//----------------------------------------------------------------------------//
// GNU GPL OS/K //
// //
// Desc: Paging memory related functions //
// //
// //
// Copyright © 2018-2019 The OS/K Team //
// //
// This file is part of OS/K. //
// //
// OS/K is free software: you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation, either version 3 of the License, or //
// any later version. //
// //
// OS/K is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY//without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with OS/K. If not, see . //
//----------------------------------------------------------------------------//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//-----------
static pml4_t MmPageMapLevel4[512] __attribute__((__aligned__(KPAGESIZE)));
static ulong *MmPhysicalPageTable __attribute__((__aligned__(KPAGESIZE)));
extern ulong _text;
extern ulong _text_end;
extern ulong _rodata;
extern ulong _rodata_end;
extern ulong _data;
extern ulong _data_end;
extern MemoryMap_t memoryMap;
static ulong MmStackGuards[2] = { 0 };
ulong MmVirtLastAddress = 0;
ulong MmPhysLastKernAddress = 0;
//-----------
//
// Creates our new page table structure and loads it
//
void MmInitPaging(void)
{
pdpe_t *MmPDP = NULL;
pde_t *MmPD = NULL;
pte_t *MmPT = NULL;
ulong index, xedni;
ulong curAddrPML4;
ulong curAddrPDP;
ulong curAddrPD;
ulong curAddrPT;
ulong firstDirectoryAddr = 0;
ulong lastDirectoryAddr = 0;
ulong phDirSize = 0;
KernLog("\tActivating paging...\n");
// Maximum PHYSICAL address in memory
ulong phRamSize = memoryMap.freeRamSize + memoryMap.nonfreeRamSize;
// Difference between the end of kernel and the begin of userspace
MmPhysLastKernAddress = (ulong)(_heap_start + _heap_max);
// Size of physical table
phDirSize = (((phRamSize + KPAGESIZE) / KPAGESIZE)*sizeof(ulong));
// Maximum VIRTUAL address in memory
MmVirtLastAddress = phRamSize;
// Alloc structures
memzero((void *)&MmPageMapLevel4[0], 512*sizeof(ulong));
KalAllocMemoryEx((void**)&MmPhysicalPageTable, phDirSize, M_ZEROED, KPAGESIZE);
//DebugLog("\t\t\t\tPhysical map addr : %p\n", MmPhysicalPageTable);
for (curAddrPML4 = 0;
curAddrPML4 < 512 * KPAGESIZE * 0x8000000;
curAddrPML4 += ((ulong)KPAGESIZE * 0x8000000)) {
// Create an entry in PML4 each 512GB
// 0x8000000 = 512 ^ 3
index = (curAddrPML4 / ((ulong)KPAGESIZE * 0x8000000)) % 512;
if (curAddrPML4 > MmPhysLastKernAddress) {
MmPageMapLevel4[index] = (pdpe_t *)0;
////DebugLog("PML4 %d\n", index);
continue;
}
KalAllocMemoryEx((void**)&MmPDP, 512*sizeof(pde_t), M_ZEROED, KPAGESIZE);
if (!firstDirectoryAddr) {
firstDirectoryAddr = (ulong)MmPDP;
}
//DebugLog("\t\t\t\tPDP %d : %p\n", index, MmPDP);
MmPageMapLevel4[index] = (pdpe_t *)((ulong)MmPDP | PRESENT | READWRITE);
