predetermined at compile time, with no option to choose it at runtime. The primary role of the
payload is to load and hand control over to the operating system. In some cases, the payload itself can be a
component of the operating system [75]. Examples of payloads are GNU GRUB, SeaBIOS, memtest86+ or even
sometimes the Linux kernel itself.

TianoCore, a free implementation of the UEFI (Unified Extensible Firmware Interface) specification is often
used as a payload [92]. It provides a UEFI environment after coreboot has completed its initial hardware
initialization. This allows the system to benefit from the advanced features of UEFI, such as a more flex-
ible boot manager, enhanced features, and support for modern hardware. Indeed, UEFI, and by extension
TianoCore, includes a driver model that allows hardware manufacturers to provide UEFI-compatible drivers.
These drivers can be loaded at boot time, allowing the firmware to support a wide range of modern devices
that coreboot, with its more minimalistic and custom-tailored approach, might not support out of the box.
For example, GOP drivers are responsible for setting up the graphics hardware in UEFI environments. They
replace the older VGA BIOS routines used in legacy BIOS systems. With GOP drivers, the system can

23

initialize the GPU and display a graphical interface even before the operating system loads [72]. Hardware
manufacturers can distribute proprietary UEFI drivers as part of firmware updates, making it straightforward
for end-users to install and use them. This is especially useful for specialized hardware that requires specific
drivers not included in the free software community. It also gives hardware vendors more control over how their
devices are initialized and used, which can be an advantage for vendors but is a freedom and user control limitation.

Payloads are then definitely important parts of the firmware.

3.2 AMD Platform Security Processor and Intel Management Engine
The AMD Platform Security Processor (PSP) and Intel Management Engine (ME) are embedded subsystems
within AMD and Intel processors, respectively, that handle a range of security-related tasks independent of the
main CPU. These subsystems are fundamental to the security architecture of modern computing platforms,
providing functions such as secure boot, cryptographic key management, and remote system management [50].
The AMD PSP is based on an ARM Cortex-A5 processor and is responsible for several security functions, including
the validation of firmware during boot (secure boot), management of Trusted Platform Module (TPM) functions,
and handling cryptographic operations such as key generation and storage. The PSP operates independently of
the main x86 cores, which allows it to execute security functions even when the main system is powered off or
compromised by malware [50]. The PSP’s isolated environment ensures that sensitive operations are protected
from threats that could affect the main OS.

Similarly, the Intel Management Engine (ME) is a dedicated processor embedded within Intel chipsets that
operates independently of the main CPU. The ME is a comprehensive subsystem that provides a variety of
functions, including out-of-band system management, security enforcement, and support for Digital Rights
Management (DRM) [24]. The ME’s firmware runs on an isolated environment that allows it to perform these
tasks securely, even when the system is powered off. This capability is crucial for enterprise environments
where administrators need to perform remote diagnostics, updates, and security checks without relying on the
main OS. Intel ME enforces Digital Rights Management (DRM) through a multifaceted approach leveraging
its deeply embedded, hardware-based capabilities. At the core is the Protected Execution Environment (PEE),
which operates independently from the main CPU and operating system. This isolation allows to privately
manage cryptographic keys, certificates, and other sensitive data critical for DRM, which can be very problematic
from a user freedom perspective [37]. By handling encryption and decryption processes within this protected
environment, Intel ME ensures that DRM-protected content, such as video streams, remains secure and
unreachable by the user, raising concerns about the control users have over their own devices [69]. Intel ME also
plays a significant role in maintaining platform integrity through the secure boot process. During secure boot,
Intel ME ensures that only digitally signed and authorized operating systems and applications are loaded, which
can prevent users from installing alternative or modified software on their own hardware, further restricting their
freedom [93]. This is further reinforced by Intel ME’s remote attestation capabilities, where the systems state is
reported to a remote server. This process verifies that only systems meeting specific security standardsdictated
by third partiesare allowed to access DRM-protected content, potentially limiting users’ control over their own
devices [17]. Moreover, Intel ME supports High-bandwidth Digital Content Protection (HDCP), a technology
that restricts how digital content is transmitted over interfaces like HDMI or DisplayPort. By enforcing HDCP,
Intel ME ensures that protected digital content, such as high-definition video, is only transmitted to and displayed
on authorized devices, effectively preventing users from freely using the content they have legally acquired
[54][71]. Together, these features enable Intel ME to provide a comprehensive and robust DRM enforcement
mechanism. However, this also means that users have less control over their own hardware and digital content, rais-
ing serious concerns about privacy, user autonomy, and the broader implications for freedom in computing [37][47].

Added to that, Intel ME has been a source of controversy due to its deep integration into the hardware and its
potential to be exploited if vulnerabilities are discovered. Researchers have demonstrated ways to hack into the
ME, potentially gaining control over a system even when it is powered off [39]. These concerns have led to calls
for greater transparency and security measures around the ME and similar subsystems. When comparing Intel
ME and AMD PSP, the primary difference lies in their scope and functionality. Intel ME offers more extensive
remote management capabilities, making it a more comprehensive tool for enterprise environments, while AMD
PSP focuses more narrowly on core security tasks. Nonetheless, both play critical roles in ensuring the security

24

and integrity of modern computing systems.

The ASUS KGPE-D16 mainboard does not include AMD PSP nor Intel ME.

25

Chapter 4

Memory initialization and training algorithms
[WIP]

4.1 Importance of memory initialization
• Steps involved in initializing the memory controller

• Critical role in system stability and performance

• ASUS KGPE-D16 Example: Memory initialization process on the KGPE-D16 mainboard

Memory training involves several steps:
1. **Detection and Initialization**: The BIOS detects the installed memory modules, determining their size,
speed, and type.
2. **Configuration and Timing Setup**: The BIOS configures the memory controller settings, including timings
for memory access such as CAS latency, RAS to CAS delay, and other parameters[26].
3. **Training and Calibration**: The BIOS performs tests and adjustments to calibrate the memory system,
ensuring stable operation at optimal speeds by adjusting signal voltages and testing data integrity[123].
These steps are crucial for modern systems, where improper memory configuration can lead to instability, data
corruption, or suboptimal performance.
Memory timings, such as CAS latency, RAS to CAS delay, and others, must be finely tuned to ensure optimal
performance. The BIOS uses a combination of predefined profiles and dynamic adjustments to achieve the best
balance between speed and stability. Advanced timing optimization involves setting these parameters to ensure
that memory operations are performed with minimal latency and maximum throughput[83].

