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Abstract

The global trend is towards the scarcity of free software-compatible hardware, and soon there will be no computer
that will work without software domination by big companies, especially involving firmware like BIOSes.

A Basic Input Output System (BIOS) was originally a set of low-level functions contained in the read-only memory
of a computer’'s mainboard, enabling it to perform basic operations when powered up. However, the definition
of a BIOS has evolved to include what used to be known as Power On Self Test (POST) for the presence of
peripherals, allocating resources for them to avoid conflicts, and then handing over to an operating system boot
loader. Nowadays, the bulk of the BIOS work is the initialization and training of RAM. This means, for example,
initializing the memory controller and optimizing timing and read/write voltage for optimal performance, making
the code complex, as its role is to optimize several parallel buses operating at high speeds and shared by many
CPU cores, and make them act as a homogeneous whole.

This document is the product of a project hosted by the LIP6 laboratory and supported by the GNU Boot Project
and the Free Software Foundation. |t delves into the importance of firmware in the hardware initialization of mod-
ern computers and explores various aspects of firmware, such as Intel Management Engine (ME), AMD Platform
Security Processor (PSP), Advanced Configuration and Power Interface (ACPI), and System Management Mode
(SMM). Additionally, it provides an in-depth look at memory initialization and training algorithms, highlighting
their critical role in system stability and performance. Examples of the implementation in the ASUS KGPE-D16
mainboard are presented, describing its hardware characteristics, topology, and the crucial role of firmware in its
operation after the mainboard architecture is examined. Practical examples illustrate the impact of firmware on
hardware initialization, memory optimization, resource allocation, power management, and security. Specific algo-
rithms used for memory training and their outcomes are analyzed to demonstrate the complexity and importance of
firmware in achieving optimal system performance. Furthermore, this document explores the relationship between
firmware and hardware virtualization. Security considerations and future trends in firmware development are also
addressed, emphasizing the need for continued research and advocacy for free software-compatible hardware.



Contents

Acknowledgments
Abstract

Contents

List of Figures

List of Listings

1 Introduction to firmware and BIOS evolution

1.1 Historical context of BIOS .. ..
1.1.1 Definition and origin . ... ...
1.1.2 Functionalities and limitations. ... ... ..o

1.2 Modern BIOS and UEFI ... .. o e
121 Transition from traditional BIOS to UEFI (Unified Extensible Firmware Interface) .................
1.2.2 An other way with COreboot . .. ... ...

1.3 Shift in firmware responsibilities ...... ... ..

2 Characteristics of ASUS KGPE-D16 mainboard

2.1 Overview of ASUS KGPE-D16 hardware ........ ... i

2.2 G DSt .

2.3 PO CESSONS . .

2.4 Baseboard Management Controller. ... .. ... .. .

3 Key components in modern firmware

3.1 General structure of COrebOOt. ... .. .
3.1.1 Boothlock ...
3.1.2 ROMIS A ..ttt e
3.13 RaAMIS A ..ot

3.1.3.1 Advanced Configuration and Power Interface........... ... i
3.1.3.2  System Management Mode ... ...

3.14 Payload o

3.2 AMD Platform Security Processor and Intel Management Engine ........... ... ...l

10

10
10
11
12
12
12
14

15

16
17
19
20

22



4 Memory initialization and training

4.1 Importance of DDR3 memory initialization ....... ... .. .
4.2 General steps for DDR3 configuration . ....... ... oo
43 Memory initialization techniques ....... ... .
43.1 Memory training algorithms .. ... o
43.2 BIOS and Kernel Developer Guide (BKDG) recommendations................coooiiiiiiiiiiiiio....
4.3.2.1 DDR3 initialization procedure. ... ... ... i
4322 ZQ calibration ProCESS .. ...
4.3.2.3  Write leveling ProCess ... ... i
4.4 Current implementation and potential improvements ... .. .. ... ... .. .
441 Current implementation in coreboot on the KGPE-D16.......... ... ...
4.4.1.1 Details on the DQS training function. ... ... ...
4.4.1.2 Details on the write leveling implementation .......... ... .. .. . i
4.4.1.3 Details on the DQS position training function ......... ... ... i
4.4.1.4 Details on the DQS receiver training function......... ... ... ... .
4.4.2 Potential enhancements .. ... ...
4421 DQS receiver Training .. .....oi i
4.4.2.2  Write leveling . ..o
4,423 DQS POSItion training ... ...ttt
4.4.2.4 On saving training values in NVRAM ...
4425 A seedless DQS position training algorithm ... ... ...

5 Virtualization of the operating system through firmware abstraction
5.1 ACPI and abstraction of hardware control ...... ... .. ..
5.2 SMM as a hidden execution layer ... . ... .
53 UEF] and persistenCe ... ... e e e e e e e
531 Memory Management ... .. e
5.3.2 File System Management .. ... oo
5.3.3 DEVICE DIIVEIS .. e

534 Power Management . ... .. .
5.4 Intel and AMD: control beyond the OS ... .. ..
5.5 Processors MiCroCode .. ...
5.6 The OS as a virtualized enVirONmMeNt ... ..o e
Conclusion
Bibliography

Appendix: Long code listings

GNU General Public License version 2

GNU Free Documentation License

30

30
31
34
34
35
36
36
37
39
39
41
43
45
48
50
50
52
54
56
57

59

59
60
60
61
61
61
61
61
62
62

63

70

71

82

87



List of Figures

1.1
1.2
13
1.4
15

21
2.2
2.3
2.4
2.5
2.6

2.7

3.1
3.2

4.1
4.2

The eight-striped wordmark of IBM (1967, public domain, trademarked) ..........................o... 10
An AMI BIOS chip from a Dell 310, by Jud McCranie (CC BY-SA 4.0, 2018) ...........ccovvvieinnn. 11
The UEFI logo (public domain, 2010) .....ooii e 12
The coreboot logo, by Konsult Stuge & coresystems (coreboot logo license, 2008) ................... 13
The GNU Boot logo, by Jason Self (CCO, 2020) .......ooiiiiiii e 13
The KGPE-D16 (CC BY-SA 4.0, 2021) ...\ttt 15
Basic schematics of the ASUS KGPE-D16 Mainboard, ASUS (2011) ..., 16
The KGPE-D16, viewed from the top (CC BY-SA 4.0, 2024) ... 17
Functional diagram presenting the IOAPIC function of the SP5100, ASUS (2011) .................... 18
Functional diagram of the KGPE-D16 chipset (CC BY-SA 4.0, 2024) ..........coiiiiiiiiiiiiiiannn. 18
Annotated photography of an Opteron 6200 series CPU (2024), from a photography by AMD Inc.

