/* The rendering code in here is taken from es2gears, which has the * following copyright notice: * * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Ported to GLES2. * Kristian Høgsberg * May 3, 2010 * * Improve GLES2 port: * * Refactor gear drawing. * * Use correct normals for surfaces. * * Improve shader. * * Use perspective projection transformation. * * Add FPS count. * * Add comments. * Alexandros Frantzis * Jul 13, 2010 */ #include "config.h" #include #include #include #include #include "gtkgears.h" #define STRIPS_PER_TOOTH 7 #define VERTICES_PER_TOOTH 34 #define GEAR_VERTEX_STRIDE 6 static inline void _sincos (double x, double *_sin, double *_cos) { #ifdef HAVE_SINCOS sincos (x, _sin, _cos); #else *_sin = sin (x); *_cos = cos (x); #endif } /** * Struct describing the vertices in triangle strip */ struct vertex_strip { /** The first vertex in the strip */ GLint first; /** The number of consecutive vertices in the strip after the first */ GLint count; }; /* Each vertex consist of GEAR_VERTEX_STRIDE GLfloat attributes */ typedef GLfloat GearVertex[GEAR_VERTEX_STRIDE]; /** * Struct representing a gear. */ struct gear { /** The array of vertices comprising the gear */ GearVertex *vertices; /** The number of vertices comprising the gear */ int nvertices; /** The array of triangle strips comprising the gear */ struct vertex_strip *strips; /** The number of triangle strips comprising the gear */ int nstrips; }; typedef struct { /* The view rotation [x, y, z] */ GLfloat view_rot[GTK_GEARS_N_AXIS]; /* The Vertex Array Object */ GLuint vao; /* The shader program */ GLuint program; /* The gears */ struct gear *gear1; struct gear *gear2; struct gear *gear3; /** The Vertex Buffer Object holding the vertices in the graphics card */ GLuint gear_vbo[3]; /** The location of the shader uniforms */ GLuint ModelViewProjectionMatrix_location; GLuint NormalMatrix_location; GLuint LightSourcePosition_location; GLuint MaterialColor_location; /* The current gear rotation angle */ GLfloat angle; /* The projection matrix */ GLfloat ProjectionMatrix[16]; /* The direction of the directional light for the scene */ GLfloat LightSourcePosition[4]; gint64 first_frame_time; guint tick; GtkLabel *fps_label; } GtkGearsPrivate; G_DEFINE_TYPE_WITH_PRIVATE (GtkGears, gtk_gears, GTK_TYPE_GL_AREA) static gboolean gtk_gears_render (GtkGLArea *area, GdkGLContext *context); static void gtk_gears_reshape (GtkGLArea *area, int width, int height); static void gtk_gears_realize (GtkWidget *widget); static void gtk_gears_unrealize (GtkWidget *widget); static gboolean gtk_gears_tick (GtkWidget *widget, GdkFrameClock *frame_clock, gpointer user_data); static void destroy_gear (struct gear *g); GtkWidget * gtk_gears_new (void) { return g_object_new (gtk_gears_get_type (), "has-depth-buffer", TRUE, NULL); } static void gtk_gears_init (GtkGears *gears) { GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); priv->view_rot[GTK_GEARS_X_AXIS] = 20.0; priv->view_rot[GTK_GEARS_Y_AXIS] = 30.0; priv->view_rot[GTK_GEARS_Z_AXIS] = 20.0; priv->LightSourcePosition[0] = 5.0; priv->LightSourcePosition[1] = 5.0; priv->LightSourcePosition[2] = 10.0; priv->LightSourcePosition[3] = 1.0; priv->tick = gtk_widget_add_tick_callback (GTK_WIDGET (gears), gtk_gears_tick, gears, NULL); } static void gtk_gears_finalize (GObject *obj) { GtkGears *gears = GTK_GEARS (obj); GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); gtk_widget_remove_tick_callback (GTK_WIDGET (gears), priv->tick); g_clear_object (&priv->fps_label); g_clear_pointer (&priv->gear1, destroy_gear); g_clear_pointer (&priv->gear2, destroy_gear); g_clear_pointer (&priv->gear3, destroy_gear); G_OBJECT_CLASS (gtk_gears_parent_class)->finalize (obj); } static void gtk_gears_class_init (GtkGearsClass *klass) { GTK_GL_AREA_CLASS (klass)->render = gtk_gears_render; GTK_GL_AREA_CLASS (klass)->resize = gtk_gears_reshape; GTK_WIDGET_CLASS (klass)->realize = gtk_gears_realize; GTK_WIDGET_CLASS (klass)->unrealize = gtk_gears_unrealize; G_OBJECT_CLASS (klass)->finalize = gtk_gears_finalize; } /* * Fills a gear vertex. * * @param v the vertex to fill * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate * @param n pointer to the normal table * * @return the operation error code */ static GearVertex * vert (GearVertex *v, GLfloat x, GLfloat y, GLfloat z, GLfloat n[3]) { v[0][0] = x; v[0][1] = y; v[0][2] = z; v[0][3] = n[0]; v[0][4] = n[1]; v[0][5] = n[2]; return v + 1; } static void destroy_gear (struct gear *g) { g_free (g->strips); g_free (g->vertices); g_free (g); } /** * Create a gear wheel. * * @param inner_radius radius of hole at center * @param outer_radius radius at center of teeth * @param width width of gear * @param teeth number of teeth * @param tooth_depth depth of tooth * * @return pointer to the constructed struct gear */ static struct gear * create_gear (GLfloat inner_radius, GLfloat outer_radius, GLfloat width, GLint teeth, GLfloat tooth_depth) { GLfloat r0, r1, r2; GLfloat da; GearVertex *v; struct gear *gear; double s[5], c[5]; GLfloat normal[3]; int cur_strip = 0; int i; /* Allocate memory for the gear */ gear = g_malloc (sizeof *gear); /* Calculate the radii used in the gear */ r0 = inner_radius; r1 = outer_radius - tooth_depth / 2.0; r2 = outer_radius + tooth_depth / 2.0; da = 2.0 * M_PI / teeth / 4.0; /* Allocate memory for the triangle strip information */ gear->nstrips = STRIPS_PER_TOOTH * teeth; gear->strips = g_malloc0_n (gear->nstrips, sizeof (*gear->strips)); /* Allocate memory for the vertices */ gear->vertices = g_malloc0_n (VERTICES_PER_TOOTH * teeth, sizeof(*gear->vertices)); v = gear->vertices; for (i = 0; i < teeth; i++) { /* A set of macros for making the creation of the gears easier */ #define GEAR_POINT(p, r, da) do { p.x = (r) * c[(da)]; p.y = (r) * s[(da)]; } while(0) #define SET_NORMAL(x, y, z) do { \ normal[0] = (x); normal[1] = (y); normal[2] = (z); \ } while(0) #define GEAR_VERT(v, point, sign) vert((v), p[(point)].x, p[(point)].y, (sign) * width * 0.5, normal) #define START_STRIP do { \ gear->strips[cur_strip].first = v - gear->vertices; \ } while(0); #define END_STRIP do { \ int _tmp = (v - gear->vertices); \ gear->strips[cur_strip].count = _tmp - gear->strips[cur_strip].first; \ cur_strip++; \ } while (0) #define QUAD_WITH_NORMAL(p1, p2) do { \ SET_NORMAL((p[(p1)].y - p[(p2)].y), -(p[(p1)].x - p[(p2)].x), 0); \ v = GEAR_VERT(v, (p1), -1); \ v = GEAR_VERT(v, (p1), 1); \ v = GEAR_VERT(v, (p2), -1); \ v = GEAR_VERT(v, (p2), 1); \ } while(0) struct point { GLfloat x; GLfloat y; }; /* Create the 7 points (only x,y coords) used to draw a tooth */ struct