Learning_GTK4_tree/gtk/timsort/gtktimsort-impl.c

944 lines
30 KiB
C

/*
* Copyright (C) 2020 Benjamin Otte
* Copyright (C) 2011 Patrick O. Perry
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef NAME
#define NAME WIDTH
#endif
#define DEFINE_TEMP(temp) gpointer temp = g_alloca (WIDTH)
#define ASSIGN(x, y) memcpy (x, y, WIDTH)
#define INCPTR(x) ((gpointer) ((char *) (x) + WIDTH))
#define DECPTR(x) ((gpointer) ((char *) (x) - WIDTH))
#define ELEM(a, i) ((char *) (a) + (i) * WIDTH)
#define LEN(n) ((n) * WIDTH)
#define CONCAT(x, y) gtk_tim_sort_ ## x ## _ ## y
#define MAKE_STR(x, y) CONCAT (x, y)
#define gtk_tim_sort(x) MAKE_STR (x, NAME)
/*
* Reverse the specified range of the specified array.
*
* @param a the array in which a range is to be reversed
* @param hi the index after the last element in the range to be reversed
*/
static void gtk_tim_sort(reverse_range) (GtkTimSort *self,
gpointer a,
gsize hi)
{
DEFINE_TEMP (t);
char *front = a;
char *back = ELEM (a, hi - 1);
g_assert (hi > 0);
while (front < back)
{
ASSIGN (t, front);
ASSIGN (front, back);
ASSIGN (back, t);
front = INCPTR (front);
back = DECPTR (back);
}
}
/*
* Returns the length of the run beginning at the specified position in
* the specified array and reverses the run if it is descending (ensuring
* that the run will always be ascending when the method returns).
*
* A run is the longest ascending sequence with:
*
* a[0] <= a[1] <= a[2] <= ...
*
* or the longest descending sequence with:
*
* a[0] > a[1] > a[2] > ...
*
* For its intended use in a stable mergesort, the strictness of the
* definition of "descending" is needed so that the call can safely
* reverse a descending sequence without violating stability.
*
* @param a the array in which a run is to be counted and possibly reversed
* @param hi index after the last element that may be contained in the run.
* It is required that {@code 0 < hi}.
* @param compare the comparator to used for the sort
* @return the length of the run beginning at the specified position in
* the specified array
*/
static gsize
gtk_tim_sort(prepare_run) (GtkTimSort *self,
GtkTimSortRun *out_change)
{
gsize run_hi = 1;
char *cur;
char *next;
if (self->size <= run_hi)
{
gtk_tim_sort_set_change (out_change, NULL, 0);
return self->size;
}
cur = INCPTR (self->base);
next = INCPTR (cur);
run_hi++;
/* Find end of run, and reverse range if descending */
if (gtk_tim_sort_compare (self, cur, self->base) < 0) /* Descending */
{
while (run_hi < self->size && gtk_tim_sort_compare (self, next, cur) < 0)
{
run_hi++;
cur = next;
next = INCPTR (next);
}
gtk_tim_sort(reverse_range) (self, self->base, run_hi);
gtk_tim_sort_set_change (out_change, self->base, run_hi);
}
else /* Ascending */
{
while (run_hi < self->size && gtk_tim_sort_compare (self, next, cur) >= 0)
{
run_hi++;
cur = next;
next = INCPTR (next);
}
gtk_tim_sort_set_change (out_change, NULL, 0);
}
return run_hi;
}
/*
* Sorts the specified portion of the specified array using a binary
* insertion sort. This is the best method for sorting small numbers
* of elements. It requires O(n log n) compares, but O(n^2) data
* movement (worst case).
*
* If the initial part of the specified range is already sorted,
* this method can take advantage of it: the method assumes that the
* elements from index {@code lo}, inclusive, to {@code start},
* exclusive are already sorted.