(2008 oo 19
Functional diagram of an Opteron 6200 package (CC BY-SA 4.0,2024) ...................ooi. .. 20
coreboot's stages timeline, by coreboot project (CC BY-SA 4.0, 2009) ..., .. 22
coreboot ROM architecture (CC BY-SA 4.0, 2024) ... 23
DDRS3 fly-by versus T-topology (CC BY-SA 4.0, 2021) .. ...ooiiiiiii e 31
DDR3 controller state machine ....... ... o 33



List of Listings

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

fill mem_ctrl(), extract from src/northbridge/amd/amdfaml0/raminit_sysinfo_in_
TAM.C . o v e e e e e e
Early exit check, extract from the DQSTiming D function in src/northbridge/amd/amdmct/
mct_ddr3/mct_d.c . . . ...
Setting initial TCWL offset to zero for all nodes and DCTs, extract from the DQSTiming_D function
in src/northbridge/amd/amdmct/mct_ddr3/mct_d.c . . . . . . . .. ...
Retry mechanism initialization and pre-training operations, extract from the DQSTiming_D function
in src/northbridge/amd/amdmct/met_ddr3/mct_d.c . . . . . . ...
PHY compensation initialization, extract from the DQSTiming_D function in src/northbridge/
amd/amdmct/mct_ddr3/mct_d.c . . . . .. ...
Main DQS training process in multiple passes, extract from the DQSTiming_D function in src/
northbridge/amd/amdmct/mct_ddr3/mct_d.c . . . . . . . . ...
Post-training cleanup and final hook execution, extract from the DQSTiming D function in src/
northbridge/amd/amdmct/mct_ddr3/mct_d.c . . . . . . .. ...
Write leveling (first pass), extract from the WriteLevelization_HW function in src/
northbridge/amd/amdmct/mct_ddr3/mcthwl.c . . . . . . . . . . . ...
Target DIMM selection for write leveling, extract from AgesaHwWlPhasel function in src/
northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . ...
Handling of x4 DIMMs and nibble training, extract from AgesaHwWlPhasel function in src/
northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . ...
Preparing DIMMs for write leveling, extract from AgesaHwWlPhasel function in src/
northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . .. ...
Seed generation, extract from procConfig function in src/northbridge/amd/amdmct/mct_
ddr3/mhwlc_d.C . . . . . .. e
Initiating write leveling training, extract from AgesaHwWlPhasel function in src/northbridge/
amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . ...
Exit for non-x4 DIMMs, extract from AgesaHwWlPhase2 function in src/northbridge/amd/
amdmct/mct_ddr3/mhwlc d.c . . . . . . . ...
Reading and storing delay values after write leveling, extract from AgesaHwWlPhase?2 function in
src/northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . ...
Looping over each receiver, extract from TrainDQSRdWrPos_D_Fami15 function in src/
northbridge/amd/amdmct/mct_ddr3/mctdgs_d.c . . . . . . . ...
Iteration over write and read delay values for each lane, extract from TrainDQSRdWrPos_D_Faml5
function in src/northbridge/amd/amdmct/mct_ddr3/mctdgs_d.c . . . . . .. ... ... ...
Processing the results to determine the best DQS delay settings, extract from TrainDQSRdWrPos_
D_Fam15 function in src/northbridge/amd/amdmct/mct_ddr3/mctdgs_d.c . . . . . .. .. ..
Final error handling and return value, extract from TrainDQSRdWrPos_D_Fami15 function in src/
northbridge/amd/amdmct/mct_ddr3/mctdgs_d.c . . . . . . .. ...
Adjusting the seed values based on the operating frequency of the memory, extract from
dgsTrainRcvrEn_SW_Faml5 function in src/northbridge/amd/amdmct/mct_ddr3/mctsrc.c . .
Setting initial delay values based on the generated seed values, extract from dqsTrainRcvrEn_
SW_Fam15 function in src/northbridge/amd/amdmct/mct_ddr3/mctsrc.c . . . . . . . . . . ..
Enabling training mode and disabling ECC, extract from dgqsTrainRcvrEn_SW_Fam15 function in
src/northbridge/amd/amdmct/mct_ddr3/mctsrc.c . . . . . . . ...
Iterating over ranks and nibbles to apply delay values, extract from dgsTrainRcvrEn_SW_Fami15
function in src/northbridge/amd/amdmct/mct_ddr3/mctsrc.c . . . . . . . . ... ...