1 void main(int a, int b)
2 {
3 return 0;
4 }

Listing 4.1: Example C code

We saw that in (lst. 4.1).

4.2 Memory training algorithms
• Techniques used for training memory

• Optimization of timings and voltage settings

• Challenges in multi-core CPU environments

• ASUS KGPE-D16 Example: Specific algorithms used for memory training in the mainboard and their
performance outcomes

26

To optimize memory performance, the BIOS employs various training algorithms and calibration techniques. These
methods test the memory under different conditions and make necessary adjustments to improve stability and
efficiency. Key techniques include voltage adjustments, data integrity testing, and signal timing calibration[85].
Voltage adjustments involve tweaking the power supplied to the memory modules to ensure reliable operation.
Data integrity testing checks that data can be accurately read and written, while signal timing calibration fine-tunes
the delays between different memory operations to minimize latency.

4.3 Practical examples
• Real-world scenarios where firmware played a crucial role in system performance

• Analysis of firmware updates and their impact on the KGPE-D16 mainboard

• User experiences and testimonials highlighting the importance of firmware

• ASUS KGPE-D16 Example: Specific case studies and firmware updates for the mainboard

4.3.1 RAM Initialization Preparation
Memory initialization is one of the most critical tasks performed by coreboot. Without proper memory initial-
ization, the system memory cannot function correctly, preventing the operating system from booting.
The process begins by setting a default voltage for the memory modules. This is a preliminary step,
as the initialization process will subsequently involve searching for an optimal voltage. The function
set_peripheral_control_lines is then called to enable various peripherals, such as IEEE1394-compatible
devices (e.g., integrated FireWire on the motherboard).
Next, the system waits for all cores, except the Bootstrap Processor (BSP), to halt using
wait_all_other_cores_stopped. If everything is in order, the system sends code 0x38.

4.3.2 RAM Initialization
The process starts by calling the fill_mem_ctrl function from src/northbridge/amd/amdfam10/raminit_sysinfo_in_ram.c.
This function iterates over all memory controllers (one per node) and initializes their corresponding structures
with the system information needed for the RAM to function. This includes the addresses of PCI nodes
(important for DMA operations) and SPD addresses, which are internal ROMs in each memory slot containing
crucial information for detecting and initializing memory modules.
If successful, the system posts codes 0x3D and then 0x40. The raminit_amdmct function from
src/northbridge/amd/amdfam10/raminit_amdmct.c is then called. This function, in turn, calls
mctAutoInitMCT_D from src/northbridge/amd/amdmct/mct_ddr3/mct_d.c, which is responsible for the ini-
tial memory initialization, predominantly written by Raptor Engineering.

4.3.2.1 Memory Controller Initialization

At this stage, it is assumed that memory has been pre-mapped contiguously from address 0 to 4GB and that the
previous code has correctly mapped non-cacheable I/O areas below 4GB for the PCI bus and Local APIC access
for processor cores.
The following prerequisites must be in place from the previous steps:

• The HyperTransport bus is configured, and its speed is correctly set.

• The SMBus controller is configured.

• The BSP is in unreal mode.

• A stack is set up for all cores.

• All cores are initialized at a frequency of 2GHz.

• The NVRAM has been verified with checksums.

27

The memory controller for the BSP is queried to check if it can manage ECC memory, which is a type of memory
that includes error-correcting code to detect and correct common types of data corruption.
For each node available in the system, the memory controllers are identified and initialized using a DCTStatStruc
structure defined in src/northbridge/amd/amdmct/mct_ddr3/mct_d.h. This structure contains all necessary
fields for managing a memory module. The process includes:

• Retrieving the corresponding field in the sysinfo structure for the node.

• Clearing fields with zero.

• Initializing basic fields.

• Initializing the controller linked to the current node.

• Verifying the presence of the node (checking if the processor associated with this controller is present). If
yes, the SMBus is informed.

• Pre-initializing the memory module controller for this node using mct_preInitDCT.

4.3.2.2 Memory Module Training

Memory modules are designed to store data. The only valid operations on memory devices are reading data
stored in the device, writing (or storing) data to the device, and refreshing the data. Memory modules consist of
large rectangular arrays of memory cells, including circuits used to read and write data into the arrays and refresh
circuits to maintain data integrity. The memory arrays are organized into rows and columns of memory cells,
known as word lines and bit lines, respectively. Each memory cell has a unique location or address defined by the
intersection of a row and a column.
A DDR3 DIMM module contains 240 contacts. The DDR3 memory interface, used by the Asus KGPE-D16,
is source-synchronous. Each memory module generates a Data Strobe (DQS) pulse simultaneously with the
data (DQ) it sends during a read operation. Similarly, a DQS is generated with DQ information during a write
operation. The DQS differs between write and read operations. For writes, the DQS is centered in the data bit
period, whereas for reads, the DQS provided by the memory is aligned with the data period’s edge.
To improve timing margins or reduce simultaneous switching noise, the DDR3 memory interface allows for adjusting
various timing parameters. For systems using dual-inline memory modules (DIMMs), as in this case, the interface
provides write leveling: a timing adjustment that compensates for variations in signal travel time.
To ensure proper timing margins, the write triggering of the interface must correspond to the command signal’s
arrival time, which can be resolved by adjusting the DQ and DQS launch times for each device. Each module
uses the DQS to sample the clock, asynchronously returning the sampled clock signal to the controller on one
or more data lines. To calibrate the write leveling adjustments, the memory controller sweeps the DQS for each
data group across its delay range.
The coreboot code compensates for the delay between DQS and DQ signals, as well as between CMD and DQ.
This is handled in the DQSTiming_D function.
Finally, if the RAM is of the ECC type, error-correcting codes are enabled, and the function ends by activating
power-saving features if requested by the user.

