Learning_GTK4_tree/testsuite/gsk/curve.c

417 lines
12 KiB
C
Raw Permalink Normal View History

2023-12-12 11:36:42 +01:00
#include <gtk/gtk.h>
#include "gsk/gskcurveprivate.h"
static void
init_random_point (graphene_point_t *p)
{
p->x = g_test_rand_double_range (0, 1000);
p->y = g_test_rand_double_range (0, 1000);
}
static void
init_random_curve_with_op (GskCurve *curve,
GskPathOperation min_op,
GskPathOperation max_op)
{
switch (g_test_rand_int_range (min_op, max_op + 1))
{
case GSK_PATH_LINE:
{
graphene_point_t p[2];
init_random_point (&p[0]);
init_random_point (&p[1]);
gsk_curve_init (curve, gsk_pathop_encode (GSK_PATH_LINE, p));
}
break;
case GSK_PATH_QUAD:
{
graphene_point_t p[3];
init_random_point (&p[0]);
init_random_point (&p[1]);
init_random_point (&p[2]);
gsk_curve_init (curve, gsk_pathop_encode (GSK_PATH_QUAD, p));
}
break;
case GSK_PATH_CUBIC:
{
graphene_point_t p[4];
init_random_point (&p[0]);
init_random_point (&p[1]);
init_random_point (&p[2]);
init_random_point (&p[3]);
gsk_curve_init (curve, gsk_pathop_encode (GSK_PATH_CUBIC, p));
}
break;
case GSK_PATH_CONIC:
{
graphene_point_t p[4];
init_random_point (&p[0]);
init_random_point (&p[1]);
p[2].x = g_test_rand_double_range (0.2, 20);
p[2].y = 0.f;
init_random_point (&p[3]);
gsk_curve_init (curve, gsk_pathop_encode (GSK_PATH_CONIC, p));
}
break;
default:
g_assert_not_reached ();
}
}
static void
init_random_curve (GskCurve *curve)
{
init_random_curve_with_op (curve, GSK_PATH_LINE, GSK_PATH_CONIC);
}
static void
test_curve_tangents (void)
{
for (int i = 0; i < 100; i++)
{
GskCurve c;
graphene_vec2_t vec, exact;
init_random_curve (&c);
gsk_curve_get_tangent (&c, 0, &vec);
g_assert_cmpfloat_with_epsilon (graphene_vec2_length (&vec), 1.0f, 0.00001);
gsk_curve_get_start_tangent (&c, &exact);
g_assert_cmpfloat_with_epsilon (graphene_vec2_length (&exact), 1.0f, 0.00001);
g_assert_true (graphene_vec2_near (&vec, &exact, 0.05));
gsk_curve_get_tangent (&c, 1, &vec);
g_assert_cmpfloat_with_epsilon (graphene_vec2_length (&vec), 1.0f, 0.00001);
gsk_curve_get_end_tangent (&c, &exact);
g_assert_cmpfloat_with_epsilon (graphene_vec2_length (&exact), 1.0f, 0.00001);
g_assert_true (graphene_vec2_near (&vec, &exact, 0.05));
}
}
static void
test_curve_points (void)
{
for (int i = 0; i < 100; i++)
{
GskCurve c;
graphene_point_t p;
init_random_curve (&c);
/* We could assert equality here because evaluating the polynomials with 0
* has no effect on accuracy, but for arcs, we use trigonometric functions,
* so allow a small error.
*/
gsk_curve_get_point (&c, 0, &p);
g_assert_true (graphene_point_near (gsk_curve_get_start_point (&c), &p, 0.001));
/* But here we evaluate the polynomials with 1 which gives the highest possible
* accuracy error. So we'll just be generous here.
