Update readme.md

This commit is contained in:
Jean Sirmai 2021-08-02 22:23:05 +00:00
parent c493d5956d
commit 952a6f41bf
1 changed files with 25 additions and 17 deletions

View File

@ -7,25 +7,27 @@
##### NB "dirigé" ne signifie pas "orienté": un graphe est orienté si l'un de ses nœuds est sa racine.
#### Les multigraphes géométriques dirigés peuvent être utilisés pour représenter une grande variété d'états. Ces états peuvent être dessinés dans l'espace au moyen de combinaisons de flèches allant d'un point de l'espace à un autre.
#### Les réécritures successives de ces états par un automate permettent de modéliser des phénomènes complexes. 'gem-graph' est un logiciel qui permet d'éditer ces états et ces réécritures (ou transitions) et d'exécuter l'automate ainsi créé pour l'observer.
#### Les réécritures successives de ces états par un automate permettent de modéliser des phénomènes complexes.
#### 'gem-graph' est un logiciel qui permet d'éditer ces états et ces réécritures (ou transitions) et d'exécuter l'automate ainsi créé pour l'observer.
---
##### Les phénomènes complexes peuvent être définis comme ceux où une grand nombre d'objets de formes et de propriétés très diverses interagissent d'un grand nombre de façons différentes. Même si les interactions particulières entre certains de ces objets ont pu être isolées, étudiées expérimentalement et décrites au moyen d'un modèle simple, le fonctionnement de l'ensemble est difficile à modéliser pour au moins deux raisons:
> - Il s'y produit simultanément des phénomènes rapides et d'autres lents et certains phénomènes sont localisés alors que d'autres sont globaux.
S'il faut décrire tous les objets et tous les phénomènes avec la même précision, on est donc limité
* soit par la puissance de calcul s'il faut tout décrire en détail,
* soit par des approximations qui ne permettent plus de décrire avec une précision suffisante certains phénomènes trop rapides ou survenant dans un espace trop petit.
Or, certains de ces phénomènes (rapides, locaux) peuvent avoir des conséquences majeures sur l'évolution de l'ensemble et ne doivent donc pas être négligés.
Ce problème est celui de la 'granularité' (temporelle et spatiale).
- Il s'y produit simultanément des phénomènes rapides et d'autres lents et certains phénomènes sont localisés alors que d'autres sont globaux. Ce problème est celui de la 'granularité' (temporelle et spatiale).
> S'il faut décrire tous les objets et tous les phénomènes avec la même précision, on est donc limité
> * soit par la puissance de calcul s'il faut tout décrire en détail,
> * soit par des approximations qui ne permettent plus de décrire avec une précision suffisante certains phénomènes trop rapides ou survenant dans un espace trop petit.
> Or, certains de ces phénomènes (rapides, locaux) peuvent avoir des conséquences majeures sur l'évolution de l'ensemble et ne doivent donc pas être négligés.
> - Un second problème vient de ce que la plupart des descriptions doivent nommer les entités sur lesquelles elles opèrent pour pouvoir établir une relation entre elles.
Or, lorsque le nombre de ces entités augmente, le nombre de leurs relations ou interactions augmente plus rapidement encore: ce problème est celui de l'explosion combinatoire.
* Il peut suffire, par exemple, d'une équation pour représenter une relation entre un petit nombre d'objets, mais le nombre d'équations nécessaires pour décrire toutes les relations en jeu dans l'ensemble du système est tel qu'il n'est plus possible de les résoudre simultanément.
* Si l'on utilise un modèle numérique, le nombre de règles et leur hétérogéneité rend leur application de plus en plus difficile: certaines règles peuvent être en contradiction avec d'autres ou s'appliquer à des situations ou des objets pour lesquels elles n'avaient pas été conçues.
> - Dans tous les cas, si deux calculs successifs partant du même état donnent des résultats différents, le modèle devient inexploitable.
- Un second problème vient de ce que la plupart des descriptions doivent nommer les entités sur lesquelles elles opèrent pour pouvoir établir une relation entre elles. Or, lorsque le nombre de ces entités augmente, le nombre de leurs relations ou interactions augmente plus rapidement encore: ce problème est celui de l'explosion combinatoire.