*
* @param a the array in which a range is to be sorted
* @param hi the index after the last element in the range to be sorted
* @param start the index of the first element in the range that is
* not already known to be sorted ({@code lo <= start <= hi})
*/
static void gtk_tim_sort(binary_sort) (GtkTimSort *self,
gpointer a,
gsize hi,
gsize start,
GtkTimSortRun *inout_change)
{
DEFINE_TEMP (pivot);
char *startp;
char *change_min = ELEM (a, hi);
char *change_max = a;
g_assert (start <= hi);
if (start == 0)
start++;
startp = ELEM (a, start);
for (; start < hi; start++, startp = INCPTR (startp))
{
/* Set left (and right) to the index where a[start] (pivot) belongs */
char *leftp = a;
gsize right = start;
gsize n;
/*
* Invariants:
* pivot >= all in [0, left).
* pivot < all in [right, start).
*/
while (0 < right)
{
gsize mid = right >> 1;
gpointer midp = ELEM (leftp, mid);
if (gtk_tim_sort_compare (self, startp, midp) < 0)
{
right = mid;
}
else
{
leftp = INCPTR (midp);
right -= (mid + 1);
}
}
g_assert (0 == right);
/*
* The invariants still hold: pivot >= all in [lo, left) and
* pivot < all in [left, start), so pivot belongs at left. Note
* that if there are elements equal to pivot, left points to the
* first slot after them -- that's why this sort is stable.
* Slide elements over to make room to make room for pivot.
*/
n = startp - leftp; /* The number of bytes to move */
if (n == 0)
continue;
ASSIGN (pivot, startp);
memmove (INCPTR (leftp), leftp, n); /* POP: overlaps */
/* a[left] = pivot; */
ASSIGN (leftp, pivot);
change_min = MIN (change_min, leftp);
change_max = MAX (change_max, ELEM (startp, 1));
}
if (change_max > (char *) a)
{
g_assert (change_min < ELEM (a, hi));
if (inout_change && inout_change->len)
{
change_max = MAX (change_max, ELEM (inout_change->base, inout_change->len));
change_min = MIN (change_min, (char *) inout_change->base);
}
gtk_tim_sort_set_change (inout_change, change_min, (change_max - change_min) / WIDTH);
}
}
static gboolean
gtk_tim_sort(merge_append) (GtkTimSort *self,
GtkTimSortRun *out_change)
{
/* Identify next run */
gsize run_len;
run_len = gtk_tim_sort(prepare_run) (self, out_change);
if (run_len == 0)
return FALSE;
/* If run is short, extend to min(self->min_run, self->size) */
if (run_len < self->min_run)
{
gsize force = MIN (self->size, self->min_run);
gtk_tim_sort(binary_sort) (self, self->base, force, run_len, out_change);
run_len = force;
}
/* Push run onto pending-run stack, and maybe merge */
gtk_tim_sort_push_run (self, self->base, run_len);
return TRUE;
}
/*
* Locates the position at which to insert the specified key into the
* specified sorted range; if the range contains an element equal to key,
* returns the index of the leftmost equal element.
*
* @param key the key whose insertion point to search for
* @param base the array in which to search
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
* In other words, key belongs at index b + k; or in other words,
* the first k elements of a should precede key, and the last n - k
* should follow it.
*/
static gsize
gtk_tim_sort(gallop_left) (GtkTimSort *self,
gpointer key,
gpointer base,
gsize len,
gsize hint)
{
char *hintp = ELEM (base, hint);
gsize last_ofs = 0;
gsize ofs = 1;
g_assert (len > 0 && hint < len);
if (gtk_tim_sort_compare (self, key, hintp) > 0)
{
/* Gallop right until a[hint+last_ofs] < key <= a[hint+ofs] */
gsize max_ofs = len - hint;
while (ofs < max_ofs
&& gtk_tim_sort_compare (self, key, ELEM (hintp, ofs)) > 0)
{
last_ofs = ofs;
ofs = (ofs << 1) + 1; /* eventually this becomes SIZE_MAX */
}
if (ofs > max_ofs)
ofs = max_ofs;
/* Make offsets relative to base */
last_ofs += hint + 1; /* POP: we add 1 here so last_ofs stays non-negative */
ofs += hint;
}
else /* key <= a[hint] */
/* Gallop left until a[hint-ofs] < key <= a[hint-last_ofs] */
{
const gsize max_ofs = hint + 1;
gsize tmp;
while (ofs < max_ofs
&& gtk_tim_sort_compare (self, key, ELEM (hintp, -ofs)) <= 0)
{
last_ofs = ofs;
ofs = (ofs << 1) + 1; /* no need to check for overflow */
}
if (ofs > max_ofs)
ofs = max_ofs;
/* Make offsets relative to base */
tmp = last_ofs;
last_ofs = hint + 1 - ofs; /* POP: we add 1 here so last_ofs stays non-negative */
ofs = hint - tmp;
}
g_assert (last_ofs <= ofs && ofs <= len);
/*
* Now a[last_ofs-1] < key <= a[ofs], so key belongs somewhere
* to the right of last_ofs but no farther right than ofs. Do a binary
* search, with invariant a[last_ofs - 1] < key <= a[ofs].