*/
gsk_curve_get_point (&c, 1, &p);
g_assert_true (graphene_point_near (gsk_curve_get_end_point (&c), &p, 0.05));
}
}
/* at this point the subdivision stops and the decomposer
* violates tolerance rules
*/
#define MIN_PROGRESS (1/1024.f)
typedef struct
{
graphene_point_t p;
float t;
} PointOnLine;
static gboolean
add_line_to_array (const graphene_point_t *from,
const graphene_point_t *to,
float from_progress,
float to_progress,
GskCurveLineReason reason,
gpointer user_data)
{
GArray *array = user_data;
PointOnLine *last = &g_array_index (array, PointOnLine, array->len - 1);
g_assert_true (array->len > 0);
g_assert_cmpfloat (from_progress, >=, 0.0f);
g_assert_cmpfloat (from_progress, <, to_progress);
g_assert_cmpfloat (to_progress, <=, 1.0f);
g_assert_true (graphene_point_equal (&last->p, from));
g_assert_cmpfloat (last->t, ==, from_progress);
g_array_append_vals (array, (PointOnLine[1]) { { *to, to_progress } }, 1);
return TRUE;
}
static void
test_curve_decompose (void)
{
static const float tolerance = 0.5;
for (int i = 0; i < 100; i++)
{
GArray *array;
GskCurve c;
init_random_curve (&c);
array = g_array_new (FALSE, FALSE, sizeof (PointOnLine));
g_array_append_vals (array, (PointOnLine[1]) { { *gsk_curve_get_start_point (&c), 0.f } }, 1);
g_assert_true (gsk_curve_decompose (&c, tolerance, add_line_to_array, array));
g_assert_cmpint (array->len, >=, 2); /* We at least got a line to the end */
g_assert_cmpfloat (g_array_index (array, PointOnLine, array->len - 1).t, ==, 1.0);
for (int j = 0; j < array->len; j++)
{
PointOnLine *pol = &g_array_index (array, PointOnLine, j);
graphene_point_t p;
/* Check that the points we got are actually on the line */
gsk_curve_get_point (&c, pol->t, &p);
g_assert_true (graphene_point_near (&pol->p, &p, 0.05));
/* Check that the mid point is not further than the tolerance */
if (j > 0)
{
PointOnLine *last = &g_array_index (array, PointOnLine, j - 1);
graphene_point_t mid;
if (pol->t - last->t > MIN_PROGRESS)
{
graphene_point_interpolate (&last->p, &pol->p, 0.5, &mid);
gsk_curve_get_point (&c, (pol->t + last->t) / 2, &p);
/* The decomposer does this cheaper Manhattan distance test,
* so graphene_point_near() does not work */
g_assert_cmpfloat (fabs (mid.x - p.x), <=, tolerance + 0.0002);
g_assert_cmpfloat (fabs (mid.y - p.y), <=, tolerance + 0.0002);
}
}
}
g_array_unref (array);
}
}
static gboolean
add_curve_to_array (GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts,
float weight,
gpointer user_data)
{
GArray *array = user_data;
GskCurve c;
gsk_curve_init_foreach (&c, op, pts, n_pts, weight);
g_array_append_val (array, c);
return TRUE;
}
static void
test_curve_decompose_into (GskPathForeachFlags flags)
{
for (int i = 0; i < 100; i++)
{
GskCurve c;
GskPathBuilder *builder;
const graphene_point_t *s;
GskPath *path;
GArray *array;
init_random_curve (&c);
builder = gsk_path_builder_new ();
s = gsk_curve_get_start_point (&c);
gsk_path_builder_move_to (builder, s->x, s->y);
gsk_curve_builder_to (&c, builder);
path = gsk_path_builder_free_to_path (builder);
array = g_array_new (FALSE, FALSE, sizeof (GskCurve));
g_assert_true (gsk_curve_decompose_curve (&c, flags, 0.1, add_curve_to_array, array));
g_assert_cmpint (array->len, >=, 1);
for (int j = 0; j < array->len; j++)
{
GskCurve *c2 = &g_array_index (array, GskCurve, j);
switch (c2->op)
{
case GSK_PATH_MOVE:
case GSK_PATH_CLOSE:
case GSK_PATH_LINE:
break;
case GSK_PATH_QUAD:
g_assert_true (flags & GSK_PATH_FOREACH_ALLOW_QUAD);
break;
case GSK_PATH_CUBIC:
g_assert_true (flags & GSK_PATH_FOREACH_ALLOW_CUBIC);
break;
case GSK_PATH_CONIC:
g_assert_true (flags & GSK_PATH_FOREACH_ALLOW_CONIC);
break;
default:
g_assert_not_reached ();
}
}
g_array_unref (array);
gsk_path_unref (path);
}
}
static void
test_curve_decompose_into_line (void)
{
test_curve_decompose_into (0);
}
static void
test_curve_decompose_into_quad (void)
{
test_curve_decompose_into (GSK_PATH_FOREACH_ALLOW_QUAD);
}
static void
test_curve_decompose_into_cubic (void)
{
test_curve_decompose_into (GSK_PATH_FOREACH_ALLOW_CUBIC);
}
/* Some sanity checks for splitting curves. */
static void
test_curve_split (void)
{
for (int i = 0; i < 20; i++)
{
GskCurve c;
init_random_curve (&c);
for (int j = 0; j < 20; j++)
{
GskCurve c1, c2;
graphene_point_t p;
graphene_vec2_t t, t1, t2;
float split;
split = g_test_rand_double_range (0.1, 0.9);
gsk_curve_split (&c, split, &c1, &c2);
g_assert_true (c1.op == c.op);
g_assert_true (c2.op == c.op);
g_assert_true (graphene_point_near (gsk_curve_get_start_point (&c),
gsk_curve_get_start_point (&c1), 0.005));
g_assert_true (graphene_point_near (gsk_curve_get_end_point (&c1),
gsk_curve_get_start_point (&c2), 0.005));
g_assert_true (graphene_point_near (gsk_curve_get_end_point (&c),
gsk_curve_get_end_point (&c2), 0.005));
gsk_curve_get_point (&c, split, &p);
gsk_curve_get_tangent (&c, split, &t);
g_assert_true (graphene_point_near (gsk_curve_get_end_point (&c1), &p, 0.005));
g_assert_true (graphene_point_near (gsk_curve_get_start_point (&c2), &p, 0.005));
gsk_curve_get_start_tangent (&c, &t1);
gsk_curve_get_start_tangent (&c1, &t2);
g_assert_true (graphene_vec2_near (&t1, &t2, 0.005));
gsk_curve_get_end_tangent (&c1, &t1);
gsk_curve_get_start_tangent (&c2, &t2);
g_assert_true (graphene_vec2_near (&t1, &t2, 0.005));
g_assert_true (graphene_vec2_near (&t, &t1, 0.005));
g_assert_true (graphene_vec2_near (&t, &t2, 0.005));
gsk_curve_get_end_tangent (&c, &t1);
gsk_curve_get_end_tangent (&c2, &t2);
g_assert_true (graphene_vec2_near (&t1, &t2, 0.005));
#if 0
/* hard to guarantee this for totally random random curves */
g_assert_cmpfloat_with_epsilon (gsk_curve_get_length (&c),
gsk_curve_get_length (&c1) + gsk_curve_get_length (&c2),
1);
#endif
}
}
}
static void
test_curve_derivative (void)
{
GskCurve c;
float t;
graphene_vec2_t t1, t2;
graphene_point_t p;
for (int i = 0; i < 100; i++)
{
init_random_curve (&c);
for (int j = 0; j < 100; j++)
{
t = g_test_rand_double_range (0, 1);
gsk_curve_get_derivative_at (&c, t, &p);
gsk_curve_get_tangent (&c, t, &t1);
graphene_vec2_init (&t2, p.x, p.y);
graphene_vec2_normalize (&t2, &t2);
g_assert_true (graphene_vec2_near (&t1, &t2, 0.1));
}
}
}
static void
test_curve_length (void)
{
GskCurve c;
float l, l0;
for (int i = 0; i < 1000; i++)
{
init_random_curve (&c);
l = gsk_curve_get_length (&c);
l0 = graphene_point_distance (gsk_curve_get_start_point (&c),
gsk_curve_get_end_point (&c),
NULL, NULL);
g_assert_true (l >= l0 - 0.001);
if (c.op == GSK_PATH_LINE)
g_assert_cmpfloat_with_epsilon (l, l0, 0.001);
}
}
int
main (int argc, char *argv[])
{
(g_test_init) (&argc, &argv, NULL);
g_test_add_func ("/curve/points", test_curve_points);
g_test_add_func ("/curve/tangents", test_curve_tangents);
g_test_add_func ("/curve/decompose", test_curve_decompose);
g_test_add_func ("/curve/decompose-line", test_curve_decompose_into_line);
g_test_add_func ("/curve/decompose-quad", test_curve_decompose_into_quad);
g_test_add_func ("/curve/decompose-cubic", test_curve_decompose_into_cubic);
g_test_add_func ("/curve/split", test_curve_split);
g_test_add_func ("/curve/derivative", test_curve_derivative);
g_test_add_func ("/curve/length", test_curve_length);
return g_test_run ();
}