point p[7]; /* Calculate needed sin/cos for various angles */ _sincos(i * 2.0 * G_PI / teeth + da * 0, &s[0], &c[0]); _sincos(i * 2.0 * M_PI / teeth + da * 1, &s[1], &c[1]); _sincos(i * 2.0 * M_PI / teeth + da * 2, &s[2], &c[2]); _sincos(i * 2.0 * M_PI / teeth + da * 3, &s[3], &c[3]); _sincos(i * 2.0 * M_PI / teeth + da * 4, &s[4], &c[4]); GEAR_POINT(p[0], r2, 1); GEAR_POINT(p[1], r2, 2); GEAR_POINT(p[2], r1, 0); GEAR_POINT(p[3], r1, 3); GEAR_POINT(p[4], r0, 0); GEAR_POINT(p[5], r1, 4); GEAR_POINT(p[6], r0, 4); /* Front face */ START_STRIP; SET_NORMAL(0, 0, 1.0); v = GEAR_VERT(v, 0, +1); v = GEAR_VERT(v, 1, +1); v = GEAR_VERT(v, 2, +1); v = GEAR_VERT(v, 3, +1); v = GEAR_VERT(v, 4, +1); v = GEAR_VERT(v, 5, +1); v = GEAR_VERT(v, 6, +1); END_STRIP; /* Inner face */ START_STRIP; QUAD_WITH_NORMAL(4, 6); END_STRIP; /* Back face */ START_STRIP; SET_NORMAL(0, 0, -1.0); v = GEAR_VERT(v, 6, -1); v = GEAR_VERT(v, 5, -1); v = GEAR_VERT(v, 4, -1); v = GEAR_VERT(v, 3, -1); v = GEAR_VERT(v, 2, -1); v = GEAR_VERT(v, 1, -1); v = GEAR_VERT(v, 0, -1); END_STRIP; /* Outer face */ START_STRIP; QUAD_WITH_NORMAL(0, 2); END_STRIP; START_STRIP; QUAD_WITH_NORMAL(1, 0); END_STRIP; START_STRIP; QUAD_WITH_NORMAL(3, 1); END_STRIP; START_STRIP; QUAD_WITH_NORMAL(5, 3); END_STRIP; } gear->nvertices = (v - gear->vertices); return gear; } /** * Multiplies two 4x4 matrices. * * The result is stored in matrix m. * * @param m the first matrix to multiply * @param n the second matrix to multiply */ static void multiply (GLfloat *m, const GLfloat *n) { GLfloat tmp[16]; const GLfloat *row, *column; div_t d; int i, j; for (i = 0; i < 16; i++) { tmp[i] = 0; d = div(i, 4); row = n + d.quot * 4; column = m + d.rem; for (j = 0; j < 4; j++) tmp[i] += row[j] * column[j * 4]; } memcpy(m, &tmp, sizeof tmp); } /** * Rotates a 4x4 matrix. * * @param[in,out] m the matrix to rotate * @param angle the angle to rotate * @param x the x component of the direction to rotate to * @param y the y component of the direction to rotate to * @param z the z component of the direction to rotate to */ static void rotate(GLfloat *m, GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { double s = sin (angle); double c = cos (angle); GLfloat r[16] = { x * x * (1 - c) + c, y * x * (1 - c) + z * s, x * z * (1 - c) - y * s, 0, x * y * (1 - c) - z * s, y * y * (1 - c) + c, y * z * (1 - c) + x * s, 0, x * z * (1 - c) + y * s, y * z * (1 - c) - x * s, z * z * (1 - c) + c, 0, 0, 0, 0, 1 }; multiply(m, r); } /** * Translates a 4x4 matrix. * * @param[in,out] m the matrix to translate * @param x the x component of the direction to translate to * @param y the y component of the direction to translate to * @param z the z component of the direction to translate to */ static void translate(GLfloat *m, GLfloat x, GLfloat y, GLfloat z) { GLfloat t[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 }; multiply(m, t); } /** * Creates an identity 4x4 matrix. * * @param m the matrix make an identity matrix */ static void identity(GLfloat *m) { GLfloat t[16] = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, }; memcpy(m, t, sizeof(t)); } /** * Transposes a 4x4 matrix. * * @param m the matrix to transpose */ static void transpose(GLfloat *m) { GLfloat t[16] = { m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]}; memcpy(m, t, sizeof(t)); } /** * Inverts