Learning_GTK4_tree/gsk/gskroundedrect.c
2023-12-12 11:36:42 +01:00

996 lines
33 KiB
C

/* GSK - The GTK Scene Kit
*
* Copyright 2016 Endless
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* GskRoundedRect:
* @bounds: the bounds of the rectangle
* @corner: the size of the 4 rounded corners
*
* A rectangular region with rounded corners.
*
* Application code should normalize rectangles using
* [method@Gsk.RoundedRect.normalize]; this function will ensure that
* the bounds of the rectangle are normalized and ensure that the corner
* values are positive and the corners do not overlap.
*
* All functions taking a `GskRoundedRect` as an argument will internally
* operate on a normalized copy; all functions returning a `GskRoundedRect`
* will always return a normalized one.
*
* The algorithm used for normalizing corner sizes is described in
* [the CSS specification](https://drafts.csswg.org/css-backgrounds-3/#border-radius).
*/
#include "config.h"
#include "gskroundedrect.h"
#include "gskroundedrectprivate.h"
#include "gskdebugprivate.h"
#include "gskrectprivate.h"
#include <math.h>
static void
gsk_rounded_rect_normalize_in_place (GskRoundedRect *self)
{
float factor = 1.0;
float corners;
guint i;
graphene_rect_normalize (&self->bounds);
for (i = 0; i < 4; i++)
{
self->corner[i].width = MAX (self->corner[i].width, 0);
self->corner[i].height = MAX (self->corner[i].height, 0);
}
/* clamp border radius, following CSS specs */
corners = self->corner[GSK_CORNER_TOP_LEFT].width + self->corner[GSK_CORNER_TOP_RIGHT].width;
if (corners > self->bounds.size.width)
factor = MIN (factor, self->bounds.size.width / corners);
corners = self->corner[GSK_CORNER_TOP_RIGHT].height + self->corner[GSK_CORNER_BOTTOM_RIGHT].height;
if (corners > self->bounds.size.height)
factor = MIN (factor, self->bounds.size.height / corners);
corners = self->corner[GSK_CORNER_BOTTOM_RIGHT].width + self->corner[GSK_CORNER_BOTTOM_LEFT].width;
if (corners > self->bounds.size.width)
factor = MIN (factor, self->bounds.size.width / corners);
corners = self->corner[GSK_CORNER_TOP_LEFT].height + self->corner[GSK_CORNER_BOTTOM_LEFT].height;
if (corners > self->bounds.size.height)
factor = MIN (factor, self->bounds.size.height / corners);
for (i = 0; i < 4; i++)
graphene_size_scale (&self->corner[i], factor, &self->corner[i]);
}
/**
* gsk_rounded_rect_init:
* @self: The `GskRoundedRect` to initialize
* @bounds: a `graphene_rect_t` describing the bounds
* @top_left: the rounding radius of the top left corner
* @top_right: the rounding radius of the top right corner
* @bottom_right: the rounding radius of the bottom right corner
* @bottom_left: the rounding radius of the bottom left corner
*
* Initializes the given `GskRoundedRect` with the given values.
*
* This function will implicitly normalize the `GskRoundedRect`
* before returning.
*
* Returns: (transfer none): the initialized rectangle
*/
GskRoundedRect *
gsk_rounded_rect_init (GskRoundedRect *self,
const graphene_rect_t *bounds,
const graphene_size_t *top_left,
const graphene_size_t *top_right,
const graphene_size_t *bottom_right,
const graphene_size_t *bottom_left)
{
graphene_rect_init_from_rect (&self->bounds, bounds);
graphene_size_init_from_size (&self->corner[GSK_CORNER_TOP_LEFT], top_left);
graphene_size_init_from_size (&self->corner[GSK_CORNER_TOP_RIGHT], top_right);
graphene_size_init_from_size (&self->corner[GSK_CORNER_BOTTOM_RIGHT], bottom_right);
graphene_size_init_from_size (&self->corner[GSK_CORNER_BOTTOM_LEFT], bottom_left);
gsk_rounded_rect_normalize_in_place (self);
return self;
}
/**
* gsk_rounded_rect_init_copy:
* @self: a `GskRoundedRect`
* @src: a `GskRoundedRect`
*
* Initializes @self using the given @src rectangle.