4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

5.38
L.39

L.40

L.41

L.42

L.43

L.44

L.45

L.46

L.47

L.48

Exiting training mode and setting read latency, extract from dgsTrainRcvrEn_SW_Fam15 function
in src/northbridge/amd/amdmct/mct_ddr3/mctsrc.c. . . . . . . ...
An unimplemented feature in the seed adjustment logic, extract from dgsTrainRcvrEn_SW_Fam15
function in src/northbridge/amd/amdmct/mct_ddr3/mcrsrc.c . . . . . . . . ... ...
LRDIMM support is unimplemented, extract from dqsTrainRcvrEn_SW_Fam15 function in src/
northbridge/amd/amdmct/mct_ddr3/mcrsrc.c . . . . . . . . ...
Questioning the use of SSEDIS in the MSR setting, extract from dgsTrainRcvrEn_SW_Fami15
function in src/northbridge/amd/amdmct/mct_ddr3/mcrsrc.c . . . . . . . .. ... ..
A possible misprint in the BKDG regarding delay settings, extract from dqsTrainRcvrEn_SW_
Fam15 function in src/northbridge/amd/amdmct/mct_ddr3/mcrsrc.c . . . . . . . . . . . . ..
Complex seed adjustment logic, extract from dgsTrainRcvrEn_SW_Faml15 function in src/
northbridge/amd/amdmct/mct_ddr3/mcrsrc.c . . . . . . . ...
Seeds used for DQS Receiver training, extract from dgsTrainRcvrEn_SW_Fam15 function in src/
northbridge/amd/amdmct/mct_ddr3/mcrsrc.c . . . . . . . ...
Incomplete seed generation implementation, extract from procConfig function in src/
northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . . ...
Omission of WrDgDgsEarly parameter, extract from procConfig function in src/northbridge/
amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . ...
Lack of mainboard-specific seed overrides, extract from procConfig function in src/
northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . . .. ...
Disabled CGD adjustment due to conflicts, extract from AgesaHwWlPhase2 function in src/
northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . . . ...
Bypass of critical adjustments during speed tuning, extract from AgesaHwWlPhase2 function in
src/northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . .. .. . ... ... ... ..
Blunt error handling to compensate for noise and instability, extract from AgesaHwWlPhase2
function in src/northbridge/amd/amdmct/mct_ddr3/mhwlc_d.c . . . . . . . . ... ... ...
Allowing a negative DQS recovery delay measurement, extract from TrainDQSRdWrPos_D_Fam15
function in src/northbridge/amd/amdmct/mct_ddr3/mctdqs_d.c . . . . . . . .. .. ... ..
How to estimate the impact of ACPICA in Linux . . . . ... ... ... . ... ... . ......
Beginning of mctAutoInitMCT_D(), extract from src/northbridge/amd/amdmct/mct_ddr3/
MCt_d.C . . . . e e e e
DIMM initialization in mctAutoInitMCT_D(), extract from src/northbridge/amd/amdmct/
mct_ddr3/mct _d.C . . ...
Voltage control in mctAutoInitMCT_D(), extract from src/northbridge/amd/amdmct/mct_
ddr3/mct_d.C. . . ... s
mctAutoInitMCT_D() does not allow restoring previous training values, extract from src/
northbridge/amd/amdmct/mct_ddr3/mct_d.c . . . . . . .. ...
Preparing SMBus, DCTs and NB in mctAutoInitMCT_D() from src/northbridge/amd/amdmct/
mct_ddr3/mct_d.c . . . ... e
Get DQS, reset and activate ECC in mctAutoInitMCT_D() from src/northbridge/amd/
amdmct/mct_ddr3/mct_d.c . . . . ...
Mapping DRAM with cache, validating DCT nodes and finishing the init process in
mctAutoInitMCT_D() from src/morthbridge/amd/amdmct/mct_ddr3/mct_d.c . . . . .. . ..
Error detection and retry mechanism during DQS training, extract from the DQSTiming_D function
in src/northbridge/amd/amdmct/mct_ddr3/mct_d.c . . . . . . . .. ...
Write Leveling (second pass), extract from the WriteLevelization_HW function in
src/northbridge/amd/amdmct/mct_ddr3/mcthwl.c.. . . . . . . . . . .. ...
Seed generation for DQS receiver enable training based on DIMM type and configuration, extract
from faml5_receiver_enable_training_seed function in src/northbridge/amd/amdmct/
mct_ddr3/mCctSIC.C . . . . . .. e



Chapter 1

Introduction to firmware and BIOS evolution

1.1 Historical context of BIOS

1.1.1 Definition and origin

The BIOS (Basic Input/Output System) is firmware, which is a type of software that is embedded into hardware
devices to control their basic functions, acting as a bridge between hardware and other software, ensuring that
the hardware operates correctly. Unlike regular software, firmware is usually stored in a non-volatile memory like
ROM or flash memory. The term "firmware" comes from its role: it is "firm" because it's more permanent than
regular software (which can be easily changed) but not as rigid as hardware.

The BIOS is used to perform initialization during the booting process and to provide runtime services for
operating systems and programs. Being a critical component for the startup of personal computers, acting as an
intermediary between the computer's hardware and its operating system, the BIOS is embedded on a chip on
the motherboard and is the first code that runs when a PC is powered on. The concept of BIOS has its roots
in the early days of personal computing. It was first developed by IBM for their IBM PC, which was introduced
in 1981 [45]. The term BIOS itself was coined by Gary Kildall, who developed the CP/M (Control Program for
Microcomputers) operating system [100]. In CP/M, BIOS was used to describe a component that interfaced
directly with the hardware, allowing the operating system to be somewhat hardware-independent.

..ll!

Figure 1.1: The eight-striped wordmark of IBM (1967, public domain, trademarked)

IBM's implementation of BIOS became a de facto standard in the industry, as it was part of the IBM PC’s open
architecture [48][13], which refers to the design philosophy adopted by IBM when developing the IBM Personal
Computer (PC), introduced in 1981. This architecture is characterized by the use of off-the-shelf components and
publicly available specifications, which allowed other manufacturers to create compatible hardware and software.
It was in fact a departure from the proprietary systems prevalent at the time, where companies closely guarded
their designs to maintain control over the hardware and software ecosystem. For example, IBM used the Intel
8088 CPU, a well-documented and widely available processor, and also the Industry Standard Architecture (ISA)
bus, which defined how various components like memory, storage, and peripherals communicated with the CPU.
This open architecture allowed other manufacturers to create IBM-compatible computers, also known as "clones",
which further popularized the BIOS concept. As a result, the IBM PC BIOS set the stage for a standardized
method of interacting with computer hardware, which has evolved over the years but remains fundamentally the
same in principle. IBM also published detailed technical documentation at that time, including circuit diagrams,



BIOS listings, and interface specifications. This transparency allowed other companies to understand and replicate
the IBM PC's functionality [45].