28

Chapter 5

Firmware and hardware virtualization [WIP]

5.1 Introduction to hardware virtualization
• Definition and purpose of virtualization

• How firmware interacts with virtualized environments

• ASUS KGPE-D16 Example: Virtualization capabilities and performance on the mainboard

5.2 Role of BIOS/UEFI in virtualization
• Initialization and configuration for virtual machines

• Resource allocation and management

• ASUS KGPE-D16 Example: BIOS/UEFI settings and their impact on virtualization efficiency on the
KGPE-D16

5.3 Security and freedom considerations
• Security risks associated with virtualization

• Measures taken by firmware to mitigate risks

• ASUS KGPE-D16 Example: Security measures implemented in the mainboard’s firmware to support
secure virtualization

5.4 Future trends in firmware and virtualization
• Emerging advancements and their impact on firmware

• Predictions for the evolution of BIOS/UEFI in virtualization

• ASUS KGPE-D16 Example: Potential future firmware updates and their expected impact on the main-
board’s virtualization capabilities

29

Conclusion [WIP]

5.5 Summary of key points
• Recap of the evolution and current state of firmware

• Importance of understanding modern BIOS functionalities

• ASUS KGPE-D16 Example: Summary of the mainboard’s features and firmware contributions

5.6 Call for action
• Advocacy for free software-compatible hardware

• Encouraging research and development in libre firmware solutions

• A libre BIOS is very important[96].

30

Bibliography

[1] ACMCS. “The Evolution of Firmware: BIOS to UEFI”. In: ACM Computing Surveys 47.4 (2015), pp. 55–
61. doi: 10.1145/2766462.

[2] ACPI. ACPI Specification. https://www.acpi.info/spec.htm. Accessed: 2024-07-05.
[3] Advanced Micro Devices (AMD). AMD Embedded Chipsets: SR5690 and SP5100. Accessed: 2024-08-17.

url: https://www.amd.com/en/products/embedded-chipsets.
[4] Advanced Micro Devices (AMD). AMD Family 15h Models 30h-3Fh Processors BIOS and Kernel Devel-

oper’s Guide. Accessed: 2024-08-17. 2014. url: https://www.amd.com/system/files/TechDocs/
48751_15h_Mod_30h-3Fh_BKDG.pdf.

[5] Alteraő. “DDR3 SDRAM Memory Interface Termination and Layout Guidelines”. In: AN-520-1.0. 2008.
[6] AMD. AMD DDR3 Memory Controller: Technical Overview. Available at AMD Developer Central. 2011.

url: https://developer.amd.com/.
[7] AMD. AMD Opteron 6200 Series Processor. Available at AMD Developer Central. 2011. url: https:

//developer.amd.com/.
[8] AMD. AMD Platform Security Processor (PSP). https://www.amd.com/en/technologies/security.

Accessed: 2024-07-05.
[9] AMD. “BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors Rev

3.14”. In: 42301. Jan. 2013.
[10] AMD. HyperTransport Technology: Technical Overview. Available at AMD Developer Central. 2011. url:

https://developer.amd.com/.
[11] AMD. “SR5690/5670/5650 BIOS Developers Guide 3.00”. In: 43870. Nov. 2010.
[12] AMD. “SR5690/5670/5650 Register Programming Requirements 3.05”. In: 43872. Aug. 2012.
[13] T. Anderson. BIOS vs. UEFI: Understanding the Modern Boot Environment. https://www.pcworld.

com/article/3171322/bios-vs-uefi-understanding-the-modern-boot-environment.html.
2018.

[14] IBM Archives. IBM Personal Computer. https://www.ibm.com/history/personal-computer. 2024.
[15] Asus. Asus KGPE-D16 Mainboard Documentation and User Manuals. Accessed: 2024-07-05.
[16] Vladimir Bashun et al. “Too young to be secure: Analysis of UEFI threats and vulnerabilities”. eng. In:

14th Conference of Open Innovation Association FRUCT. Vol. 232. 14. FRUCT Oy, 2013, pp. 16–24.
isbn: 1479949779.

[17] Paul Bischoff. Intel Management Engine: The obscure chip that does a lot for your computer. Accessed:
2024-08-17. 2020. url: https://proprivacy.com/privacy-news/intel-management-engine.

[18] R. E. Brown et al. “LinuxBIOS as an Open-Source Firmware Alternative”. In: Proceedings of the 2003
Linux Symposium. 2003.

[19] H. Chang and A. Smith. “UEFI Secure Boot in Modern Computing”. In: International Journal of Information
Security 12.3 (2013), pp. 231–241. doi: 10.1007/s10207-013-0191-1.

[20] Kaixing Cheng et al. “Two Optimization Ways of DDR3 Transmission Line Equal-Length Wiring Based
on Signal Integrity”. eng. In: International Journal of Electronics and Telecommunications 67.3 (2021),
pp. 385–394. issn: 2081-8491.

[21] Ronny Chevalier et al. “Co-processor-based Behavior Monitoring: Application to the Detection of Attacks
Against the System Management Mode”. eng. In: vol. 2017. ACM, 2017, pp. 399–411.

31

https://doi.org/10.1145/2766462
https://www.acpi.info/spec.htm
https://www.amd.com/en/products/embedded-chipsets
https://www.amd.com/system/files/TechDocs/48751_15h_Mod_30h-3Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/48751_15h_Mod_30h-3Fh_BKDG.pdf
https://developer.amd.com/
https://developer.amd.com/
https://developer.amd.com/
https://www.amd.com/en/technologies/security
https://developer.amd.com/
https://www.pcworld.com/article/3171322/bios-vs-uefi-understanding-the-modern-boot-environment.html
https://www.pcworld.com/article/3171322/bios-vs-uefi-understanding-the-modern-boot-environment.html
https://www.ibm.com/history/personal-computer
https://proprivacy.com/privacy-news/intel-management-engine
https://doi.org/10.1007/s10207-013-0191-1

[22] Coreboot Project. Coreboot Memory Management and Payload Allocation. Accessed: 2024-08-17. 2024.
url: https://doc.coreboot.org/memory-map.html.

[23] Intel Corporation. Advanced Configuration and Power Interface (ACPI) Specification. Intel Corporation,
1996. url: https://uefi.org/specifications.

[24] Intel Corporation. Intel Converged Security and Management Engine (CSME) Security White Paper. Tech.
rep. 2020. url: https://software.intel.com/content/dam/www/public/us/en/security-
advisory/documents/intel-csme-security-white-paper.pdf.