*
* This function will not normalize the `GskRoundedRect`,
* so make sure the source is normalized.
*
* Returns: (transfer none): the initialized rectangle
*/
GskRoundedRect *
gsk_rounded_rect_init_copy (GskRoundedRect *self,
const GskRoundedRect *src)
{
*self = *src;
return self;
}
/**
* gsk_rounded_rect_init_from_rect:
* @self: a `GskRoundedRect`
* @bounds: a `graphene_rect_t`
* @radius: the border radius
*
* Initializes @self to the given @bounds and sets the radius
* of all four corners to @radius.
*
* Returns: (transfer none): the initialized rectangle
**/
GskRoundedRect *
gsk_rounded_rect_init_from_rect (GskRoundedRect *self,
const graphene_rect_t *bounds,
float radius)
{
graphene_size_t corner = GRAPHENE_SIZE_INIT(radius, radius);
return gsk_rounded_rect_init (self, bounds, &corner, &corner, &corner, &corner);
}
/**
* gsk_rounded_rect_normalize:
* @self: a `GskRoundedRect`
*
* Normalizes the passed rectangle.
*
* This function will ensure that the bounds of the rectangle
* are normalized and ensure that the corner values are positive
* and the corners do not overlap.
*
* Returns: (transfer none): the normalized rectangle
*/
GskRoundedRect *
gsk_rounded_rect_normalize (GskRoundedRect *self)
{
gsk_rounded_rect_normalize_in_place (self);
return self;
}
/**
* gsk_rounded_rect_offset:
* @self: a `GskRoundedRect`
* @dx: the horizontal offset
* @dy: the vertical offset
*
* Offsets the bound's origin by @dx and @dy.
*
* The size and corners of the rectangle are unchanged.
*
* Returns: (transfer none): the offset rectangle
*/
GskRoundedRect *
gsk_rounded_rect_offset (GskRoundedRect *self,
float dx,
float dy)
{
gsk_rounded_rect_normalize (self);
self->bounds.origin.x += dx;
self->bounds.origin.y += dy;
return self;
}
static inline void
border_radius_shrink (graphene_size_t *corner,
double width,
double height,
const graphene_size_t *max)
{
if (corner->width > 0)
corner->width -= width;
if (corner->height > 0)
corner->height -= height;
if (corner->width <= 0 || corner->height <= 0)
{
corner->width = 0;
corner->height = 0;
}
else
{
corner->width = MIN (corner->width, max->width);
corner->height = MIN (corner->height, max->height);
}
}
/**
* gsk_rounded_rect_shrink:
* @self: The `GskRoundedRect` to shrink or grow
* @top: How far to move the top side downwards
* @right: How far to move the right side to the left
* @bottom: How far to move the bottom side upwards
* @left: How far to move the left side to the right
*
* Shrinks (or grows) the given rectangle by moving the 4 sides
* according to the offsets given.
*
* The corner radii will be changed in a way that tries to keep
* the center of the corner circle intact. This emulates CSS behavior.
*
* This function also works for growing rectangles if you pass
* negative values for the @top, @right, @bottom or @left.
