diff --git a/Concurrent Programming b/Concurrent Programming index 64e6ac1..27491d5 100644 --- a/Concurrent Programming +++ b/Concurrent Programming @@ -4,9 +4,16 @@ from datetime import datetime import random import time -renew_length = 12 -local_threads_number = 10 -number_of_cycles = 20 +local_threads_number = 7 # in a more realistic model: local threads number << global arrows state size + # then, locations would be picked at random in this great global arrows state + # but the goal of this "micro-model" is not to explore the algorithms of choice of an arrow in the state + # it is to fix the way the scheduler terminates the local threads that have done their task + # in a realistic model, the number of cycles is infinite (the user decides when to stop a running simulation) + # and the size of the "renew" list (the list of the active local threads) depends on the computational power available + # this "micro-model" allows to explore the ineractions [scheduler <-> local threads] when the the "renew" list size varies +renew_length = 16 # renew_length can vary from 1 to number_of_cycles (if more, a part of it remains empty) +number_of_cycles = 20 # in a realistic model: number_of_cycles >> renew_length + renew = [] done = [] arrows = [] @@ -16,19 +23,21 @@ def init(): for i in range(0, renew_length): renew.append(0) for j in range(0, local_threads_number): - arrows.append(random.randint(10,99)) # nombres à deux chiffres pour simplifier l'affichage + arrows.append(random.randint(10,99)) copy.append(arrows[j]) - print(' ',arrows,' < initial global state',' '*27,end='[') + print(' ',arrows,' < initial global arrows state',' '*11,'now start delta ',end='[') for i in range(0, renew_length): print('{:>4}'.format(renew[i]), end='') print(']') def disp(coord, id, start, prev, next): - print(' {} at [{}] {} > {} by thread n°{:>3} {!s:.4} {}'.format( + print(' {} at [{}] {} > {} by thread n°{:>3} {: >.3f} - {: >.3f} = {!s:.4} {}'.format( arrows, coord, prev, next, str(id), + datetime.now().timestamp() / 10 - int(datetime.now().timestamp() / 10), + start / 10 - int(start / 10), datetime.now().timestamp() - start, '[', # renew ), @@ -43,7 +52,7 @@ def local_thread(coord, id): val = random.randint(1,1000) time.sleep(val / 1000) prev = arrows[coord] - next = arrows[coord] = 10 + val % 89 + next = arrows[coord] = 10 + val % 89 # ou n'importe quelle autre modification !... done.append(id) for i in range(0, renew_length): if renew[i] == id: @@ -62,13 +71,15 @@ for id in range (0, number_of_cycles): t = Thread(target=local_thread, args=(random.randint(0, len(arrows) - 1), id)) t.start() time.sleep(1) -print(' ',copy,' < initial global state (to compare)') +print(' ',copy,' < initial global arrows state (to compare)') print('history: ',done) # done.sort() # print(done) + + """ Le **scheduler**, ou processus principal, effectue un calcul sur l'**état global**. Pour cela, il génère des threads de calcul locaux ou '**local_threads**'