*/
/* last_ofs++; POP: we added 1 above to keep last_ofs non-negative */
while (last_ofs < ofs)
{
/*gsize m = last_ofs + ((ofs - last_ofs) >> 1); */
/* http://stackoverflow.com/questions/4844165/safe-integer-middle-value-formula */
gsize m = (last_ofs & ofs) + ((last_ofs ^ ofs) >> 1);
if (gtk_tim_sort_compare (self, key, ELEM (base, m)) > 0)
last_ofs = m + 1; /* a[m] < key */
else
ofs = m; /* key <= a[m] */
}
g_assert (last_ofs == ofs); /* so a[ofs - 1] < key <= a[ofs] */
return ofs;
}
/*
* Like gallop_left, except that if the range contains an element equal to
* key, gallop_right returns the index after the rightmost equal element.
*
* @param key the key whose insertion point to search for
* @param base the array in which to search
* @param len the length of the range; must be > 0
* @param hint the index at which to begin the search, 0 <= hint < n.
* The closer hint is to the result, the faster this method will run.
* @param c the comparator used to order the range, and to search
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
*/
static gsize
gtk_tim_sort(gallop_right) (GtkTimSort *self,
gpointer key,
gpointer base,
gsize len,
gsize hint)
{
char *hintp = ELEM (base, hint);
gsize ofs = 1;
gsize last_ofs = 0;
g_assert (len > 0 && hint < len);
if (gtk_tim_sort_compare (self, key, hintp) < 0)
{
/* Gallop left until a[hint - ofs] <= key < a[hint - last_ofs] */
gsize max_ofs = hint + 1;
gsize tmp;
while (ofs < max_ofs
&& gtk_tim_sort_compare (self, key, ELEM (hintp, -ofs)) < 0)
{
last_ofs = ofs;
ofs = (ofs << 1) + 1; /* no need to check for overflow */
}
if (ofs > max_ofs)
ofs = max_ofs;
/* Make offsets relative to base */
tmp = last_ofs;
last_ofs = hint + 1 - ofs;
ofs = hint - tmp;
}
else /* a[hint] <= key */
/* Gallop right until a[hint + last_ofs] <= key < a[hint + ofs] */
{
gsize max_ofs = len - hint;
while (ofs < max_ofs
&& gtk_tim_sort_compare (self, key, ELEM (hintp, ofs)) >= 0)
{
last_ofs = ofs;
ofs = (ofs << 1) + 1; /* no need to check for overflow */
}
if (ofs > max_ofs)
ofs = max_ofs;
/* Make offsets relative to base */
last_ofs += hint + 1;
ofs += hint;
}
g_assert (last_ofs <= ofs && ofs <= len);
/*
* Now a[last_ofs - 1] <= key < a[ofs], so key belongs somewhere to
* the right of last_ofs but no farther right than ofs. Do a binary
* search, with invariant a[last_ofs - 1] <= key < a[ofs].