*
* Returns: (transfer none): the resized `GskRoundedRect`
**/
GskRoundedRect *
gsk_rounded_rect_shrink (GskRoundedRect *self,
float top,
float right,
float bottom,
float left)
{
float width = left + right;
float height = top + bottom;
if (self->bounds.size.width - width < 0)
{
self->bounds.origin.x += left * self->bounds.size.width / width;
self->bounds.size.width = 0;
}
else
{
self->bounds.origin.x += left;
self->bounds.size.width -= width;
}
if (self->bounds.size.height - height < 0)
{
self->bounds.origin.y += top * self->bounds.size.height / height;
self->bounds.size.height = 0;
}
else
{
self->bounds.origin.y += top;
self->bounds.size.height -= height;
}
border_radius_shrink (&self->corner[GSK_CORNER_TOP_LEFT], left, top, &self->bounds.size);
border_radius_shrink (&self->corner[GSK_CORNER_TOP_RIGHT], right, top, &self->bounds.size);
border_radius_shrink (&self->corner[GSK_CORNER_BOTTOM_RIGHT], right, bottom, &self->bounds.size);
border_radius_shrink (&self->corner[GSK_CORNER_BOTTOM_LEFT], left, bottom, &self->bounds.size);
return self;
}
void
gsk_rounded_rect_scale_affine (GskRoundedRect *dest,
const GskRoundedRect *src,
float scale_x,
float scale_y,
float dx,
float dy)
{
guint flip = ((scale_x < 0) ? 1 : 0) + (scale_y < 0 ? 2 : 0);
g_assert (dest != src);
graphene_rect_scale (&src->bounds, scale_x, scale_y, &dest->bounds);
graphene_rect_offset (&dest->bounds, dx, dy);
scale_x = fabs (scale_x);
scale_y = fabs (scale_y);
for (guint i = 0; i < 4; i++)
{
dest->corner[i].width = src->corner[i ^ flip].width * scale_x;
dest->corner[i].height = src->corner[i ^ flip].height * scale_y;
}
}
/*<private>
* gsk_rounded_rect_is_circular:
* @self: the `GskRoundedRect` to check
*
* Checks if all corners of @self are quarter-circles (as
* opposed to quarter-ellipses).
*
* Note that different corners can still have different radii.
*
* Returns: %TRUE if the rectangle is circular.
*/
gboolean
gsk_rounded_rect_is_circular (const GskRoundedRect *self)
{
for (guint i = 0; i < 4; i++)
{
if (self->corner[i].width != self->corner[i].height)
return FALSE;
}
return TRUE;
}
/**
* gsk_rounded_rect_is_rectilinear:
* @self: the `GskRoundedRect` to check
*
* Checks if all corners of @self are right angles and the
* rectangle covers all of its bounds.
*
* This information can be used to decide if [ctor@Gsk.ClipNode.new]
* or [ctor@Gsk.RoundedClipNode.new] should be called.
*
* Returns: %TRUE if the rectangle is rectilinear
**/
gboolean
gsk_rounded_rect_is_rectilinear (const GskRoundedRect *self)
{
for (guint i = 0; i < 4; i++)
{
if (self->corner[i].width > 0 ||
self->corner[i].height > 0)
return FALSE;
}
return TRUE;
}
static inline gboolean
ellipsis_contains_point (const graphene_size_t *ellipsis,
const graphene_point_t *point)
{
return (point->x * point->x) / (ellipsis->width * ellipsis->width)
+ (point->y * point->y) / (ellipsis->height * ellipsis->height) <= 1;
}
typedef enum
{
INSIDE,
OUTSIDE_TOP_LEFT,
OUTSIDE_TOP_RIGHT,
OUTSIDE_BOTTOM_LEFT,
OUTSIDE_BOTTOM_RIGHT,
OUTSIDE
} Location;
static Location
gsk_rounded_rect_locate_point (const GskRoundedRect *self,
const graphene_point_t *point)
{
float px, py;
float ox, oy;
ox = self->bounds.origin.x + self->bounds.size.width;
oy = self->bounds.origin.y + self->bounds.size.height;
if (point->x < self->bounds.origin.x ||
point->y < self->bounds.origin.y ||
point->x > ox ||
point->y > oy)
return OUTSIDE;
px = self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width - point->x;
py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height - point->y;
if (px > 0 && py > 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_LEFT], &GRAPHENE_POINT_INIT (px, py)))
return OUTSIDE_TOP_LEFT;
px = ox - self->corner[GSK_CORNER_TOP_RIGHT].width - point->x;
py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height - point->y;
if (px < 0 && py > 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_RIGHT], &GRAPHENE_POINT_INIT (px, py)))
return OUTSIDE_TOP_RIGHT;
px = self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width - point->x;
py = oy - self->corner[GSK_CORNER_BOTTOM_LEFT].height - point->y;
if (px > 0 && py < 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_LEFT],
&GRAPHENE_POINT_INIT (px, py)))
return OUTSIDE_BOTTOM_LEFT;
px = ox - self->corner[GSK_CORNER_BOTTOM_RIGHT].width - point->x;
py = oy - self->corner[GSK_CORNER_BOTTOM_RIGHT].height - point->y;
if (px < 0 && py < 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_RIGHT],
&GRAPHENE_POINT_INIT (px, py)))
return OUTSIDE_BOTTOM_RIGHT;
return INSIDE;
}
/**
* gsk_rounded_rect_contains_point:
* @self: a `GskRoundedRect`
* @point: the point to check
*
* Checks if the given @point is inside the rounded rectangle.