1.1.2 Functionalities and limitations

When a computer is powered on, the BIOS executes a Power-On Self-Test (POST), a diagnostic sequence that
verifies the integrity and functionality of critical hardware components such as the CPU, RAM, disk drives,
keyboard, and other peripherals [116]. This process ensures that all essential hardware components are operational
before the system attempts to load the operating system. If any issues are detected, the BIOS generates error
messages or beep codes to alert the user. Following the successful completion of POST, the BIOS runs the
bootstrap loader, a small program that identifies the operating system's bootloader on a storage device, such
as a hard drive, floppy disk, or optical drive. The bootstrap loader then transfers control to the OS bootloader,
initiating the process of loading the operating system into the computer's memory and starting it. This step
effectively bridges the gap between hardware initialization and operating system execution. The BIOS also
provides a set of low-level software routines known as interrupts. These routines enable software to perform basic
input/output operations, such as reading from the keyboard, writing to the display, and accessing disk drives,
without needing to manage the hardware directly. By providing standardized interfaces for hardware components,
the BIOS simplifies software development and improves compatibility across different hardware configurations [13].

Figure 1.2: An AMI BIOS chip from a Dell 310, by Jud McCranie (CC BY-SA 4.0, 2018)

Despite its essential role, the early BIOS had several limitations. One significant limitation was its limited storage
capacity. Early BIOS firmware was stored in Read-Only Memory (ROM) chips with very limited storage, often
just a few kilobytes. This constrained the complexity and functionality of the BIOS, limiting it to only the
most essential tasks needed to start the system and provide basic hardware control. The original BIOS was
also non-extensible. ROM chips were typically soldered onto the motherboard, making updates difficult and
costly. Bug fixes, updates for new hardware support, or enhancements required replacing the ROM chip, leading
to challenges in maintaining and upgrading systems. Furthermore, the early BIOS was tailored for the specific
hardware configurations of the initial IBM PC models, which included a limited set of peripherals and expansion
options. As new hardware components and peripherals were developed, the BIOS often needed to be updated
to support them, which was not always feasible or timely. Performance bottlenecks were another limitation.
The BIOS provided basic input/output operations that were often slower than direct hardware access methods.
For example, disk I/O operations through BIOS interrupts were slower compared to later direct access methods
provided by operating systems, resulting in performance bottlenecks, especially for disk-intensive operations [85].
Early BIOS implementations also had minimal security features. There were no mechanisms to verify the integrity
of the BIOS code or to protect against unauthorized modifications, leaving systems vulnerable to attacks that
could alter the BIOS and potentially compromise the entire system, such as rootkits and firmware viruses. Added
to that, the traditional BIOS operates in 16-bit real mode, a constraint that limits the amount of code and memory
it can address. This limitation hinders the performance and complexity of firmware, making it less suitable for
modern computing needs [32]. Additionally, BIOS relies on the Master Boot Record (MBR) partitioning scheme,
which supports a maximum disk size of 2 terabytes and allows only four primary partitions [40][97]. This constraint
has become a significant drawback as storage capacities have increased. Furthermore, the traditional BIOS has
limited flexibility and is challenging to update or extend. This inflexibility restricts the ability to support new
hardware and technologies efficiently [85][2].
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1.2 Modern BIOS and UEFI

1.2.1 Transition from traditional BIOS to UEFI (Unified Extensible Firmware Interface)

All the limitations listed earlier caused a transition to a more modern firmware interface, designed to address
the shortcomings of the traditional BIOS. This section delves into the historical context of this shift, the driving
factors behind it, and the advantages UEFI offers over the traditional BIOS.

The development of UEFI began in the mid-1990s as part of the Intel Boot Initiative, which aimed to modernize the
boot process and overcome the limitations of the traditional BIOS. By 2005, the Unified EFI Forum, a consortium
of technology companies including Intel, AMD, and Microsoft, had formalized the UEFI specification [40]. UEFI
was designed to address the shortcomings of the traditional BIOS, providing several key improvements.

7

Figure 1.3: The UEFI logo (public domain, 2010)

One of the most significant advancements of UEFI is its support for 32-bit and 64-bit modes, allowing it to
address more memory and run more complex firmware programs. This capability enables UEFI to handle the
increased demands of modern hardware and software [32][99]. Additionally, UEFI uses the GUID Partition Table
(GPT) instead of the MBR, supporting disks larger than 2 terabytes and allowing for a nearly unlimited number
of partitions [33][97].

Improved boot performance is another driving factor. UEFI provides faster boot times compared to the traditional
BIOS, thanks to its efficient hardware and software initialization processes. This improvement is particularly
beneficial for systems with complex hardware configurations, where quick boot times are essential [32]. UEFI's
modular architecture makes it more extensible and easier to update compared to the traditional BIOS. This design
allows for the addition of drivers, applications, and other components without requiring a complete firmware
overhaul, providing greater flexibility and adaptability to new technologies [2]. UEFI also includes enhanced
security features such as Secure Boot, which ensures that only trusted software can be executed during the boot
process, thereby protecting the system from unauthorized modifications and malware [85][21].

The industry-wide support and standardization of UEFI have accelerated its adoption across various platforms and
devices. Major industry players, including Intel, AMD, and Microsoft, have adopted UEFI as the new standard for
firmware interfaces, ensuring broad compatibility and interoperability [40].