*/
while (last_ofs < ofs)
{
/* gsize m = last_ofs + ((ofs - last_ofs) >> 1); */
gsize m = (last_ofs & ofs) + ((last_ofs ^ ofs) >> 1);
if (gtk_tim_sort_compare (self, key, ELEM (base, m)) < 0)
ofs = m; /* key < a[m] */
else
last_ofs = m + 1; /* a[m] <= key */
}
g_assert (last_ofs == ofs); /* so a[ofs - 1] <= key < a[ofs] */
return ofs;
}
/*
* Merges two adjacent runs in place, in a stable fashion. The first
* element of the first run must be greater than the first element of the
* second run (a[base1] > a[base2]), and the last element of the first run
* (a[base1 + len1-1]) must be greater than all elements of the second run.
*
* For performance, this method should be called only when len1 <= len2;
* its twin, merge_hi should be called if len1 >= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
static void
gtk_tim_sort(merge_lo) (GtkTimSort *self,
gpointer base1,
gsize len1,
gpointer base2,
gsize len2)
{
/* Copy first run into temp array */
gpointer tmp = gtk_tim_sort_ensure_capacity (self, len1);
char *cursor1;
char *cursor2;
char *dest;
gsize min_gallop;
g_assert (len1 > 0 && len2 > 0 && ELEM (base1, len1) == base2);
/* System.arraycopy(a, base1, tmp, 0, len1); */
memcpy (tmp, base1, LEN (len1)); /* POP: can't overlap */
cursor1 = tmp; /* Indexes into tmp array */
cursor2 = base2; /* Indexes int a */
dest = base1; /* Indexes int a */
/* Move first element of second run and deal with degenerate cases */
/* a[dest++] = a[cursor2++]; */
ASSIGN (dest, cursor2);
dest = INCPTR (dest);
cursor2 = INCPTR (cursor2);
if (--len2 == 0)
{
memcpy (dest, cursor1, LEN (len1)); /* POP: can't overlap */
return;
}
if (len1 == 1)
{
memmove (dest, cursor2, LEN (len2)); /* POP: overlaps */
/* a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge */
ASSIGN (ELEM (dest, len2), cursor1);
return;
}
/* Use local variable for performance */
min_gallop = self->min_gallop;
while (TRUE)
{
gsize count1 = 0; /* Number of times in a row that first run won */
gsize count2 = 0; /* Number of times in a row that second run won */
/*
* Do the straightforward thing until (if ever) one run starts
* winning consistently.
*/
do
{
g_assert (len1 > 1 && len2 > 0);
if (gtk_tim_sort_compare (self, cursor2, cursor1) < 0)
{
ASSIGN (dest, cursor2);
dest = INCPTR (dest);
cursor2 = INCPTR (cursor2);
count2++;
count1 = 0;
if (--len2 == 0)
goto outer;
if (count2 >= min_gallop)
break;
}
else
{
ASSIGN (dest, cursor1);
dest = INCPTR (dest);
cursor1 = INCPTR (cursor1);
count1++;
count2 = 0;
if (--len1 == 1)
goto outer;
if (count1 >= min_gallop)
break;
}
}
while (TRUE); /* (count1 | count2) < min_gallop); */
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do
{
g_assert (len1 > 1 && len2 > 0);
count1 = gtk_tim_sort(gallop_right) (self, cursor2, cursor1, len1, 0);
if (count1 != 0)
{
memcpy (dest, cursor1, LEN (count1)); /* POP: can't overlap */
dest = ELEM (dest, count1);
cursor1 = ELEM (cursor1, count1);
len1 -= count1;
if (len1 <= 1) /* len1 == 1 || len1 == 0 */
goto outer;
}
ASSIGN (dest, cursor2);
dest = INCPTR (dest);
cursor2 = INCPTR (cursor2);
if (--len2 == 0)
goto outer;
count2 = gtk_tim_sort(gallop_left) (self, cursor1, cursor2, len2, 0);
if (count2 != 0)
{
memmove (dest, cursor2, LEN (count2)); /* POP: might overlap */
dest = ELEM (dest, count2);
cursor2 = ELEM (cursor2, count2);
len2 -= count2;
if (len2 == 0)
goto outer;
}
ASSIGN (dest, cursor1);
dest = INCPTR (dest);
cursor1 = INCPTR (cursor1);
if (--len1 == 1)
goto outer;
if (min_gallop > 0)
min_gallop--;
}
while (count1 >= MIN_GALLOP || count2 >= MIN_GALLOP);
min_gallop += 2; /* Penalize for leaving gallop mode */
} /* End of "outer" loop */
outer:
self->min_gallop = min_gallop < 1 ? 1 : min_gallop; /* Write back to field */
if (len1 == 1)
{
g_assert (len2 > 0);
memmove (dest, cursor2, LEN (len2)); /* POP: might overlap */
ASSIGN (ELEM (dest, len2), cursor1); /* Last elt of run 1 to end of merge */
}
else if (len1 == 0)
{
g_critical ("Comparison method violates its general contract");
return;
}
else
{
g_assert (len2 == 0);
g_assert (len1 > 1);
memcpy (dest, cursor1, LEN (len1)); /* POP: can't overlap */
}
}
/*
* Like merge_lo, except that this method should be called only if
* len1 >= len2; merge_lo should be called if len1 <= len2. (Either method
* may be called if len1 == len2.)