*
* Returns: %TRUE if the @point is inside the rounded rectangle
**/
gboolean
gsk_rounded_rect_contains_point (const GskRoundedRect *self,
const graphene_point_t *point)
{
return gsk_rounded_rect_locate_point (self, point) == INSIDE;
}
/**
* gsk_rounded_rect_contains_rect:
* @self: a `GskRoundedRect`
* @rect: the rectangle to check
*
* Checks if the given @rect is contained inside the rounded rectangle.
*
* Returns: %TRUE if the @rect is fully contained inside the rounded rectangle
**/
gboolean
gsk_rounded_rect_contains_rect (const GskRoundedRect *self,
const graphene_rect_t *rect)
{
float tx, ty;
float px, py;
float ox, oy;
tx = rect->origin.x + rect->size.width;
ty = rect->origin.y + rect->size.height;
ox = self->bounds.origin.x + self->bounds.size.width;
oy = self->bounds.origin.y + self->bounds.size.height;
if (rect->origin.x < self->bounds.origin.x ||
rect->origin.y < self->bounds.origin.y ||
tx > ox ||
ty > oy)
return FALSE;
px = self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width - rect->origin.x;
py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height - rect->origin.y;
if (px > 0 && py > 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_LEFT], &GRAPHENE_POINT_INIT (px, py)))
return FALSE;
px = ox - self->corner[GSK_CORNER_TOP_RIGHT].width - tx;
py = self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height - rect->origin.y;
if (px < 0 && py > 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_TOP_RIGHT], &GRAPHENE_POINT_INIT (px, py)))
return FALSE;
px = self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width - rect->origin.x;
py = oy - self->corner[GSK_CORNER_BOTTOM_LEFT].height - ty;
if (px > 0 && py < 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_LEFT],
&GRAPHENE_POINT_INIT (px, py)))
return FALSE;
px = ox - self->corner[GSK_CORNER_BOTTOM_RIGHT].width - tx;
py = oy - self->corner[GSK_CORNER_BOTTOM_RIGHT].height - ty;
if (px < 0 && py < 0 &&
!ellipsis_contains_point (&self->corner[GSK_CORNER_BOTTOM_RIGHT],
&GRAPHENE_POINT_INIT (px, py)))
return FALSE;
return TRUE;
}
/**
* gsk_rounded_rect_intersects_rect:
* @self: a `GskRoundedRect`
* @rect: the rectangle to check
*
* Checks if part of the given @rect is contained inside the rounded rectangle.
*
* Returns: %TRUE if the @rect intersects with the rounded rectangle
*/
gboolean
gsk_rounded_rect_intersects_rect (const GskRoundedRect *self,
const graphene_rect_t *rect)
{
if (!gsk_rect_intersects (&self->bounds, rect))
return FALSE;
/* If the bounding boxes intersect but the rectangles don't,
* one of the rect's corners must be in the opposite corner's
* outside region
*/
if (gsk_rounded_rect_locate_point (self, &rect->origin) == OUTSIDE_BOTTOM_RIGHT ||
gsk_rounded_rect_locate_point (self, &GRAPHENE_POINT_INIT (rect->origin.x + rect->size.width, rect->origin.y)) == OUTSIDE_BOTTOM_LEFT ||
gsk_rounded_rect_locate_point (self, &GRAPHENE_POINT_INIT (rect->origin.x, rect->origin.y + rect->size.height)) == OUTSIDE_TOP_RIGHT ||
gsk_rounded_rect_locate_point (self, &GRAPHENE_POINT_INIT (rect->origin.x + rect->size.width, rect->origin.y + rect->size.height)) == OUTSIDE_TOP_LEFT)
return FALSE;
return TRUE;
}
#define rect_point0(r) ((r)->origin)
#define rect_point1(r) (GRAPHENE_POINT_INIT ((r)->origin.x + (r)->size.width, (r)->origin.y))
#define rect_point2(r) (GRAPHENE_POINT_INIT ((r)->origin.x + (r)->size.width, (r)->origin.y + (r)->size.height))