1.2.2 An other way with coreboot

While UEFI has become the dominant firmware interface for modern computing systems, it is not without its
critics. Some of the primary concerns about UEFI include its complexity, potential security vulnerabilities, and the
degree of control it provides to hardware manufacturers over the boot process. Originally known as LinuxBIOS,
coreboot, is a free firmware project initiated in 1999 by Ron Minnich and his team at the Los Alamos National
Laboratory. The project’s primary goal was to create a fast, lightweight, and flexible firmware solution that could
initialize hardware and boot operating systems quickly, while remaining transparent and auditable[91]. As an
alternative to UEFI, coreboot offers a different approach to firmware that aims to address some of these concerns
and continue the evolution of BIOS.
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One of the main advantages of coreboot over UEFI is its simplicity, as it is designed to perform only the
minimal tasks required to initialize hardware and pass control to a payload, such as a bootloader or operating
system kernel. This minimalist approach reduces the attack surface and potential for security vulnerabilities,
as there is less code that could be exploited by malicious actors. Another significant benefit of coreboot
is its libre nature. Unlike UEFI, which is controlled by a consortium of hardware and software vendors,
coreboot's source code is freely available and can be audited, modified, and improved by anyone. This
transparency ensures that security researchers and developers can review the code for potential vulnerabilities
and contribute to its improvement, fostering a community-driven approach to firmware development[91].
This project also supports a wide range of bootloaders, called payloads, allowing users to customize their
boot process to suit their specific needs. Popular payloads include SeaBIOS, which provides legacy BIOS
compatibility, and Tianocore, which offers UEFI functionality within the coreboot framework. This flexibility
allows coreboot to be used in a variety of environments, from embedded systems to high-performance servers [90].

coreboot

Figure 1.4: The coreboot logo, by Konsult Stuge & coresystems (coreboot logo license, 2008)

Despite its advantages, coreboot is not without its challenges. The project relies heavily on community con-
tributions, and support for new hardware often lags behind that of UEFI. Additionally, the minimalist design of
coreboot means that some advanced features provided by UEFI are not available by default. However, the core-
boot community continues to work on adding new features and improving compatibility with modern hardware
or security issues [76]. For example, it provides a verified boot function, allowing to prevent rootkits and other
attacks based on firmware modifications [89]. However, it's important to note that coreboot is not entirely free in
all aspects. Many modern processors and chipsets require proprietary blobs, short for Binary Large Object, which
is a collection of binary data stored as a single entity. These blobs are necessary for coreboot to function correctly
on a wide range of hardware, but they compromise the goal of having a fully free firmware one day [70], since
these blobs are used for certain functionalities such as memory initialization and hardware management.

gnuboot

Figure 1.5: The GNU Boot logo, by Jason Self (CCO, 2020)

To address these concerns, the GNU Project has developed GNU Boot, a fully free distribution of firmware,
including coreboot, that aims to be entirely free by avoiding the use of proprietary binary blobs.

GNU Boot is only a distribution: it reuses existing software projects and is not very different from fully free
GNU/Linux distributions like Trisquel or Guix, as GNU Boot is committed to use only free software for all
aspects of firmware, making it a preferred choice for users and organizations that prioritize software freedom and
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transparency. Its goal include to build the software and assemble it in something that can be installed, and also
to test it and to provide installation and upgrade instructions [71].

1.3 Shift in firmware responsibilities

Initially, the BIOS's primary function was to perform the POST, a basic diagnostic testing process to check the
system'’s hardware components and ensure they were functioning correctly. This included verifying the CPU,
memory, and essential peripherals before passing control to the operating system’s bootloader. This process was
relatively simple, given the limited capabilities and straightforward architecture of early computer systems [85].
As computer systems advanced, particularly with the advent of more sophisticated memory technologies, the role
of firmware expanded significantly. Modern memory modules operate at much higher speeds and capacities than
their predecessors, requiring precise configuration to ensure stability and optimal performance. Firmware now
plays a critical role in managing the memory controller, which is responsible for regulating data flow between
the processor and memory modules. This includes configuring memory frequencies, voltage levels, and timing
parameters to match the specifications of the installed memory [40][8]. Beyond memory management, firmware
responsibilities have broadened to encompass a wide range of system-critical tasks, and even so by including
runtime components in addition to its initialization tasks. One key area is power management, where firmware
is responsible for optimizing energy consumption across various components of the system. Efficient power
management is essential not only for extending battery life in portable devices but also for reducing thermal
output and ensuring system longevity in desktop and server environments. Moreover, modern firmware takes on
significant roles in hardware initialization and configuration, which were traditionally handled by the operating
system. For example, the initialization of USB controllers, network interfaces, and storage devices is now often
managed by the firmware during the early stages of the boot process. This shift ensures that the operating system
can seamlessly interact with hardware from the moment it takes control, reducing boot times and improving
overall system reliability [40]. Security has also become a paramount concern for modern firmware. UEFI (Unified
Extensible Firmware Interface), which has largely replaced traditional BIOS in modern systems, includes features
which prevents unauthorized or malicious software from loading during the boot process. This helps protect the
system from rootkits and other low-level malware that could compromise the integrity of the operating system
before it even starts [40]. In the context of performance tuning, firmware sometimes also plays a key role in
enabling and managing overclocking, particularly for the memory subsystem. By allowing adjustments to memory
frequencies, voltages, and timings, firmware provides tools for enthusiasts to push their systems beyond default
limits. At the same time, it includes safeguards to manage the risks of instability and hardware damage, balancing
performance gains with system reliability [85].

In summary, the evolution of firmware from simple hardware initialization routines to complex management
systems reflects the increasing sophistication of modern computer architectures. Firmware is now a critical layer
that not only ensures the correct functioning of hardware components but also optimizes performance, manages
power consumption, and enhances system security, making it an indispensable part of contemporary computing.