*
* @param base1 first element in first run to be merged
* @param len1 length of first run to be merged (must be > 0)
* @param base2 first element in second run to be merged
* (must be aBase + aLen)
* @param len2 length of second run to be merged (must be > 0)
*/
static void
gtk_tim_sort(merge_hi) (GtkTimSort *self,
gpointer base1,
gsize len1,
gpointer base2,
gsize len2)
{
/* Copy second run into temp array */
gpointer tmp = gtk_tim_sort_ensure_capacity (self, len2);
char *cursor1; /* Indexes into a */
char *cursor2; /* Indexes into tmp array */
char *dest; /* Indexes into a */
gsize min_gallop;
g_assert (len1 > 0 && len2 > 0 && ELEM (base1, len1) == base2);
memcpy (tmp, base2, LEN (len2)); /* POP: can't overlap */
cursor1 = ELEM (base1, len1 - 1); /* Indexes into a */
cursor2 = ELEM (tmp, len2 - 1); /* Indexes into tmp array */
dest = ELEM (base2, len2 - 1); /* Indexes into a */
/* Move last element of first run and deal with degenerate cases */
/* a[dest--] = a[cursor1--]; */
ASSIGN (dest, cursor1);
dest = DECPTR (dest);
cursor1 = DECPTR (cursor1);
if (--len1 == 0)
{
memcpy (ELEM (dest, -(len2 - 1)), tmp, LEN (len2)); /* POP: can't overlap */
return;
}
if (len2 == 1)
{
dest = ELEM (dest, -len1);
cursor1 = ELEM (cursor1, -len1);
memmove (ELEM (dest, 1), ELEM (cursor1, 1), LEN (len1)); /* POP: overlaps */
/* a[dest] = tmp[cursor2]; */
ASSIGN (dest, cursor2);
return;
}
/* Use local variable for performance */
min_gallop = self->min_gallop;
while (TRUE)
{
gsize count1 = 0; /* Number of times in a row that first run won */
gsize count2 = 0; /* Number of times in a row that second run won */
/*
* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
do
{
g_assert (len1 > 0 && len2 > 1);
if (gtk_tim_sort_compare (self, cursor2, cursor1) < 0)
{
ASSIGN (dest, cursor1);
dest = DECPTR (dest);
cursor1 = DECPTR (cursor1);
count1++;
count2 = 0;
if (--len1 == 0)
goto outer;
}
else
{
ASSIGN (dest, cursor2);
dest = DECPTR (dest);
cursor2 = DECPTR (cursor2);
count2++;
count1 = 0;
if (--len2 == 1)
goto outer;
}
}
while ((count1 | count2) < min_gallop);
/*
* One run is winning so consistently that galloping may be a
* huge win. So try that, and continue galloping until (if ever)
* neither run appears to be winning consistently anymore.