#define rect_point3(r) (GRAPHENE_POINT_INIT ((r)->origin.x, (r)->origin.y + (r)->size.height))
#define rounded_rect_corner0(r) \
(GRAPHENE_RECT_INIT((r)->bounds.origin.x, \
(r)->bounds.origin.y, \
(r)->corner[0].width, (r)->corner[0].height))
#define rounded_rect_corner1(r) \
(GRAPHENE_RECT_INIT((r)->bounds.origin.x + (r)->bounds.size.width - (r)->corner[1].width, \
(r)->bounds.origin.y, \
(r)->corner[1].width, (r)->corner[1].height))
#define rounded_rect_corner2(r) \
(GRAPHENE_RECT_INIT((r)->bounds.origin.x + (r)->bounds.size.width - (r)->corner[2].width, \
(r)->bounds.origin.y + (r)->bounds.size.height - (r)->corner[2].height, \
(r)->corner[2].width, (r)->corner[2].height))
#define rounded_rect_corner3(r) \
(GRAPHENE_RECT_INIT((r)->bounds.origin.x, \
(r)->bounds.origin.y + (r)->bounds.size.height - (r)->corner[3].height, \
(r)->corner[3].width, (r)->corner[3].height))
enum {
BELOW,
INNER,
ABOVE
};
static inline void
classify_point (const graphene_point_t *p, const graphene_rect_t *rect, int *px, int *py)
{
if (p->x <= rect->origin.x)
*px = BELOW;
else if (p->x >= rect->origin.x + rect->size.width)
*px = ABOVE;
else
*px = INNER;
if (p->y <= rect->origin.y)
*py = BELOW;
else if (p->y >= rect->origin.y + rect->size.height)
*py = ABOVE;
else
*py = INNER;
}
GskRoundedRectIntersection
gsk_rounded_rect_intersect_with_rect (const GskRoundedRect *self,
const graphene_rect_t *rect,
GskRoundedRect *result)
{
int px, py, qx, qy;
if (!gsk_rect_intersection (&self->bounds, rect, &result->bounds))
return GSK_INTERSECTION_EMPTY;
classify_point (&rect_point0 (rect), &rounded_rect_corner0 (self), &px, &py);
if (px == BELOW && py == BELOW)
{
classify_point (&rect_point2 (rect), &rounded_rect_corner0 (self), &qx, &qy);
if (qx == BELOW || qy == BELOW)
return GSK_INTERSECTION_EMPTY;
else if (qx == INNER && qy == INNER &&
gsk_rounded_rect_locate_point (self, &rect_point2 (rect)) != INSIDE)
return GSK_INTERSECTION_EMPTY;
else if (qx == ABOVE && qy == ABOVE)
result->corner[0] = self->corner[0];
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else if ((px == INNER || py == INNER) &&
gsk_rounded_rect_locate_point (self, &rect_point0 (rect)) != INSIDE)
{
if (gsk_rounded_rect_locate_point (self, &rect_point2 (rect)) == OUTSIDE_TOP_LEFT)
return GSK_INTERSECTION_EMPTY;
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else
result->corner[0].width = result->corner[0].height = 0;
classify_point (&rect_point1 (rect), &rounded_rect_corner1 (self), &px, &py);
if (px == ABOVE && py == BELOW)
{
classify_point (&rect_point3 (rect), &rounded_rect_corner1 (self), &qx, &qy);
if (qx == ABOVE || qy == BELOW)
return GSK_INTERSECTION_EMPTY;
else if (qx == INNER && qy == INNER &&
gsk_rounded_rect_locate_point (self, &rect_point3 (rect)) != INSIDE)
return GSK_INTERSECTION_EMPTY;
else if (qx == BELOW && qy == ABOVE)
result->corner[1] = self->corner[1];
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else if ((px == INNER || py == INNER) &&
gsk_rounded_rect_locate_point (self, &rect_point1 (rect)) != INSIDE)
{
if (gsk_rounded_rect_locate_point (self, &rect_point3 (rect)) == OUTSIDE_TOP_RIGHT)
return GSK_INTERSECTION_EMPTY;
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else
result->corner[1].width = result->corner[1].height = 0;
classify_point (&rect_point2 (rect), &rounded_rect_corner2 (self), &px, &py);