a 4x4 matrix. * * This function can currently handle only pure translation-rotation matrices. * Read http://www.gamedev.net/community/forums/topic.asp?topic_id=425118 * for an explanation. */ static void invert(GLfloat *m) { GLfloat t[16]; identity(t); // Extract and invert the translation part 't'. The inverse of a // translation matrix can be calculated by negating the translation // coordinates. t[12] = -m[12]; t[13] = -m[13]; t[14] = -m[14]; // Invert the rotation part 'r'. The inverse of a rotation matrix is // equal to its transpose. m[12] = m[13] = m[14] = 0; transpose(m); // inv(m) = inv(r) * inv(t) multiply(m, t); } /** * Calculate a perspective projection transformation. * * @param m the matrix to save the transformation in * @param fovy the field of view in the y direction * @param aspect the view aspect ratio * @param zNear the near clipping plane * @param zFar the far clipping plane */ void perspective(GLfloat *m, GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar) { GLfloat tmp[16]; double sine, cosine, cotangent, deltaZ; GLfloat radians = fovy / 2 * M_PI / 180; identity(tmp); deltaZ = zFar - zNear; _sincos(radians, &sine, &cosine); if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) return; cotangent = cosine / sine; tmp[0] = cotangent / aspect; tmp[5] = cotangent; tmp[10] = -(zFar + zNear) / deltaZ; tmp[11] = -1; tmp[14] = -2 * zNear * zFar / deltaZ; tmp[15] = 0; memcpy(m, tmp, sizeof(tmp)); } /** * Draws a gear. * * @param gear the gear to draw * @param transform the current transformation matrix * @param x the x position to draw the gear at * @param y the y position to draw the gear at * @param angle the rotation angle of the gear * @param color the color of the gear */ static void draw_gear(GtkGears *self, struct gear *gear, GLuint gear_vbo, GLfloat *transform, GLfloat x, GLfloat y, GLfloat angle, const GLfloat color[4]) { GtkGearsPrivate *priv = gtk_gears_get_instance_private (self); GLfloat model_view[16]; GLfloat normal_matrix[16]; GLfloat model_view_projection[16]; int n; /* Translate and rotate the gear */ memcpy(model_view, transform, sizeof (model_view)); translate(model_view, x, y, 0); rotate(model_view, 2 * G_PI * angle / 360.0, 0, 0, 1); /* Create and set the ModelViewProjectionMatrix */ memcpy(model_view_projection, priv->ProjectionMatrix, sizeof(model_view_projection)); multiply(model_view_projection, model_view); glUniformMatrix4fv(priv->ModelViewProjectionMatrix_location, 1, GL_FALSE, model_view_projection); /* * Create and set the NormalMatrix. It's the inverse transpose of the * ModelView matrix. */ memcpy(normal_matrix, model_view, sizeof (normal_matrix)); invert(normal_matrix); transpose(normal_matrix); glUniformMatrix4fv(priv->NormalMatrix_location, 1, GL_FALSE, normal_matrix); /* Set the gear color */ glUniform4fv(priv->MaterialColor_location, 1, color); /* Set the vertex buffer object to use */ glBindBuffer(GL_ARRAY_BUFFER, gear_vbo); /* Set up the position of the attributes in the vertex buffer object */ glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), NULL); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLfloat *) 0 + 3); /* Enable the attributes */ glEnableVertexAttribArray(0); glEnableVertexAttribArray(1); /* Draw the triangle strips that comprise