This document will focus on coreboot during the next parts to study how modern firmware interact with hardware
and also as a basis for improvements.
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Chapter 2

Characteristics of ASUS KGPE-D16
mainboard

Figure 2.1: The KGPE-D16 (CC BY-SA 4.0, 2021)
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2.1 Overview of ASUS KGPE-D16 hardware

The ASUS KGPE-D16 server mainboard is a dual-socket motherboard designed to support AMD Family 10h/15h
series processors. Released in 2009, this mainboard was later awarded the Respects Your Freedom (RYF)
certification in March 2017, underscoring its commitment to fully free software compatibility [43]. Indeed, this
mainboard can be operated with a fully free firmware such as GNU Boot [72].

This mainboard is equipped with robust hardware components designed to meet the demands of high-performance
computing. It features 16 DDR3 DIMM slots, capable of supporting up to 256GB of memory, although certain
configurations may be limited to 192GB, with some reports suggesting the potential to support 256GB under
specific conditions. In terms of expandability, the KGPE-D16 includes multiple PCle slots, with five physical slots
available, although only four can be used simultaneously due to slot sharing. For storage, the mainboard provides
several SATA ports. Networking capabilities are enhanced by integrated dual gigabit Ethernet ports, which
provide high-speed connectivity essential for data-intensive tasks and network communication [14]. Additionally,
the board is equipped with various peripheral interfaces, including USB ports, audio outputs, and other 1/0
ports, ensuring compatibility with a wide range of external devices.
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Figure 2.2: Basic schematics of the ASUS KGPE-D16 Mainboard, ASUS (2011)

The physical layout of the ASUS KGPE-D16 is meticulously designed to optimize airflow, cooling, and power
distribution. All of this is critical for maintaining system stability, particularly under heavy computational loads,
as this board was designed for server operations. In particular, key components such as the CPU sockets, memory
slots, and PCle slots are strategically positioned.
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Figure 2.3: The KGPE-D16, viewed from the top (CC BY-SA 4.0, 2024)

2.2 Chipset

Before diving into the specific components, it is essential to understand the roles of the northbridge and
southbridge in traditional motherboard architecture. These chipsets historically managed communication between
the CPU and other critical components of the system [4].

The northbridge is a chipset on the motherboard that traditionally manages high-speed communication between
the CPU, memory (RAM), and graphics card (if applicable). It serves as a hub for data that needs to move quickly
between these components. On the ASUS KGPE-D16, the functions typically associated with the northbridge are
divided between the CPUs internal northbridge and an external SR5690 northbridge chip. The SR5690 specifically
acts as a translator and switch, handling the HyperTransport interface, a high-speed communication protocol
used by AMD processors, and converting it to ALink and PCle interfaces, which are crucial for connecting
peripherals like graphics cards [11]. Additionally, the northbridge on the KGPE-D16 incorporates the IOMMU
(Input-Output Memory Management Unit), which is crucial for ensuring secure and efficient memory access
by I/O devices. The IOMMU allows for the virtualization of memory addresses, providing device isolation and
preventing unauthorized memory access, which is particularly important in environments that run multiple virtual
machines [4][128].

The southbridge, on the other hand, is responsible for handling lower-speed, peripheral interfaces such as the PCI,
USB, and IDE/SATA connections, as well as managing onboard audio and network controllers. On the KGPE-D16,
these functions are managed by the SP5100 southbridge chip, which integrates several critical functions including
the LPC bridge, SATA controllers, and other essential |/O operations [4][131]. It is essentially an ALink bus con-
troller and includes the hardware interrupt controller, the IOAPIC. Interrupts from peripheral always pass through
the northbridge (fig. 2.4), since it translates ALink to HyperTransport for the CPUs and contains the IOMMU [11].
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Figure 2.4: Functional diagram presenting the IOAPIC function of the SP5100, ASUS (2011)

In addition to the northbridge and southbridge, the KGPE-D16 also contains specialized chips for managing in-
put/output operations and system health monitoring. The WINBOND W83667HG-A Super 1/O chip handles
traditional 1/O functions such as legacy serial and parallel ports, keyboard, and mouse interfaces, but also the
SPI chip (Serial Peripheral Interface, a synchronous serial communication protocol primarily used to communi-
cate between microcontrollers and peripheral devices like sensors or memory devices) that contains the firmware
[136]. Meanwhile, the Nuvoton W83795G/ADG Hardware Monitor oversees the systems health by monitoring
temperatures, voltages, and fan speeds, ensuring that the system operates within safe parameters [80]. On the
KGPE-D16, access to the Super 1/0 from a CPU core is done through the SR5690, then the SP5100, as that can
be observed on the functional diagram of the chipset (fig. 2.5) [11].
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Figure 2.5: Functional diagram of the KGPE-D16 chipset (CC BY-SA 4.0, 2024)
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2.3 Processors

The ASUS KGPE-D16 supports AMD Family 10h processors, but it is important to note that Vikings, a known
vendor for libre-software-compatible hardware, does not recommend using the Opteron 6100 series due to the lack
of IOMMU support, which is critical for security. Fortunately, AMD Family 15h processors are also supported.
However, the Opteron 6300 series, while supported, requires proprietary microcode updates for stability, IOMMU
functionality, and fixes for specific vulnerabilities, including a gain-root- via-NMI exploit. The Opteron 6200 series
does not suffer from these problems and works properly without any proprietary microcode update needed [111].

HyperTransport3 connections
and other I/Os

Bulldozer cores

L3 caches

Internal northbridge

DDR3 connections

Figure 2.6: Annotated photography of an Opteron 6200 series CPU (2024), from a photography by AMD Inc.
(2008)

The Opteron 6200 series, part of the Bulldozer microarchitecture, was designed to target high-performance server
applications. These processors feature 16 cores, organized into 8 Bulldozer modules, with each module containing
two integer cores that shared resources like the floating-point unit (FPU) and L2 cache (fig. 2.6, 2.7) [7][98].