if (px == ABOVE && py == ABOVE)
{
classify_point (&rect_point0 (rect), &rounded_rect_corner2 (self), &qx, &qy);
if (qx == ABOVE || qy == ABOVE)
return GSK_INTERSECTION_EMPTY;
else if (qx == INNER && qy == INNER &&
gsk_rounded_rect_locate_point (self, &rect_point0 (rect)) != INSIDE)
return GSK_INTERSECTION_EMPTY;
else if (qx == BELOW && qy == BELOW)
result->corner[2] = self->corner[2];
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else if ((px == INNER || py == INNER) &&
gsk_rounded_rect_locate_point (self, &rect_point2 (rect)) != INSIDE)
{
if (gsk_rounded_rect_locate_point (self, &rect_point0 (rect)) == OUTSIDE_BOTTOM_RIGHT)
return GSK_INTERSECTION_EMPTY;
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else
result->corner[2].width = result->corner[2].height = 0;
classify_point (&rect_point3 (rect), &rounded_rect_corner3 (self), &px, &py);
if (px == BELOW && py == ABOVE)
{
classify_point (&rect_point1 (rect), &rounded_rect_corner3 (self), &qx, &qy);
if (qx == BELOW || qy == ABOVE)
return GSK_INTERSECTION_EMPTY;
else if (qx == INNER && qy == INNER &&
gsk_rounded_rect_locate_point (self, &rect_point1 (rect)) != INSIDE)
return GSK_INTERSECTION_EMPTY;
else if (qx == ABOVE && qy == BELOW)
result->corner[3] = self->corner[3];
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else if ((px == INNER || py == INNER) &&
gsk_rounded_rect_locate_point (self, &rect_point3 (rect)) != INSIDE)
{
if (gsk_rounded_rect_locate_point (self, &rect_point1 (rect)) == OUTSIDE_BOTTOM_LEFT)
return GSK_INTERSECTION_EMPTY;
else
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
else
result->corner[3].width = result->corner[3].height = 0;
return GSK_INTERSECTION_NONEMPTY;
}
static gboolean
check_nonintersecting_corner (const GskRoundedRect *out,
const GskRoundedRect *in,
GskCorner corner,
float diff_x,
float diff_y,
GskRoundedRect *result)
{
g_assert (diff_x >= 0);
g_assert (diff_y >= 0);
if (out->corner[corner].width < diff_x ||
out->corner[corner].height < diff_y ||
(out->corner[corner].width <= in->corner[corner].width + diff_x &&
out->corner[corner].height <= in->corner[corner].height + diff_y))
{
result->corner[corner] = in->corner[corner];
return TRUE;
}
if (diff_x > 0 || diff_y > 0)
return FALSE;
if (out->corner[corner].width > in->corner[corner].width &&
out->corner[corner].height > in->corner[corner].height)
{
result->corner[corner] = out->corner[corner];
return TRUE;
}
return FALSE;
}
/* a is outside in x direction, b is outside in y direction */
static gboolean
check_intersecting_corner (const GskRoundedRect *a,
const GskRoundedRect *b,
GskCorner corner,
float diff_x,
float diff_y,
GskRoundedRect *result)
{
g_assert (diff_x > 0);
g_assert (diff_y > 0);
if (diff_x < a->corner[corner].width ||
diff_x > a->bounds.size.width - a->corner[corner].width - a->corner[OPPOSITE_CORNER_X (corner)].width ||
diff_y < b->corner[corner].height ||
diff_y > b->bounds.size.height - b->corner[corner].height - b->corner[OPPOSITE_CORNER_Y (corner)].height)
return FALSE;
result->corner[corner] = GRAPHENE_SIZE_INIT (0, 0);
return TRUE;
}
static gboolean
check_corner (const GskRoundedRect *a,
const GskRoundedRect *b,
GskCorner corner,
float diff_x,
float diff_y,
GskRoundedRect *result)
{
if (diff_x >= 0)
{
if (diff_y >= 0)
{
return check_nonintersecting_corner (a, b, corner, diff_x, diff_y, result);
}