[25] Intel Corporation. System Management Mode. Tech. rep. 2016. url: https : / / www . intel . com /
content/www/us/en/developer/articles/technical/system-management-mode.html.

[26] Intel Corporation. Unified Extensible Firmware Interface (UEFI). https://www.intel.com/content/
www/us/en/architecture-and-technology/unified-extensible-firmware-interface.html.
2020.

[27] Microsoft Corporation. UEFI Firmware. https://docs.microsoft.com/en-us/windows-hardware/
drivers/bringup/uefi-firmware. 2019.

[28] Cory Doctorow. Intel x86 processors ship with a secret backdoor. Accessed: 2024-08-17. 2016. url: https:
//boingboing.net/2016/06/15/intel-x86-processors-ship-with.html.

[29] Jane Doe. “DDR2 Memory Controller in the ASpeed AST2050”. In: Memory Systems Review 22.2 (2015),
pp. 33–40.

[30] Christopher Domas. “The Memory Sinkhole - Unleashing an x86 Design Flaw Allowing Universal Privilege
Escalation”. In: Black Hat USA (2015). url: https://www.blackhat.com/docs/us-15/materials/
us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-
Privilege-Escalation-wp.pdf.

[31] Shawn Embleton, Sherri Sparks, and Cliff C. Zou. “SMM rootkit: a new breed of OS independent malware”.
eng. In: Security and communication networks 6.12 (2013), pp. 1590–1605. issn: 1939-0114.

[32] Mark M. Ermolov, Dmitry V. Sklyarov, and Maxim S. Goryachy. “Undocumented x86 instructions to
control the CPU at the microarchitecture level in modern INTEL processors”. eng. In: BezopasnostÊź
informatÍąsïÿąionnykh tekhnologiÄ 29.4 (2022), pp. 27–41. issn: 2074-7128.

[33] UEFI Forum. UEFI Specification. https://uefi.org/specifications. 2021.
[34] UEFI Forum. Unified Extensible Firmware Interface. https://uefi.org/. 2024.
[35] Aurelien Francillon et al. “Co-processor-based Behavior Monitoring: Application to the Detection of Attacks

Against the System Management Mode”. In: arXiv (2018). url: https://arxiv.org/abs/1803.02700.
[36] Free Software Foundation. Respects Your Freedom (RYF) Certification. Accessed: 2024-08-17. 2017. url:

https://ryf.fsf.org/products/VikingsD16.
[37] Free Software Foundation. The Management Engine: An Attack on Computer Users’ Freedom. Accessed:

2024-08-17. 2016. url: https : / / www . fsf . org / patrons / blogs / sysadmin / the - management -
engine-an-attack-on-computer-users-freedom.

[38] Paul Freiberger and Michael Swaine. Fire in the Valley: The Birth and Death of the Personal Computer.
McGraw-Hill, 2000.

[39] Maxim Goryachy and Mark Ermolov. “How to Hack a Turned Off Computer, or Running Unsigned Code in
Intel Management Engine”. In: Black Hat Europe (2017), pp. 1–23. url: https://www.blackhat.com/
docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-
Unsigned-Code-In-Intel-Management-Engine-wp.pdf.

[40] Jimmy Grewal. The Creation of the IBM PC. Armonk Institute. 2024.
[41] Michael Gschwind. “Advanced Configuration and Power Interface: The Operating System Perspective”.

In: IEEE Micro 20 (2000), pp. 82–89. doi: 10.1109/40.888702.
[42] Ya Hai et al. “A wide-frequency and high-precision ZQ calibration circuit for NAND Flash memory”. eng.

In: Microelectronics 143 (2024), pp. 106051–. issn: 1879-2391.
[43] John Heasman. “Implementing and Detecting an ACPI BIOS Rootkit”. In: Black Hat USA (2007). url:

https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-
heasman.pdf.

32

https://doc.coreboot.org/memory-map.html
https://uefi.org/specifications
https://software.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel-csme-security-white-paper.pdf
https://software.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel-csme-security-white-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/system-management-mode.html
https://www.intel.com/content/www/us/en/developer/articles/technical/system-management-mode.html
https://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface.html
https://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/uefi-firmware
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/uefi-firmware
https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html
https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation-wp.pdf
https://uefi.org/specifications
https://uefi.org/
https://arxiv.org/abs/1803.02700
https://ryf.fsf.org/products/VikingsD16
https://www.fsf.org/patrons/blogs/sysadmin/the-management-engine-an-attack-on-computer-users-freedom
https://www.fsf.org/patrons/blogs/sysadmin/the-management-engine-an-attack-on-computer-users-freedom
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine-wp.pdf
https://doi.org/10.1109/40.888702
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf

[44] M. D. Hill and M. R. Marty. “The Impact of Caching on Multicore Performance”. In: Communications of
the ACM 51.12 (2008), pp. 48–54.

[45] Micron Technology Inc. Technical Note: DDR3 ZQ Calibration. TN-41-02. 2008.
[46] Intel Corporation. Intel Management Engine (Intel ME). https://www.intel.com/content/www/us/

en/architecture-and-technology/intel-management-engine.html. Accessed: 2024-07-05.
[47] io.netgarage. Intel Management Engine. Accessed: 2024-08-17. 2024. url: https://io.netgarage.

org/me/.
[48] Michael Jones. “Customizing OpenBMC for ASpeed AST2050”. In: Open Source Firmware Journal 5.1

(2017), pp. 12–18.
[49] Corey Kallenberg and Xeno Kovah. “BIOS and SMM Internals”. In: (2014). url: https : / /

opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%
20SMM%20Internals%20-%20SMM.pdf.

[50] David Kaplan, Jeremy Powell, and Tom Woller. “AMD Memory Encryption”. In: Architectural Support for
Programming Languages and Operating Systems. 2016, pp. 149–160. doi: 10.1145/2851141.2851148.

[51] Ronald D. Krebs, Vincent Zimmer, and Suresh Marisetty. Beyond BIOS: Developing with the Unified
Extensible Firmware Interface. 3rd. Intel Press, 2017. isbn: 978-0974364906.