for (curAddrPDP = curAddrPML4;
curAddrPDP < (curAddrPML4 + ((ulong)KPAGESIZE * 0x8000000));
curAddrPDP += ((ulong)KPAGESIZE * 0x40000)) {
// Create an intry in PDP each 1GB
// 0x40000 = 512 ^ 2
index = (curAddrPDP / ((ulong)KPAGESIZE * 0x40000)) % 512;
if (curAddrPDP > MmPhysLastKernAddress) {
MmPDP[index] = (pde_t *)0;
//DebugLog("PDP %d\n", index);
continue;
}
KalAllocMemoryEx((void**)&MmPD, 512*sizeof(pde_t), M_ZEROED, KPAGESIZE);
index = (curAddrPDP / ((ulong)KPAGESIZE * 0x40000)) % 512;
//DebugLog("\t\t\t\tPD %d : %p\n", index, MmPD);
MmPDP[index] = (pde_t *)((ulong)MmPD | PRESENT | READWRITE);
for (curAddrPD = curAddrPDP;
curAddrPD < (curAddrPDP + ((ulong)KPAGESIZE * 0x40000));
curAddrPD += ((ulong)KPAGESIZE * 0x200)) {
// Create an intry in PD each 2MB
// 0x200 = 512
index = (curAddrPD / ((ulong)KPAGESIZE * 0x200)) % 512;
if (curAddrPD > MmPhysLastKernAddress) {
MmPD[index] = (pte_t *)0;
//DebugLog("PD %d\n", index);
continue;
}
KalAllocMemoryEx((void**)&MmPT, 512*sizeof(pte_t), M_ZEROED, KPAGESIZE);
//DebugLog("\t\t\t\tPT %d : %p\n", index, MmPT);
MmPD[index] = (pte_t *)((ulong)MmPT | PRESENT | READWRITE);
for (curAddrPT = curAddrPD;
curAddrPT < (curAddrPD + ((ulong)KPAGESIZE * 0x200));
curAddrPT += (ulong)KPAGESIZE) {
// Create an entry in PT each page of 4KB
index = (curAddrPT / ((ulong)KPAGESIZE)) % 512;
xedni = (curAddrPT / ((ulong)KPAGESIZE));
// STACK GUARD PAGE */
if ((ulong)curAddrPT == (ulong)BtLoaderInfo.stackEndAddr) {
MmPT[index] = (ulong)curAddrPT | PRESENT;
MmPhysicalPageTable[xedni] = (ulong)curAddrPT;
MmStackGuards[0] = (ulong)curAddrPT;
//DebugLog("\tStack Guard at %p\n", curAddrPT);
}
else if ((ulong)curAddrPT == (ulong)BtLoaderInfo.kernelEndAddr) {
MmPT[index] = (ulong)curAddrPT | PRESENT;
MmPhysicalPageTable[xedni] = (ulong)curAddrPT;
MmStackGuards[1] = (ulong)curAddrPT;
//DebugLog("\tStack Guard at %p\n", curAddrPT);
}
// SECTION .TEXT PROTECTION
else if ((ulong)curAddrPT >= (ulong)&_text && (ulong)curAddrPT <= (ulong)&_text_end) {
MmPT[index] = (ulong)curAddrPT | PRESENT;
MmPhysicalPageTable[xedni] = (ulong)curAddrPT;
//DebugLog("\tSection .text at %p\n", curAddrPT);
}
// SECTION .DATA PROTECTION
else if ((ulong)curAddrPT >= (ulong)&_data && (ulong)curAddrPT <= (ulong)&_data_end) {
MmPT[index] = (ulong)curAddrPT | PRESENT | WRITETHR | READWRITE | NX;
MmPhysicalPageTable[xedni] = (ulong)curAddrPT;
//DebugLog("\tSection .data at %p\n", curAddrPT);
}
// SECTION .RODATA PROTECTION
else if ((ulong)curAddrPT >= (ulong)&_rodata && (ulong)curAddrPT <= (ulong)&_rodata_end) {
MmPT[index] = (ulong)curAddrPT | PRESENT | NX;
MmPhysicalPageTable[xedni] = (ulong)curAddrPT;
//DebugLog("\tSection .rodata at %p\n", curAddrPT);
}