the gear */ for (n = 0; n < gear->nstrips; n++) { glDrawArrays(GL_TRIANGLE_STRIP, gear->strips[n].first, gear->strips[n].count); } /* Disable the attributes */ glDisableVertexAttribArray(1); glDisableVertexAttribArray(0); } /* new window size or exposure */ static void gtk_gears_reshape (GtkGLArea *area, int width, int height) { GtkGearsPrivate *priv = gtk_gears_get_instance_private ((GtkGears *) area); /* Update the projection matrix */ perspective (priv->ProjectionMatrix, 60.0, width / (float)height, 1.0, 1024.0); /* Set the viewport */ glViewport (0, 0, (GLint) width, (GLint) height); } static gboolean gtk_gears_render (GtkGLArea *area, GdkGLContext *context) { static const GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 }; static const GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 }; static const GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 }; GtkGears *self = GTK_GEARS (area); GtkGearsPrivate *priv = gtk_gears_get_instance_private (self); GLfloat transform[16]; identity (transform); glClearColor (0.0, 0.0, 0.0, 0.0); glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); /* Translate and rotate the view */ translate (transform, 0, 0, -20); rotate (transform, 2 * G_PI * priv->view_rot[0] / 360.0, 1, 0, 0); rotate (transform, 2 * G_PI * priv->view_rot[1] / 360.0, 0, 1, 0); rotate (transform, 2 * G_PI * priv->view_rot[2] / 360.0, 0, 0, 1); /* Draw the gears */ draw_gear (self, priv->gear1, priv->gear_vbo[0], transform, -3.0, -2.0, priv->angle, red); draw_gear (self, priv->gear2, priv->gear_vbo[1], transform, 3.1, -2.0, -2 * priv->angle - 9.0, green); draw_gear (self, priv->gear3, priv->gear_vbo[2], transform, -3.1, 4.2, -2 * priv->angle - 25.0, blue); return TRUE; } static const char vertex_shader_gl[] = "#version 150\n" "\n" "in vec3 position;\n" "in vec3 normal;\n" "\n" "uniform mat4 ModelViewProjectionMatrix;\n" "uniform mat4 NormalMatrix;\n" "uniform vec4 LightSourcePosition;\n" "uniform vec4 MaterialColor;\n" "\n" "smooth out vec4 Color;\n" "\n" "void main(void)\n" "{\n" " // Transform the normal to eye coordinates\n" " vec3 N = normalize(vec3(NormalMatrix * vec4(normal, 1.0)));\n" "\n" " // The LightSourcePosition is actually its direction for directional light\n" " vec3 L = normalize(LightSourcePosition.xyz);\n" "\n" " // Multiply the diffuse value by the vertex color (which is fixed in this case)\n" " // to get the actual color that we will use to draw this vertex with\n" " float diffuse = max(dot(N, L), 0.0);\n" " Color = diffuse * MaterialColor;\n" "\n" " // Transform the position to clip coordinates\n" " gl_Position = ModelViewProjectionMatrix * vec4(position, 1.0);\n" "}"; static const char fragment_shader_gl[] = "#version 150\n" "\n" "smooth in vec4 Color;\n" "\n" "void main(void)\n" "{\n" " gl_FragColor = Color;\n" "}"; static const char vertex_shader_gles[] = "attribute vec3 position;\n" "attribute vec3 normal;\n" "\n" "uniform mat4 ModelViewProjectionMatrix;\n" "uniform mat4 NormalMatrix;\n" "uniform vec4 LightSourcePosition;\n" "uniform vec4 MaterialColor;\n" "\n" "varying vec4 Color;\n" "\n" "void main(void)\n" "{\n" " // Transform the normal to eye coordinates\n" " vec3 N = normalize(vec3(NormalMatrix * vec4(normal, 1.0)));\n" "\n" " // The LightSourcePosition is actually its direction for directional