The architecture of the Opteron 6200 series is built around AMD's Bulldozer core design, which uses Clustered
Multithreading (CMT) to maximize resource utilization. This is a technique where each processor module contains
two integer cores that share certain resources like the floating-point unit (FPU), L2 cache, and instruction
fetch/decode stages. Unlike traditional multithreading, where each core handles multiple threads, CMT allows
two cores to share resources to improve parallel processing efficiency. This approach aims to balance performance
and resource usage, particularly in multi- threaded workloads, though it can lead to some performance trade-offs
in single-threaded tasks. In the Opteron 6272, the processor consists of eight modules, effectively creating 16
integer cores. Due to the CMT architecture, each Opteron 6272 chip functions as two CPUs within a single
processor, each with its own set of cores, L2 caches, and shared L3 cache. Here, one CPU is made by four
modules, each module in it sharing certain components, such as the FPU and L2 cache, between two integer cores.
The L3 cache is shared across these modules. HyperTransport links provide high-speed communication between
the two sockets of the KGPE-D16. Shared L3 cache and direct memory access are provided by each socket [7][53].

This architecture also integrates a quad-channel DDR3 memory controller directly into the processor die, which
facilitates high bandwidth and low latency access to memory. This memory controller supports DDR3 memory
speeds up to 1600 MHz and connects directly to the memory modules via the memory bus. By integrating the
memory controller into the processor, the Opteron 6200 series reduces memory access latency, enhancing overall
performance [7][6]. It is interesting to note that Opterons incorporate the internal northbridge that we cited
previously. The traditional northbridge functions, such as memory controller and PCle interface management,
are partially integrated into the processor. This integration reduces the distance data must travel between the
CPU and memory, decreasing latency and improving performance, particularly in memory-intensive applications [7].
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Figure 2.7: Functional diagram of an Opteron 6200 package (CC BY-SA 4.0, 2024)

Power efficiency was a key focus in the design of the Opteron 6200 series. Despite the high core count,
the processor includes several power management features, such as Dynamic Power Management (DPM)
and Turbo Core technology. These features allow the processor to adjust power usage based on workload
demands, balancing performance with energy consumption. However, the Bulldozer architecture's focus on high
clock speeds and multi-threaded performance resulted in higher power consumption compared to competing
architectures [98]. A special model of the series, called high efficiency models, solve a bit this problem by propos-
ing a bit less performant processor but with a power consumption divided by a factor from 1.5 to 2.0 in some cases.

The processor connected to the |/O hub is known as the Bootstrap Processor (BSP). The BSP is responsible for
starting up the system by executing the initial firmware code from the reset vector, a specific memory address
where the CPU begins execution after a reset [3]. Core 0 of the BSP, called the Bootstrap Core (BSC), initiates
this process. During early initialization, the BSP performs several critical tasks, such as memory initialization, and
bringing other CPU cores online. One of its duties is storing Built-In Self-Test (BIST) information, which involves
checking the integrity of the processor's internal components to ensure they are functioning correctly. The BSP
also determines the type of reset that has occurred whether it's a cold reset, which happens when the system is
powered on from an off state, or a warm reset, which is a restart without turning off the power. Identifying the
reset type is crucial for deciding which initialization procedures need to be executed [3][8].

2.4 Baseboard Management Controller

The Baseboard Management Controller (BMC) on the KGPE-D16 motherboard, specifically the ASpeed
AST2050, plays a role in the server's architecture by managing out-of-band communication and control of
the hardware. The AST2050 is based on an ARMO926EJ-S processor, a low-power 32-bit ARM architecture
designed for embedded systems [104]. This architecture is well-suited for BMCs due to its efficiency and capabil-
ity to handle multiple management tasks concurrently without significant resource demands from the main system.

The AST2050 features several key components that contribute to its functionality. It includes an integrated
VGA controller, which enables remote graphical management through KVM-over-IP (Keyboard, Video, Mouse),
a critical feature for administrators who need to interact with the system remotely, including BIOS updates and
troubleshooting [102]. Additionally, the AST2050 integrates a dedicated memory controller, which supports up to
256MB of DDR2 RAM. This allows it to handle complex tasks and maintain responsiveness during management
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operations [35]. The BMC also features a network interface controller (NIC) dedicated to management traffic,
ensuring that remote management does not interfere with the primary network traffic of the server. This
separation is vital for maintaining secure and uninterrupted system management, especially in environments
where uptime is critical [105]. Another important architectural aspect of the AST2050 is its support for multiple
I/O interfaces, including 12C, GPIO, UART, and USB, which allow it to interface with various sensors and
peripherals on the motherboard [106]. This versatility enables comprehensive monitoring of hardware health, such
as temperature sensors, fan speeds, and power supplies, all of which can be managed and configured through the
BMC.

When combined with OpenBMC [129], a libre firmware that can be run on the AST2050 thanks to Raptor
Engineering [93], the architecture of the BMC becomes even more powerful. OpenBMC takes advantage of the
AST2050's architecture, providing a flexible and customizable environment that can be tailored to specific use
cases. This includes adding or modifying features related to security, logging, and network management, all within
the BMC's ARM architecture framework [59].

21



Chapter 3

Key components in modern firmware

3.1 General structure of coreboot

The firmware of the ASUS KGPE-D16 is crucial in ensuring the proper functioning and optimization of the
mainboard’s hardware components. In this chapter and for the rest of this document, we're basing our study on
the 4.11 version of coreboot [25], which is the last version that supported the ASUS KGPE-D16 mainboard.

For the initialization tasks to be done efficiently, coreboot is organized in different stages (fig. 3.1) [89].

codefheap [ cachensram |
memory location DRAM
coreboot | aeccmuoly) ” ¢ Z
source languages | ADA SPARK (x86 only)
ramstage BL31
~ verstage postcar (ARM only) payload
coreboot - stages bootblock (optional) romstage (x86 only) —
(x86 only)

time
Power on

Figure 3.1: coreboot's stages timeline, by coreboot project (CC BY-SA 4.0, 2009)

Being a complex project with ambitious goals, coreboot decided early on to establish an file-system-based
architecture for its images (also called ROMs). This special file-system is CBFS (which stands for coreboot file
system). The CBFS architecture consists of a binary image that can be interpreted as a physical disk, referred to
here as ROM. A number of independent components, each with a header added to the data, are located within
the ROM. The components are nominally arranged sequentially, although they are aligned along a predefined
boundary (fig. 3.2).