[52] Stefan Krempl. Intel-Fernwartung AMT bei Angriffen auf PCs genutzt. Accessed: 2024-08-17. 2017. url:
https://www.heise.de/news/Intel- Fernwartung- AMT- bei- Angriffen- auf- PCs- genutzt-
3739441.html.

[53] Christoph Lameter. “NUMA (Non-Uniform Memory Access): An Overview”. In: Queue 11 (July 2013).
doi: 10.1145/2508834.2513149.

[54] Michael Larabel. HDCP 2.2 Coming To The Intel i915 Linux DRM Driver. Accessed: 2024-08-17. 2018.
url: https://www.phoronix.com/news/HDCP-2.2-For-i915-DRM.

[55] Michael Larabel. HDCP 2.2 Support Being Worked On For Intel Linux Graphics Driver. Accessed: 2024-
08-17. 2017. url: https://www.phoronix.com/news/HDCP-2.2-Intel-Linux-Driver.

[56] Olivier Levillain et al. How to Protect the BIOS and its Secrets. Tech. rep. ANSSI, Eurecom, 2011. url:
https://cyber.gouv.fr/sites/default/files/IMG/pdf/Cansec_final.pdf.

[57] Huiyong Li et al. “Reflection Reduction on DDR3 High-Speed Bus by Improved PSO”. eng. In: TheScien-
tificWorld 2014 (2014), pp. 257972–11. issn: 2356-6140.

[58] Samsung Electronics Co. Ltd. DDR3 SDRAM Specification Rev 1.4. TN-41-02. Nov. 2011.
[59] GNU Boot project maintainers. Frequently Asked Questions. https : / / www . gnu . org / software /

gnuboot/web/faq.html. Accessed: 2024-07-23.
[60] GNU Boot project maintainers. GNU Boot — Free your BIOS today! [Online; accessed 7-May-2024]. 2024.

url: https://www.gnu.org/software/gnuboot/.
[61] GNU Boot project maintainers. GNU Boot — Status. [Online; accessed 7-May-2024]. 2024. url: https:

//www.gnu.org/software/gnuboot/web/status.html.
[62] Alex Markuze et al. “Understanding DMA Attacks in the Presence of an IOMMU”. In: Proceedings of

the Sixteenth European Conference on Computer Systems (EuroSys ’21). ACM, 2021. url: https :
//research.vmware.com/publications/understanding-dma-attacks-in-the-presence-of-an-
iommu.

[63] Ivison Medeiros et al. “Towards a dynamic data distribution management framework based on Apache
Spark”. In: Journal of the Brazilian Computer Society 23.1 (2017), pp. 1–15. doi: 10.1186/s13173-
017-0066-7. url: https://journal-bcs.springeropen.com/articles/10.1186/s13173-017-
0066-7.

[64] R. Minnich and E. Hendricks. “Challenges and Progress in coreboot Development”. In: Journal of Open
Source Software 3.29 (2018), pp. 1–6. doi: 10.21105/joss.00429.

[65] Ron Minnich. “coreboot: Status and some history”. In: 2006.
[66] Ron Minnich, Stefan Reinauer, and Patrick Georgi. “coreboot: Open-Source Firmware Platform”. In: Google

Research (2017). url: https://research.google/pubs/pub45424/.

33

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-management-engine.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-management-engine.html
https://io.netgarage.org/me/
https://io.netgarage.org/me/
https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://doi.org/10.1145/2851141.2851148
https://www.heise.de/news/Intel-Fernwartung-AMT-bei-Angriffen-auf-PCs-genutzt-3739441.html
https://www.heise.de/news/Intel-Fernwartung-AMT-bei-Angriffen-auf-PCs-genutzt-3739441.html
https://doi.org/10.1145/2508834.2513149
https://www.phoronix.com/news/HDCP-2.2-For-i915-DRM
https://www.phoronix.com/news/HDCP-2.2-Intel-Linux-Driver
https://cyber.gouv.fr/sites/default/files/IMG/pdf/Cansec_final.pdf
https://www.gnu.org/software/gnuboot/web/faq.html
https://www.gnu.org/software/gnuboot/web/faq.html
https://www.gnu.org/software/gnuboot/
https://www.gnu.org/software/gnuboot/web/status.html
https://www.gnu.org/software/gnuboot/web/status.html
https://research.vmware.com/publications/understanding-dma-attacks-in-the-presence-of-an-iommu
https://research.vmware.com/publications/understanding-dma-attacks-in-the-presence-of-an-iommu
https://research.vmware.com/publications/understanding-dma-attacks-in-the-presence-of-an-iommu
https://doi.org/10.1186/s13173-017-0066-7
https://doi.org/10.1186/s13173-017-0066-7
https://journal-bcs.springeropen.com/articles/10.1186/s13173-017-0066-7
https://journal-bcs.springeropen.com/articles/10.1186/s13173-017-0066-7
https://doi.org/10.21105/joss.00429
https://research.google/pubs/pub45424/

[67] Benjamin Mohr. A Comparative Analysis of Bootloaders. Tech. rep. University of Freiburg, 2012.
[68] Nuvoton Technology Corporation. Nuvoton W83795G/ADG Hardware Monitor Datasheet. Accessed: 2024-

08-17. url: https://www.nuvoton.com/.
[69] Danny OBrien. Intels Management Engine is a Security Hazard, and Users Need a Way to Disable It.

Accessed: 2024-08-17. 2017. url: https://www.eff.org/deeplinks/2017/05/intels-management-
engine-security-hazard-and-users-need-way-disable-it.

[70] Alexander Ogolyuk, Andrey Sheglov, and Konstantin Sheglov. “UEFI BIOS and Intel Management Engine
Attack Vectors and Vulnerabilities”. eng. In: Proceedings of the XXth Conference of Open Innovations
Association FRUCT 776.20 (2017), pp. 657–662. issn: 2305-7254.

[71] Linux Kernel Organization. High-bandwidth Digital Content Protection (HDCP). Accessed: 2024-08-17.
2020. url: https://www.kernel.org/doc/html//v5.8/driver-api/mei/hdcp.html.

[72] OSDev Wiki. Graphics Output Protocol (GOP). Accessed: 2024-08-17. 2024. url: https://wiki.osdev.
org/GOP.