> * Il peut suffire, par exemple, d'une équation pour représenter une relation entre un petit nombre d'objets, mais le nombre d'équations nécessaires pour décrire toutes les relations en jeu dans l'ensemble du système est tel qu'il n'est plus possible de les résoudre simultanément.
> * Si l'on utilise un modèle numérique, le nombre de règles et leur hétérogéneité rend leur application de plus en plus difficile: certaines règles peuvent être en contradiction avec d'autres ou s'appliquer à des situations ou des objets pour lesquels elles n'avaient pas été conçues.
- Dans les deux cas, si deux calculs successifs partant du même état donnent des résultats différents, le modèle devient inexploitable.
---
##### gem-graph permet d'aborder ces deux difficultés en dessinant les objets au lieu de les nommer:
@ -42,6 +44,7 @@
Ces réécritures sont locales, asynchrones et aléatoires.
La succession de ces réécritures (ou versions successives) constitue l'histoire de la simulation.
---
* Les informations statiques (états) et les informations dynamiques (transitions) sont toujours strictement séparées.
Cette séparation permet d'écrire les règles de transition exclusivement comme des associations de transitions élémentaires.
* Une transition élémentaire associe:
@ -52,11 +55,14 @@
* Cette homogéneité d'écriture n'exclut pas l'utilisation d'autres types de conditions et d'assignations élémentaires
utilisées en cas d'association à d'autres modèles ou pour l'envoi de résultats de mesure (voir plus loin).
---
* Les dessins peuvent représenter, de façon approximative, des états d'un système à modéliser.
Les objets sont alors tous dessinés à la même échelle mais avec un niveau de détail variable.
Du fait de l'introduction de directions privilégiées, les symétries par rotation (l'isotropie) sont perdues.
- Pour compenser cet inconvénient, il est nécessaire d'associer à chaque objet un ensemble de dessins 'ad hoc' différemment orientées.
Pour compenser cet inconvénient, il est nécessaire d'associer à chaque objet un ensemble de dessins 'ad hoc' différemment orientées.
Des parties de ces dessins peuvent éventuellement être produites à partir de représentations vectorielles.
---
* Des annotations peuvent être associés aux dessins des objets ou des situations.
Elles sont écrites dans l'espace au moyen des mêmes symboles que les dessins qu'elles commentent ou précisent.
Leur forme, leur étendue, le nombre de flèches superposées utilisées pour les dessiner sont des paramètres choisis par le concepteur du modèle.
@ -66,6 +72,7 @@
Le point important, ici, est que ces annotations sont écrites dans les états au moyen des mêmes symboles que les dessins.
Leur lecture et leur réécriture ne modifient donc pas l'homogénéité des règles.
---
* Chaque réécriture est un cycle de calcul élémentaire effectué par un thread opérant indépendemment des autres dans un espace local préalablement préempté.
Tous les espaces locaux ont la même étendue, définie par les règles de transition et telle qu'aucune flèche ne sorte de cet espace.
L'emplacement et l'orientation de chaque nouvel espace local sont choisis par le scheduler (au hasard ou par un autre algorithme) dans l'espace global.
@ -77,8 +84,9 @@
Une fois le calcul effectué, son résultat est validé puis intégré à l'état global.
Le thread qui a achevé ce calcul est alors détruit et la préemption sur cet espace local est levée.
---
* Les règles de transition peuvent être regroupées en arbres qui peuvent être édités.
La structure de ces arbres diffère selon leur fonction (exécution du calcul, classification par l'utilisateur,...)
La structure de ces arbres diffère selon leur fonction (exécution du calcul, classification par l'utilisateur,...).
* Un gem-graph peut être associé à d'autres modèles représentant des bosons et/ou de fermions dans un espace en fonction du temps.
Après superposition des temps et espaces de ces modèles à ceux du gem-graph, leurs variables locales intensives (températures, pressions, concentrations, débits, flux, section efficace, etc ...) peuvent être lues et écrites par le gem-graph au moyen de conditions et d'actions spécifiques. Ces lectures / écritures permettent la cohérence de l'ensemble des modèles pendant la durée du calcul.
* Plusieurs modèles de gem-graph peuvent être additionnés (états et transitions) si leurs paramètres d'espace et de temps sont compatibles.