light\n" " vec3 L = normalize(LightSourcePosition.xyz);\n" "\n" " // Multiply the diffuse value by the vertex color (which is fixed in this case)\n" " // to get the actual color that we will use to draw this vertex with\n" " float diffuse = max(dot(N, L), 0.0);\n" " Color = diffuse * MaterialColor;\n" "\n" " // Transform the position to clip coordinates\n" " gl_Position = ModelViewProjectionMatrix * vec4(position, 1.0);\n" "}"; static const char fragment_shader_gles[] = "precision mediump float;\n" "varying vec4 Color;\n" "\n" "void main(void)\n" "{\n" " gl_FragColor = Color;\n" "}"; static void gtk_gears_realize (GtkWidget *widget) { GtkGLArea *glarea = GTK_GL_AREA (widget); GtkGears *gears = GTK_GEARS (widget); GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); GLuint vao, v, f, program; const char *p; char msg[512]; GTK_WIDGET_CLASS (gtk_gears_parent_class)->realize (widget); gtk_gl_area_make_current (glarea); if (gtk_gl_area_get_error (glarea) != NULL) return; glEnable (GL_CULL_FACE); glEnable (GL_DEPTH_TEST); /* Create the VAO */ glGenVertexArrays (1, &vao); glBindVertexArray (vao); priv->vao = vao; /* Compile the vertex shader */ if (gtk_gl_area_get_api (glarea) == GDK_GL_API_GLES) p = vertex_shader_gles; else p = vertex_shader_gl; v = glCreateShader(GL_VERTEX_SHADER); glShaderSource(v, 1, &p, NULL); glCompileShader(v); glGetShaderInfoLog(v, sizeof msg, NULL, msg); g_debug ("vertex shader info: %s\n", msg); /* Compile the fragment shader */ if (gtk_gl_area_get_api (glarea) == GDK_GL_API_GLES) p = fragment_shader_gles; else p = fragment_shader_gl; f = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(f, 1, &p, NULL); glCompileShader(f); glGetShaderInfoLog(f, sizeof msg, NULL, msg); g_debug ("fragment shader info: %s\n", msg); /* Create and link the shader program */ program = glCreateProgram(); glAttachShader(program, v); glAttachShader(program, f); glBindAttribLocation(program, 0, "position"); glBindAttribLocation(program, 1, "normal"); glLinkProgram(program); glGetProgramInfoLog(program, sizeof msg, NULL, msg); g_debug ("program info: %s\n", msg); glDetachShader (program, v); glDetachShader (program, f); glDeleteShader (v); glDeleteShader (f); /* Enable the shaders */ glUseProgram(program); priv->program = program; /* Get the locations of the uniforms so we can access them */ priv->ModelViewProjectionMatrix_location = glGetUniformLocation(program, "ModelViewProjectionMatrix"); priv->NormalMatrix_location = glGetUniformLocation(program, "NormalMatrix"); priv->LightSourcePosition_location = glGetUniformLocation(program, "LightSourcePosition"); priv->MaterialColor_location = glGetUniformLocation(program, "MaterialColor"); /* Set the LightSourcePosition uniform which is constant throughout the program */ glUniform4fv(priv->LightSourcePosition_location, 1, priv->LightSourcePosition); /* make the gears */ priv->gear1 = create_gear(1.0, 4.0, 1.0, 20, 0.7); /* Store the vertices in a vertex buffer object (VBO) */ glGenBuffers (1, &(priv->gear_vbo[0])); glBindBuffer (GL_ARRAY_BUFFER, priv->gear_vbo[0]); glBufferData (GL_ARRAY_BUFFER, priv->gear1->nvertices * sizeof(GearVertex), priv->gear1->vertices, GL_STATIC_DRAW); priv->gear2 = create_gear(0.5, 2.0, 2.0, 10, 0.7); glGenBuffers (1, &(priv->gear_vbo[1])); glBindBuffer (GL_ARRAY_BUFFER, priv->gear_vbo[1]); glBufferData (GL_ARRAY_BUFFER, priv->gear2->nvertices * sizeof(GearVertex), priv->gear2->vertices, GL_STATIC_DRAW); priv->gear3 = create_gear(1.3, 2.0, 0.5, 10, 0.7); glGenBuffers (1, &(priv->gear_vbo[2])); glBindBuffer (GL_ARRAY_BUFFER, priv->gear_vbo[2]); glBufferData (GL_ARRAY_BUFFER, priv->gear3->nvertices * sizeof(GearVertex), priv->gear3->vertices, GL_STATIC_DRAW); } static void gtk_gears_unrealize (GtkWidget *widget) { GtkGLArea *glarea = GTK_GL_AREA (widget); GtkGearsPrivate *priv = gtk_gears_get_instance_private ((GtkGears *) widget); gtk_gl_area_make_current (glarea); if (gtk_gl_area_get_error (glarea) == NULL) { /* Release the resources associated with OpenGL */ if (priv->gear_vbo[0] != 0) glDeleteBuffers (1, &(priv->gear_vbo[0])); if (priv->gear_vbo[1] != 0) glDeleteBuffers (1, &(priv->gear_vbo[1])); if (priv->gear_vbo[2] != 0) glDeleteBuffers (1, &(priv->gear_vbo[2])); if (priv->vao != 0) glDeleteVertexArrays (1, &priv->vao); if (priv->program != 0) glDeleteProgram (priv->program); } priv->ModelViewProjectionMatrix_location = 0; priv->NormalMatrix_location = 0; priv->LightSourcePosition_location = 0; priv->MaterialColor_location = 0; GTK_WIDGET_CLASS (gtk_gears_parent_class)->unrealize (widget); } static gboolean gtk_gears_tick (GtkWidget *widget, GdkFrameClock *frame_clock, gpointer user_data) { GtkGears *gears = GTK_GEARS (widget); GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); GdkFrameTimings *previous_timings; gint64 previous_frame_time; gint64 frame_time; gint64 history_start, history_len; gint64 frame; char *s; frame = gdk_frame_clock_get_frame_counter (frame_clock); frame_time = gdk_frame_clock_get_frame_time (frame_clock); if (priv->first_frame_time == 0) { /* No need for changes on first frame */ priv->first_frame_time = frame_time; if (priv->fps_label) gtk_label_set_label (priv->fps_label, "FPS: ---"); return G_SOURCE_CONTINUE; } /* glxgears advances 70 degrees per second, so do the same */ priv->angle = fmod ((frame_time - priv->first_frame_time) / (double)G_USEC_PER_SEC * 70.0, 360.0); gtk_widget_queue_draw (widget); history_start = gdk_frame_clock_get_history_start (frame_clock); if (priv->fps_label && frame % 60 == 0) { history_len = frame - history_start; if (history_len > 0) { previous_timings = gdk_frame_clock_get_timings (frame_clock, frame - history_len); previous_frame_time = gdk_frame_timings_get_frame_time (previous_timings); s = g_strdup_printf ("FPS: %-4.1f", (G_USEC_PER_SEC * history_len) / (double)(frame_time - previous_frame_time)); gtk_label_set_label (priv->fps_label, s); g_free (s); } } return G_SOURCE_CONTINUE; } void gtk_gears_set_axis (GtkGears *gears, int axis, double value) { GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); if (axis < 0 || axis >= GTK_GEARS_N_AXIS) return; priv->view_rot[axis] = value; gtk_widget_queue_draw (GTK_WIDGET (gears)); } double gtk_gears_get_axis (GtkGears *gears, int axis) { GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); if (axis < 0 || axis >= GTK_GEARS_N_AXIS) return 0.0; return priv->view_rot[axis]; } void gtk_gears_set_fps_label (GtkGears *gears, GtkLabel *label) { GtkGearsPrivate *priv = gtk_gears_get_instance_private (gears); if (label) g_object_ref (label); g_clear_object (&priv->fps_label); priv->fps_label = label; }