*/
do
{
g_assert (len1 > 0 && len2 > 1);
count1 = len1 - gtk_tim_sort(gallop_right) (self, cursor2, base1, len1, len1 - 1);
if (count1 != 0)
{
dest = ELEM (dest, -count1);
cursor1 = ELEM (cursor1, -count1);
len1 -= count1;
memmove (INCPTR (dest), INCPTR (cursor1),
LEN (count1)); /* POP: might overlap */
if (len1 == 0)
goto outer;
}
ASSIGN (dest, cursor2);
dest = DECPTR (dest);
cursor2 = DECPTR (cursor2);
if (--len2 == 1)
goto outer;
count2 = len2 - gtk_tim_sort(gallop_left) (self, cursor1, tmp, len2, len2 - 1);
if (count2 != 0)
{
dest = ELEM (dest, -count2);
cursor2 = ELEM (cursor2, -count2);
len2 -= count2;
memcpy (INCPTR (dest), INCPTR (cursor2), LEN (count2)); /* POP: can't overlap */
if (len2 <= 1) /* len2 == 1 || len2 == 0 */
goto outer;
}
ASSIGN (dest, cursor1);
dest = DECPTR (dest);
cursor1 = DECPTR (cursor1);
if (--len1 == 0)
goto outer;
if (min_gallop > 0)
min_gallop--;
}
while (count1 >= MIN_GALLOP || count2 >= MIN_GALLOP);
min_gallop += 2; /* Penalize for leaving gallop mode */
} /* End of "outer" loop */
outer:
self->min_gallop = min_gallop < 1 ? 1 : min_gallop; /* Write back to field */
if (len2 == 1)
{
g_assert (len1 > 0);
dest = ELEM (dest, -len1);
cursor1 = ELEM (cursor1, -len1);
memmove (INCPTR (dest), INCPTR (cursor1), LEN (len1)); /* POP: might overlap */
/* a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge */
ASSIGN (dest, cursor2);
}
else if (len2 == 0)
{
g_critical ("Comparison method violates its general contract");
return;
}
else
{
g_assert (len1 == 0);
g_assert (len2 > 0);
memcpy (ELEM (dest, -(len2 - 1)), tmp, LEN (len2)); /* POP: can't overlap */
}
}
/*
* Merges the two runs at stack indices i and i+1. Run i must be
* the penultimate or antepenultimate run on the stack. In other words,
* i must be equal to pending_runs-2 or pending_runs-3.
*
* @param i stack index of the first of the two runs to merge
*/
static void
gtk_tim_sort(merge_at) (GtkTimSort *self,
gsize i,
GtkTimSortRun *out_change)
{
gpointer base1 = self->run[i].base;
gsize len1 = self->run[i].len;
gpointer base2 = self->run[i + 1].base;
gsize len2 = self->run[i + 1].len;
gsize k;
g_assert (self->pending_runs >= 2);
g_assert (i == self->pending_runs - 2 || i == self->pending_runs - 3);
g_assert (len1 > 0 && len2 > 0);
g_assert (ELEM (base1, len1) == base2);
/*
* Find where the first element of run2 goes in run1. Prior elements
* in run1 can be ignored (because they're already in place).
*/
k = gtk_tim_sort(gallop_right) (self, base2, base1, len1, 0);
base1 = ELEM (base1, k);
len1 -= k;
if (len1 == 0)
{
gtk_tim_sort_set_change (out_change, NULL, 0);
goto done;
}
/*
* Find where the last element of run1 goes in run2. Subsequent elements
* in run2 can be ignored (because they're already in place).