else if (diff_x == 0)
{
return check_nonintersecting_corner (b, a, corner, 0, - diff_y, result);
}
else
{
return check_intersecting_corner (a, b, corner, diff_x, - diff_y, result);
}
}
else
{
if (diff_y <= 0)
{
return check_nonintersecting_corner (b, a, corner, - diff_x, - diff_y, result);
}
else
{
return check_intersecting_corner (b, a, corner, - diff_x, diff_y, result);
}
}
}
GskRoundedRectIntersection
gsk_rounded_rect_intersection (const GskRoundedRect *a,
const GskRoundedRect *b,
GskRoundedRect *result)
{
float top, left, bottom, right;
if (!gsk_rect_intersection (&a->bounds, &b->bounds, &result->bounds))
return GSK_INTERSECTION_EMPTY;
left = b->bounds.origin.x - a->bounds.origin.x;
top = b->bounds.origin.y - a->bounds.origin.y;
right = a->bounds.origin.x + a->bounds.size.width - b->bounds.origin.x - b->bounds.size.width;
bottom = a->bounds.origin.y + a->bounds.size.height - b->bounds.origin.y - b->bounds.size.height;
if (check_corner (a, b,
GSK_CORNER_TOP_LEFT,
left, top,
result) &&
check_corner (a, b,
GSK_CORNER_TOP_RIGHT,
right, top,
result) &&
check_corner (a, b,
GSK_CORNER_BOTTOM_LEFT,
left, bottom,
result) &&
check_corner (a, b,
GSK_CORNER_BOTTOM_RIGHT,
right, bottom,
result))
return GSK_INTERSECTION_NONEMPTY;
return GSK_INTERSECTION_NOT_REPRESENTABLE;
}
static void
append_arc (cairo_t *cr, double angle1, double angle2, gboolean negative)
{
if (negative)
cairo_arc_negative (cr, 0.0, 0.0, 1.0, angle1, angle2);
else
cairo_arc (cr, 0.0, 0.0, 1.0, angle1, angle2);
}
static void
_cairo_ellipsis (cairo_t *cr,
double xc, double yc,
double xradius, double yradius,
double angle1, double angle2)
{
cairo_matrix_t save;
if (xradius <= 0.0 || yradius <= 0.0)
{
cairo_line_to (cr, xc, yc);
return;
}
cairo_get_matrix (cr, &save);
cairo_translate (cr, xc, yc);
cairo_scale (cr, xradius, yradius);
append_arc (cr, angle1, angle2, FALSE);
cairo_set_matrix (cr, &save);
}
void
gsk_rounded_rect_path (const GskRoundedRect *self,
cairo_t *cr)
{
cairo_new_sub_path (cr);
_cairo_ellipsis (cr,
self->bounds.origin.x + self->corner[GSK_CORNER_TOP_LEFT].width,
self->bounds.origin.y + self->corner[GSK_CORNER_TOP_LEFT].height,
self->corner[GSK_CORNER_TOP_LEFT].width,
self->corner[GSK_CORNER_TOP_LEFT].height,
G_PI, 3 * G_PI_2);
_cairo_ellipsis (cr,
self->bounds.origin.x + self->bounds.size.width - self->corner[GSK_CORNER_TOP_RIGHT].width,
self->bounds.origin.y + self->corner[GSK_CORNER_TOP_RIGHT].height,
self->corner[GSK_CORNER_TOP_RIGHT].width,
self->corner[GSK_CORNER_TOP_RIGHT].height,
- G_PI_2, 0);
_cairo_ellipsis (cr,
self->bounds.origin.x + self->bounds.size.width - self->corner[GSK_CORNER_BOTTOM_RIGHT].width,
self->bounds.origin.y + self->bounds.size.height - self->corner[GSK_CORNER_BOTTOM_RIGHT].height,
self->corner[GSK_CORNER_BOTTOM_RIGHT].width,
self->corner[GSK_CORNER_BOTTOM_RIGHT].height,
0, G_PI_2);
_cairo_ellipsis (cr,
self->bounds.origin.x + self->corner[GSK_CORNER_BOTTOM_LEFT].width,
self->bounds.origin.y + self->bounds.size.height - self->corner[GSK_CORNER_BOTTOM_LEFT].height,
self->corner[GSK_CORNER_BOTTOM_LEFT].width,
self->corner[GSK_CORNER_BOTTOM_LEFT].height,
G_PI_2, G_PI);
cairo_close_path (cr);
}
/*< private >
* Converts to the format we use in our shaders:
* vec4 rect;
* vec4 corner_widths;
* vec4 corner_heights;
* rect is (x, y, width, height), the corners are the same
* order as in the rounded rect.