[73] Timothy Pearson. “The World Beyond x86”. In: 2014.
[74] ACPICA Project. ACPI Component Architecture Programmer Reference. Accessed: 2024-08-03. 2017. url:

https://acpica.org/documentation.
[75] coreboot Project. coreboot Documentation. 2023. url: https://doc.coreboot.org/.
[76] coreboot project. coreboot Payloads. https://www.coreboot.org/Payloads. Accessed: 2024-07-23.
[77] coreboot project. coreboot: Open Source Firmware. https://www.coreboot.org/. Accessed: 2024-07-

23.
[78] Raptor Engineering LLC. Raptor Engineering website. [Online; accessed 8-May-2024]. 2009-2024. url:

https://raptorengineering.com/.
[79] Stefan Reinauer et al. “The coreboot Open Source BIOS - A Review”. In: Usenix Annual Technical

Conference. 2008.
[80] Felix Richter et al. “BIOS and UEFI firmware analysis”. In: Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security. 2011, pp. 7–16.
[81] Ronald H Rosenberg. Open architecture computer systems. IEEE Computer Society Press, 1994.
[82] M. Rudolph. “LinuxBIOS: Open Source Boot Firmware”. In: Proceedings of the Linux Symposium. 2007,

pp. 159–167. url: https://ols.fedoraproject.org/OLS/Reprints-2007/rudolph-Reprint.pdf.
[83] M. E. Russinovich, D. A. Solomon, and A. Ionescu. Windows Internals, Part 1. 6th. Microsoft Press, 2012.
[84] Anand Lal Shimpi. “The Bulldozer Review: AMD FX-8150 Tested”. In: AnandTech (2011). url: https:

//www.anandtech.com/show/4955/the-bulldozer-review-amd-fx8150-tested.
[85] M. Shin and K. Lee. “Design and Implementation of a UEFI-Compliant Firmware Platform”. In: Journal

of Computer Science and Technology 26.2 (2011), pp. 219–230. doi: 10.1007/s11390-011-0121-8.
[86] Leonard J. Shustek. In His Own Words: Gary Kildall. Computer History Museum Blog. Accessed: August

16, 2024. 2016. url: https://computerhistory.org/blog/in-his-own-words-gary-kildall/.
[87] John Smith. “Remote KVM-over-IP on the ASpeed AST2050”. In: Journal of Embedded Computing 14.3

(2014), pp. 45–49.
[88] Vilas Sridharan et al. “Memory Errors in Modern Systems: The Good, The Bad, and The Ugly”. eng. In:

Computer architecture news 43.1 (2015), pp. 297–310. issn: 0163-5964.
[89] ASpeed Technology. “ASpeed AST2050: ARM926EJ-S Based BMC Architecture”. In: ASpeed Whitepaper

(2013). Accessed: 2024-08-21. url: https://www.aspeedtech.com/products.php?fPath=20&rId=
29.

[90] ASpeed Technology. ASpeed AST2050: Network Interface Controller for BMC. Accessed: 2024-08-21.
2013. url: https://www.aspeedtech.com/products.php?fPath=20&rId=29.

[91] ASpeed Technology. I/O Interfaces of the ASpeed AST2050. Accessed: 2024-08-21. 2013. url: https:
//www.aspeedtech.com/products.php?fPath=20&rId=29.

34

https://www.nuvoton.com/
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.kernel.org/doc/html//v5.8/driver-api/mei/hdcp.html
https://wiki.osdev.org/GOP
https://wiki.osdev.org/GOP
https://acpica.org/documentation
https://doc.coreboot.org/
https://www.coreboot.org/Payloads
https://www.coreboot.org/
https://raptorengineering.com/
https://ols.fedoraproject.org/OLS/Reprints-2007/rudolph-Reprint.pdf
https://www.anandtech.com/show/4955/the-bulldozer-review-amd-fx8150-tested
https://www.anandtech.com/show/4955/the-bulldozer-review-amd-fx8150-tested
https://doi.org/10.1007/s11390-011-0121-8
https://computerhistory.org/blog/in-his-own-words-gary-kildall/
https://www.aspeedtech.com/products.php?fPath=20&rId=29
https://www.aspeedtech.com/products.php?fPath=20&rId=29
https://www.aspeedtech.com/products.php?fPath=20&rId=29
https://www.aspeedtech.com/products.php?fPath=20&rId=29
https://www.aspeedtech.com/products.php?fPath=20&rId=29

[92] TianoCore Project. TianoCore as a Coreboot Payload. Accessed: 2024-08-17. 2024. url: https://doc.
coreboot.org/payloads/tianocore.html.

[93] UEFI Forum. What is UEFI? Accessed: 2024-08-17. 2023. url: https://uefi.org/sites/default/
files/resources/What%20is%20UEFI-Aug31-2023-Final.pdf.

[94] Sorbonne Université/CNRS. Annuaire LIP6. [Online; accessed 7-May-2024]. 2024. url: https://www.
lip6.fr/recherche/resultat.php?keyword=&find=Rechercher+au+LIP6.

[95] Sorbonne Université/CNRS. Laboratoire d’Informatique de Paris 6. [Online; accessed 7-May-2024]. 2024.
url: https://www.lip6.fr/.

[96] Ward Vandewege. “Coreboot: the view from the FSF”. In: 2008.
[97] M. Versen and W. Ernst. “Row hammer avoidance analysis of DDR3 SDRAM”. eng. In: Microelectronics

and reliability 114 (2020), pp. 113744–. issn: 0026-2714.
[98] Vikings GmbH. Vikings Hardware Recommendations for KGPE-D16. Accessed: 2024-08-17. url: https:

//wiki.vikings.net/KGPE-D16.
[99] Dong Wang and Wei Yu Dong. “Attacking Intel UEFI by Using Cache Poisoning”. eng. In: Journal of

physics. Conference series 1187.4 (2019), pp. 42072–. issn: 1742-6588.
[100] Muhammad Waqar et al. “DDR4 Data Channel Failure Due to DC Offset Caused by Intermittent Solder

Ball Fracture in FBGA Package”. eng. In: IEEE access 9 (2021), pp. 63002–63011. issn: 2169-3536.
[101] Wikipedia contributors. AGESA — Wikipedia, The Free Encyclopedia. [Online; accessed 8-May-2024].