*/
len2 = gtk_tim_sort(gallop_left) (self,
ELEM (base1, len1 - 1),
base2, len2, len2 - 1);
if (len2 == 0)
{
gtk_tim_sort_set_change (out_change, NULL, 0);
goto done;
}
/* Merge remaining runs, using tmp array with min(len1, len2) elements */
if (len1 <= len2)
{
if (len1 > self->max_merge_size)
{
base1 = ELEM (self->run[i].base, self->run[i].len - self->max_merge_size);
gtk_tim_sort(merge_lo) (self, base1, self->max_merge_size, base2, len2);
gtk_tim_sort_set_change (out_change, base1, self->max_merge_size + len2);
self->run[i].len -= self->max_merge_size;
self->run[i + 1].base = ELEM (self->run[i + 1].base, - self->max_merge_size);
self->run[i + 1].len += self->max_merge_size;
g_assert (ELEM (self->run[i].base, self->run[i].len) == self->run[i + 1].base);
return;
}
else
{
gtk_tim_sort(merge_lo) (self, base1, len1, base2, len2);
gtk_tim_sort_set_change (out_change, base1, len1 + len2);
}
}
else
{
if (len2 > self->max_merge_size)
{
gtk_tim_sort(merge_hi) (self, base1, len1, base2, self->max_merge_size);
gtk_tim_sort_set_change (out_change, base1, len1 + self->max_merge_size);
self->run[i].len += self->max_merge_size;
self->run[i + 1].base = ELEM (self->run[i + 1].base, self->max_merge_size);
self->run[i + 1].len -= self->max_merge_size;
g_assert (ELEM (self->run[i].base, self->run[i].len) == self->run[i + 1].base);
return;
}
else
{
gtk_tim_sort(merge_hi) (self, base1, len1, base2, len2);
gtk_tim_sort_set_change (out_change, base1, len1 + len2);
}
}
done:
/*
* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run (i+1) goes away in any case.
*/
self->run[i].len += self->run[i + 1].len;
if (i == self->pending_runs - 3)
self->run[i + 1] = self->run[i + 2];
self->pending_runs--;
}
/*
* Examines the stack of runs waiting to be merged and merges adjacent runs
* until the stack invariants are reestablished:
*
* 1. run_len[i - 3] > run_len[i - 2] + run_len[i - 1]
* 2. run_len[i - 2] > run_len[i - 1]
*
* This method is called each time a new run is pushed onto the stack,
* so the invariants are guaranteed to hold for i < pending_runs upon
* entry to the method.
*
* POP:
* Modified according to http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
*
* and
*
* https://bugs.openjdk.java.net/browse/JDK-8072909 (suggestion 2)
*
*/
static gboolean
gtk_tim_sort(merge_collapse) (GtkTimSort *self,
GtkTimSortRun *out_change)
{
GtkTimSortRun *run = self->run;
gsize n;
if (self->pending_runs <= 1)
return FALSE;
n = self->pending_runs - 2;
if ((n > 0 && run[n - 1].len <= run[n].len + run[n + 1].len) ||
(n > 1 && run[n - 2].len <= run[n].len + run[n - 1].len))
{
if (run[n - 1].len < run[n + 1].len)
n--;
}
else if (run[n].len > run[n + 1].len)
{
return FALSE; /* Invariant is established */
}
gtk_tim_sort(merge_at) (self, n, out_change);
return TRUE;
}
/*
* Merges all runs on the stack until only one remains. This method is
* called once, to complete the sort.
*/
static gboolean
gtk_tim_sort(merge_force_collapse) (GtkTimSort *self,
GtkTimSortRun *out_change)
{
gsize n;
if (self->pending_runs <= 1)
return FALSE;
n = self->pending_runs - 2;
if (n > 0 && self->run[n - 1].len < self->run[n + 1].len)
n--;
gtk_tim_sort(merge_at) (self, n, out_change);
return TRUE;
}
static gboolean
gtk_tim_sort(step) (GtkTimSort *self,
GtkTimSortRun *out_change)
{
g_assert (self);
if (gtk_tim_sort(merge_collapse) (self, out_change))
return TRUE;
if (gtk_tim_sort(merge_append) (self, out_change))
return TRUE;
if (gtk_tim_sort(merge_force_collapse) (self, out_change))
return TRUE;
return FALSE;
}
#undef DEFINE_TEMP
#undef ASSIGN
#undef INCPTR
#undef DECPTR
#undef ELEM
#undef LEN
#undef CONCAT
#undef MAKE_STR
#undef gtk_tim_sort
#undef WIDTH
#undef NAME