*
* This is so that shaders can use just the first vec4 for
* rectilinear rects, the 2nd vec4 for circular rects and
* only look at the last vec4 if they have to.
*/
void
gsk_rounded_rect_to_float (const GskRoundedRect *self,
const graphene_point_t *offset,
float rect[12])
{
guint i;
rect[0] = self->bounds.origin.x + offset->x;
rect[1] = self->bounds.origin.y + offset->y;
rect[2] = self->bounds.size.width;
rect[3] = self->bounds.size.height;
for (i = 0; i < 4; i++)
{
rect[4 + i] = self->corner[i].width;
rect[8 + i] = self->corner[i].height;
}
}
static inline gboolean
gsk_size_equal (const graphene_size_t *s1,
const graphene_size_t *s2)
{
return s1->width == s2->width && s1->height == s2->height;
}
gboolean
gsk_rounded_rect_equal (gconstpointer rect1,
gconstpointer rect2)
{
const GskRoundedRect *self1 = rect1;
const GskRoundedRect *self2 = rect2;
return gsk_rect_equal (&self1->bounds, &self2->bounds)
&& gsk_size_equal (&self1->corner[0], &self2->corner[0])
&& gsk_size_equal (&self1->corner[1], &self2->corner[1])
&& gsk_size_equal (&self1->corner[2], &self2->corner[2])
&& gsk_size_equal (&self1->corner[3], &self2->corner[3]);
}
char *
gsk_rounded_rect_to_string (const GskRoundedRect *self)
{
return g_strdup_printf ("GskRoundedRect %p: Bounds: (%f, %f, %f, %f)"
" Corners: (%f, %f) (%f, %f) (%f, %f) (%f, %f)",
self,
self->bounds.origin.x,
self->bounds.origin.y,
self->bounds.size.width,
self->bounds.size.height,
self->corner[0].width,
self->corner[0].height,
self->corner[1].width,
self->corner[1].height,
self->corner[2].width,
self->corner[2].height,
self->corner[3].width,
self->corner[3].height);
}
/*
* gsk_rounded_rect_get_largest_cover:
* @self: the rounded rect to intersect with
* @rect: the rectangle to intersect
* @result: (out caller-allocates): The resulting rectangle
*
* Computes the largest rectangle that is fully covered by both
* the given rect and the rounded rect.
* In particular, this function respects corners, so
* gsk_rounded_rect_get_largest_cover(self, &self->bounds, &rect)
* can be used to compute a decomposition for a rounded rect itself.
**/
void
gsk_rounded_rect_get_largest_cover (const GskRoundedRect *self,
const graphene_rect_t *rect,
graphene_rect_t *result)
{
graphene_rect_t wide, high;
double start, end;
wide = self->bounds;
start = MAX(self->corner[GSK_CORNER_TOP_LEFT].height, self->corner[GSK_CORNER_TOP_RIGHT].height);
end = MAX(self->corner[GSK_CORNER_BOTTOM_LEFT].height, self->corner[GSK_CORNER_BOTTOM_RIGHT].height);
wide.size.height -= MIN (wide.size.height, start + end);
wide.origin.y += start;
gsk_rect_intersection (&wide, rect, &wide);
high = self->bounds;
start = MAX(self->corner[GSK_CORNER_TOP_LEFT].width, self->corner[GSK_CORNER_BOTTOM_LEFT].width);
end = MAX(self->corner[GSK_CORNER_TOP_RIGHT].width, self->corner[GSK_CORNER_BOTTOM_RIGHT].width);
high.size.width -= MIN (high.size.width, start + end);
high.origin.x += start;
gsk_rect_intersection (&high, rect, &high);
if (wide.size.width * wide.size.height > high.size.width * high.size.height)
*result = wide;
else
*result = high;
}