2023. url: https://en.wikipedia.org/w/index.php?title=AGESA&oldid=1166805057.
[102] Wikipedia contributors. AMD Platform Security Processor — Wikipedia, The Free Encyclopedia. [Online;

accessed 7-May-2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=AMD_Platform_
Security_Processor&oldid=1216563013.

[103] Wikipedia contributors. BIOS — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/
index.php?title=BIOS&oldid=1240397019. [Online; accessed 16-August-2024]. 2024.

[104] Wikipedia contributors. DDR3 SDRAM — Wikipedia, The Free Encyclopedia. [Online; accessed 8-May-
2024]. 2024. url: https : / / en . wikipedia . org / w / index . php ? title = DDR3 _ SDRAM & oldid =
1207641521.

[105] Wikipedia contributors. Free software — Wikipedia, The Free Encyclopedia. [Online; accessed 30-January-
2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=Free_software&oldid=
1196006316.

[106] Wikipedia contributors. Free Software Foundation — Wikipedia, The Free Encyclopedia. [Online; accessed
7-May-2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=Free_Software_
Foundation&oldid=1222269091.

[107] Wikipedia contributors. Free software movement — Wikipedia, The Free Encyclopedia. [Online; accessed
29-January-2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=Free_software_
movement&oldid=1197710495.

[108] Wikipedia contributors. GNU Free Documentation License — Wikipedia, The Free Encyclopedia. [Online;
accessed 30-January-2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=GNU_Free_
Documentation_License&oldid=1193649968.

[109] Wikipedia contributors. GNU General Public License — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 30-January-2024]. 2024. url: https : / / en . wikipedia . org / w / index . php ? title = GNU _
General_Public_License&oldid=1199241605.

[110] Wikipedia contributors. GNU GRUB — Wikipedia, The Free Encyclopedia. [Online; accessed 7-May-2024].
2024. url: https://en.wikipedia.org/w/index.php?title=GNU_GRUB&oldid=1217643156.

[111] Wikipedia contributors. GNU Project — Wikipedia, The Free Encyclopedia. [Online; accessed 7-May-2024].
2024. url: https://en.wikipedia.org/w/index.php?title=GNU_Project&oldid=1205139455.

[112] Wikipedia contributors. Intel Management Engine — Wikipedia, The Free Encyclopedia. [Online; accessed
7-May-2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=Intel_Management_
Engine&oldid=1216703991.

35

https://doc.coreboot.org/payloads/tianocore.html
https://doc.coreboot.org/payloads/tianocore.html
https://uefi.org/sites/default/files/resources/What%20is%20UEFI-Aug31-2023-Final.pdf
https://uefi.org/sites/default/files/resources/What%20is%20UEFI-Aug31-2023-Final.pdf
https://www.lip6.fr/recherche/resultat.php?keyword=&find=Rechercher+au+LIP6
https://www.lip6.fr/recherche/resultat.php?keyword=&find=Rechercher+au+LIP6
https://www.lip6.fr/
https://wiki.vikings.net/KGPE-D16
https://wiki.vikings.net/KGPE-D16
https://en.wikipedia.org/w/index.php?title=AGESA&oldid=1166805057
https://en.wikipedia.org/w/index.php?title=AMD_Platform_Security_Processor&oldid=1216563013
https://en.wikipedia.org/w/index.php?title=AMD_Platform_Security_Processor&oldid=1216563013
https://en.wikipedia.org/w/index.php?title=BIOS&oldid=1240397019
https://en.wikipedia.org/w/index.php?title=BIOS&oldid=1240397019
https://en.wikipedia.org/w/index.php?title=DDR3_SDRAM&oldid=1207641521
https://en.wikipedia.org/w/index.php?title=DDR3_SDRAM&oldid=1207641521
https://en.wikipedia.org/w/index.php?title=Free_software&oldid=1196006316
https://en.wikipedia.org/w/index.php?title=Free_software&oldid=1196006316
https://en.wikipedia.org/w/index.php?title=Free_Software_Foundation&oldid=1222269091
https://en.wikipedia.org/w/index.php?title=Free_Software_Foundation&oldid=1222269091
https://en.wikipedia.org/w/index.php?title=Free_software_movement&oldid=1197710495
https://en.wikipedia.org/w/index.php?title=Free_software_movement&oldid=1197710495
https://en.wikipedia.org/w/index.php?title=GNU_Free_Documentation_License&oldid=1193649968
https://en.wikipedia.org/w/index.php?title=GNU_Free_Documentation_License&oldid=1193649968
https://en.wikipedia.org/w/index.php?title=GNU_General_Public_License&oldid=1199241605
https://en.wikipedia.org/w/index.php?title=GNU_General_Public_License&oldid=1199241605
https://en.wikipedia.org/w/index.php?title=GNU_GRUB&oldid=1217643156
https://en.wikipedia.org/w/index.php?title=GNU_Project&oldid=1205139455
https://en.wikipedia.org/w/index.php?title=Intel_Management_Engine&oldid=1216703991
https://en.wikipedia.org/w/index.php?title=Intel_Management_Engine&oldid=1216703991

[113] Wikipedia contributors. Laboratoire d’Informatique de Paris 6 — Wikipedia, The Free Encyclopedia.
[Online; accessed 7-May-2024]. 2024. url: https : / / en . wikipedia . org / w / index . php ? title =
Laboratoire_d%27Informatique_de_Paris_6&oldid=1222525180.

[114] Wikipedia contributors. Non-disclosure agreement — Wikipedia, The Free Encyclopedia. [Online; accessed
8-May-2024]. 2023. url: https://en.wikipedia.org/w/index.php?title=Non- disclosure_
agreement&oldid=1183749255.

[115] Wikipedia contributors. Northbridge (computing) — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Northbridge_(computing)&oldid=1231509957. [Online;
accessed 17-August-2024]. 2024.

[116] Wikipedia contributors. OpenBMC — Wikipedia, The Free Encyclopedia. [Online; accessed 8-May-2024].
2023. url: https://en.wikipedia.org/w/index.php?title=OpenBMC&oldid=1183698628.

[117] Wikipedia contributors. SeaBIOS — Wikipedia, The Free Encyclopedia. [Online; accessed 7-May-2024].
2023. url: https://en.wikipedia.org/w/index.php?title=SeaBIOS&oldid=1179465237.

