From 3c04e7d45da061ff29a9acebdb956dc0a3050942 Mon Sep 17 00:00:00 2001 From: Jean Sirmai Date: Tue, 8 Jun 2021 11:20:36 +0000 Subject: [PATCH] Update theory.md --- theory.md | 1 + 1 file changed, 1 insertion(+) diff --git a/theory.md b/theory.md index d1c463c..8b28474 100644 --- a/theory.md +++ b/theory.md @@ -21,6 +21,7 @@ La réécriture du graphe permet d'associer à chaque objet ou groupe d'objets u Propriétés des règles de transition Pour tout état, il existe une seule règle de transition neutre qui ne modifie pas cet état. Toute règle de transition a une seule règle inverse qui produit son état initial à partir de son état final. +Étant donné deux états (1) et (2) il existe toujours au moins une règle de transition produisant l'état (2) à partir de l'état (1) L'une de ces règles est la plus simple possible. Étant donné deux règles (a) et (b) dont l'état final de (a) est égal à l'état initial de (b), il existe une seule règle (c) (dite "composée") qui va de l'état initial de (a) à l'état final de (b). Si cette règle (c) fait partie de l'automate, le passage par l'état entre (a) et (b) est facultatif. Sinon, il est nécessaire. Dans ce cas, la règle (a) sera toujours exécutée avant la règle (b). Par conséquent, la propriété modélisée par la règle (a) peut être interprétée comme une cause de la propriété modélisée par la règle (b). Étant donné trois règles (a), (b) et (c) avec l'état final de (a) égal à l'état initial de (b) et l'état final de (b) égal à l'état initial de (c), il existe une seule règle de transition de l'état initial de (a) à l'état final (c). Cette règle peut être produite par les compositions successives de (a * b) * c ainsi que de a * (b * c). (associativité) L'aire d'une règle est constituée par l'ensemble des cellules contenant un site sur lequel il existe une condition à condition qu'aucune cellule ne soit modifiée par une affectation sans avoir été préalablement testée par au moins une condition.