Each stage is compiled as a separate binary and inserted into the CBFS with custom compression. The bootblock
stage is usually not compressed, while the ramstage and the payload are compressed with LZMA. Each stage
loads the next stage at a given address (possibly decompressing it in the process).

Some stages are relocatable and can be placed anywhere in the RAM. These stages are typically cached in the
CBMEM for faster loading times during wake-up. The CBMEM is a specific memory area used by the coreboot
firmware to store important data structures and logs during the boot process. This area is typically allocated in
the system’s RAM and is used to store various types of runtime information that it might need to reference after
the initial boot stages.

In general, coreboot manages main memory through a structured memory map (fig. 3.1), allocating specific
address ranges for various hardware functions and system operations. The first 640KB of memory space is
typically unused by coreboot due to historical reasons. Graphics-related operations use the VGA address range
and the text mode address ranges. It also reserves the higher for operating system use, ensuring that critical
system components like the IOAPIC and TPM registers have dedicated address spaces. This structured approach
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helps maintain system stability and compatibility across different platforms and allows for a reset vector fixed at
an address (OxFFFFFFFO), regardless of the ROM size. Payloads are typically loaded into high memory, above the
reserved areas for hardware components and system resources. The exact memory location can vary depending on
the system's configuration, but generally, payloads are placed in a region of memory that does not conflict with
the firmware code or the reserved memory map areas, such as the ROM mapping ranges. This placement ensures
that payloads have sufficient space to execute without interfering with other critical memory regions allocated
[24].

0x00000-0x9FFFF Low memory (first 640KB). Never used.
0xA0000-0xAFFFF VGA graphics address range.
0xB0000-0xB7FFF Monochrome text mode address range. Few
motherboards use it, but the KGPE-D16 does.
0xB8000-O0xBFFFF Text mode address range.
0xFEC00000 IOAPIC address.
0xFED44000-0xFED4FFFF Address range for TPM registers.
0xFF000000-O0xFFFFFFFF 16 MB ROM mapping address range.
0xFF800000-0xFFFFFFFF 8 MB ROM mapping address range.
0xFFC00000-OxFFFFFFFF 4 MB ROM mapping address range.
0xFEC00000-DEVICEMEMHIGH Reserved area for OS use.

Table 3.1: coreboot memory map

3.1.1 Bootblock

The bootblock is the first stage executed after the CPU reset. The beginning of this stage is written in assembly
language, and its main task is to set everything up for a C environment. The rest, of course, is written in C. This
stage occupies the last 20k (fig. 3.2) of the image and within it is a main header containing information about
the ROM, including the size, component alignment, and the offset of the start of the first CBFS component.
This block is a mandatory component as it also contains the entry point of the firmware.

UXi v —
HEADER
Component
HEADER
NAME
Component
BOOTBLOCK
OXFFFFFFFO > Bootblock component
RESET
OXFFFFFFFF ———> I

Figure 3.2: coreboot ROM architecture (CC BY-SA 4.0, 2024)

Upon startup, the first responsibility of the bootblock is to execute the code from the reset vector located at
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the conventional reset vector in 16-bit real mode. This code is specific to the processor architecture and, for our
board, is stored in the architecture-specific sources for x86 within coreboot. The entry point into coreboot code
is defined in two files in the src/cpu/x86/16bit/ directory: resetl6.inc and entryl6.inc. The first file
serves as a jump to the _start16bit procedure defined in the second. Due to space constraints this function
must remain below the 1MB address space because the IOMMU has not yet been configured to allow anything else.

During this early initialization, the Bootstrap Core (BSC) performs several critical tasks while the other cores
remain dormant. These tasks include saving the results (and displaying them if necessary) of the Built-in Self-Test
(BIST), formerly known as POST; invalidating the TLB to prevent any address translation errors; determining
the type of reset (e.g., cold start or warm start); creating and loading an empty Interrupt Descriptor Table
(IDT) to prevent the use of "legacy" interrupts from real mode until protected mode is reached. In practice, this
means that at the slightest exception, the BSC will halt. The code then switches to 32-bit protected mode by
mapping the first 4 GB of address space for code and data, and finally jumps to the 32-bit reset code labeled
_protected_start.

Once in protected mode, which constitutes the "normal" operating mode for the processor, the next step is to
set up the execution environment. To achieve this, the code contained in src/cpu/x86/32bit/entry32.1inc,
followed by src/cpu/x86/64bit/entry64.inc, and finally src/arch/x86/bootblock_crt0.S, establishes
a temporary stack, transitions to long mode (64-bit addressing) with paging enabled, and sets up a proper
exception vector table. The execution then jumps to chipset-specific code via the bootblock_pre_c_entry
procedure. Once these steps are completed, the bootblock has a minimal C environment. The procedure now
involves allocating memory for the BSS, and decompressing and loading the next stage.

The jump to _bootblock_pre_entry leads to the code files src/soc/amd/common/block/cpu/car/cache_
as_ram.S and src/vendorcode/amd/agesa/f15tn/gcccar.inc, which are specific to AMD chipsets. It's
worth noting that these files were developed by AMD's engineers as part of the AGESA project. The operations
performed at this stage are related to pre-RAM memory initialization. All cores of all processors (up to a limit of
64 cores) are started. The Cache-As-Ram is configured using the Memory-type range registers. These registers
allow the specification of a specific configuration for a given memory area [8]. In this case, the area that should
correspond to physical memory is mapped to the cac