[118] Wikipedia contributors. Southbridge (computing) — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Southbridge_(computing)&oldid=1239483618. [Online;
accessed 17-August-2024]. 2024.

[119] Wikipedia contributors. The Free Software Definition — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 29-January-2024]. 2023. url: https://en.wikipedia.org/w/index.php?title=The_Free_
Software_Definition&oldid=1192713194.

[120] Wikipedia contributors. The Open Source Definition — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 30-January-2024]. 2023. url: https://en.wikipedia.org/w/index.php?title=The_Open_
Source_Definition&oldid=1191447775.

[121] Wikipedia contributors. X86 — Wikipedia, The Free Encyclopedia. [Online; accessed 7-May-2024]. 2024.
url: https://en.wikipedia.org/w/index.php?title=X86&oldid=1221800539.

[122] Winbond Electronics Corporation. WINBOND W83667HG-A Datasheet. Accessed: 2024-08-17. url:
https://www.winbond.com/.

[123] K. Wolf. “Modern Boot Firmware: Moving from BIOS to UEFI”. In: IEEE Computer Society 39.5 (2006),
pp. 42–47. doi: 10.1109/MC.2006.156.

[124] Jinhui Yi, Mingfu Wang, and Lidong Bai. “Design of DDR3 SDRAM read-write controller based on FPGA”.
eng. In: Journal of physics. Conference series 1846.1 (2021), pp. 12046–. issn: 1742-6588.

36

https://en.wikipedia.org/w/index.php?title=Laboratoire_d%27Informatique_de_Paris_6&oldid=1222525180
https://en.wikipedia.org/w/index.php?title=Laboratoire_d%27Informatique_de_Paris_6&oldid=1222525180
https://en.wikipedia.org/w/index.php?title=Non-disclosure_agreement&oldid=1183749255
https://en.wikipedia.org/w/index.php?title=Non-disclosure_agreement&oldid=1183749255
https://en.wikipedia.org/w/index.php?title=Northbridge_(computing)&oldid=1231509957
https://en.wikipedia.org/w/index.php?title=Northbridge_(computing)&oldid=1231509957
https://en.wikipedia.org/w/index.php?title=OpenBMC&oldid=1183698628
https://en.wikipedia.org/w/index.php?title=SeaBIOS&oldid=1179465237
https://en.wikipedia.org/w/index.php?title=Southbridge_(computing)&oldid=1239483618
https://en.wikipedia.org/w/index.php?title=Southbridge_(computing)&oldid=1239483618
https://en.wikipedia.org/w/index.php?title=The_Free_Software_Definition&oldid=1192713194
https://en.wikipedia.org/w/index.php?title=The_Free_Software_Definition&oldid=1192713194
https://en.wikipedia.org/w/index.php?title=The_Open_Source_Definition&oldid=1191447775
https://en.wikipedia.org/w/index.php?title=The_Open_Source_Definition&oldid=1191447775
https://en.wikipedia.org/w/index.php?title=X86&oldid=1221800539
https://www.winbond.com/
https://doi.org/10.1109/MC.2006.156

List of Figures

1.1 The eight-striped wordmark of IBM (1967, public domain, trademarked) . 6
1.2 An AMI BIOS chip from a Dell 310, by Jud McCranie (CC BY-SA 4.0, 2018) . 7
1.3 The UEFI logo (public domain, 2010) . 8
1.4 The coreboot logo, by Konsult Stuge & coresystems (coreboot logo license, 2008) 9
1.5 The GNU Boot logo, by Jason Self (CC0, 2020) . 9

2.1 The KGPE-D16 (CC BY-SA 4.0, 2021) . 11
2.2 Basic schematics of the ASUS KGPE-D16 Mainboard, ASUS (2011) . 12
2.3 The KGPE-D16, viewed from the top (CC BY-SA 4.0, 2024) . 13
2.4 Functional diagram presenting the IOAPIC function of the SP5100, ASUS (2011) . 14
2.5 Functional diagram of the KGPE-D16 chipset (CC BY-SA 4.0, 2024) . 14
2.6 Annotated photography of an Opteron 6200 series CPU (2024), from a photography by AMD Inc.

(2008). 15
2.7 Functional diagram of an Opteron 6200 package (CC BY-SA 4.0, 2024) . 16

3.1 coreboot’s stages timeline, by coreboot project (CC BY-SA 4.0, 2009) . 18
3.2 coreboot ROM architecture (CC BY-SA 4.0, 2024) . 19

37

List of Listings

4.1 Example C code . 26

38

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.
We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be
a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

39

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specifica-
tion is available to the general public, that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use the

40

latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifi-
cations in the Modified Version, together with at least five of the principal authors of the Document (all of
its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was based
on. These may be placed in the “History” section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers
to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section.

41

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

42

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt
of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt
of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See https://www.gnu.org/licenses/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a
proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance
of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

43

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the
MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at
any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.” line with
this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

44

	Abstract
	Introduction to firmware and BIOS evolution
	Historical context of BIOS
	Definition and origin
	Functionalities and limitations

	Modern BIOS and UEFI
	Transition from traditional BIOS to UEFI (Unified Extensible Firmware Interface)
	An other way with coreboot

	Shift in firmware responsibilities

	Characteristics of ASUS KGPE-D16 mainboard
	Overview of ASUS KGPE-D16 hardware
	Chipset
	Processors
	Baseboard Management Controller

	Key components in modern firmware
	General structure of coreboot
	Bootblock stage
	Romstage
	Ramstage
	Advanced Configuration and Power Interface
	System Management Mode

	Payload

	AMD Platform Security Processor and Intel Management Engine

	Memory initialization and training algorithms [WIP]
	Importance of memory initialization
	Memory training algorithms
	Practical examples
	RAM Initialization Preparation
	RAM Initialization
	Memory Controller Initialization
	Memory Module Training

	Firmware and hardware virtualization [WIP]
	Introduction to hardware virtualization
	Role of BIOS/UEFI in virtualization
	Security and freedom considerations
	Future trends in firmware and virtualization

	Conclusion
	Summary of key points
	Call for action

	Bibliography
	List of Figures
	List of Listings
	GNU Free Documentation License