// While we're inside the kernel pages
else if ((ulong)curAddrPT <= MmPhysLastKernAddress) {
MmPT[index] = (ulong)curAddrPT | PRESENT | READWRITE;
MmPhysicalPageTable[xedni] = (ulong)curAddrPT;
}
else {
MmPT[index] = (ulong)0;
MmPhysicalPageTable[xedni] = (ulong)0;
}
}
}
}
}
lastDirectoryAddr = (ulong)MmPT;
MmLoadPML4((void *)MmPageMapLevel4);
MmEnableWriteProtect();
DebugLog("\tPage table size : %u MB\n", (lastDirectoryAddr - firstDirectoryAddr + phDirSize)/MB);
}
//
// Get a page from an address
//
ulong *MmGetPageDescriptorFromVirtual(void *virtualAddr)
{
register ulong pml4Index = ((ulong)virtualAddr & 0xFF8000000000) >> 39; // Select bit from 39 to 48
register ulong pdpIndex = ((ulong)virtualAddr & 0x7FC0000000) >> 30; // Select bit from 39 to 48
register ulong pdIndex = ((ulong)virtualAddr & 0x3FE00000) >> 21; // Select bit from 39 to 48
register ulong ptIndex = ((ulong)virtualAddr & 0x1FF000) >> 12; // Select bit from 39 to 48
pdpe_t *pdp = NULL;
pde_t *pd = NULL;
pte_t *pt = NULL;
DebugLog("PML4[%d], PDP[%d], PD[%d], PT[%d]\n", pml4Index, pdpIndex, pdIndex, ptIndex);
if (!((ulong)MmPageMapLevel4[pml4Index] & 0xFFFFFFFFFF000)) { // Select bit from 12 to 51
KalAllocMemoryEx((void**)&MmPageMapLevel4[pml4Index], 512*sizeof(pdpe_t), M_ZEROED, KPAGESIZE);
pdp = (pdpe_t *)((ulong)MmPageMapLevel4[pml4Index] & 0xFFFFFFFFFF000);
DebugLog("Create PDP\n");
} else {
pdp = (pdpe_t *)((ulong)MmPageMapLevel4[pml4Index] & 0xFFFFFFFFFF000);
}
DebugLog("PDP at %p = %p\n", &pdp[0], pdp[pdpIndex]);
if (!((ulong)pdp[pdpIndex] & 0xFFFFFFFFFF000)) { // Select bit from 12 to 51
KalAllocMemoryEx((void**)&pdp[pdpIndex], 512*sizeof(pde_t), M_ZEROED, KPAGESIZE);
pd = (pde_t *)((ulong)pdp[pdpIndex] & 0xFFFFFFFFFF000);
DebugLog("Create PD\n");
} else {
pd = (pde_t *)((ulong)pdp[pdpIndex] & 0xFFFFFFFFFF000);
}
DebugLog("PD at %p = %p\n", &pd[0], pd[pdIndex]);
if (!((ulong)pd[pdIndex] & 0xFFFFFFFFFF000)) { // Select bit from 12 to 51
KalAllocMemoryEx((void**)&pd[pdIndex], 512*sizeof(pte_t), M_ZEROED, KPAGESIZE);
pt = (pte_t *)((ulong)pd[pdIndex] & 0xFFFFFFFFFF000);
DebugLog("Create PT\n");
} else {
pt = (pte_t *)((ulong)pd[pdIndex] & 0xFFFFFFFFFF000);
}
DebugLog("PT at %p = %p\n", &pt[0], pt[ptIndex]);
MmLoadPML4((void *)MmPageMapLevel4);
return &pt[ptIndex];
}
//
// Translates a virtual address to its physical equivalent
//
void *MmTransVirtToPhyAddr(void* virtualAddr)
{
ulong virtAddrPage = (ulong)virtualAddr & ( ~(KPAGESIZE - 1));
ulong *page = MmGetPageDescriptorFromVirtual(virtualAddr);
if (!(page)) {
return NULL;
}
return (void*)(((ulong)*page & 0xFFFFFFFFFF000)+ ((ulong)virtualAddr - (ulong)virtAddrPage));
}
void *MmTransPhyToVirtAddr(void* physicalAddr)
{
ulong phyAddrPage = (ulong)physicalAddr & ( ~((KPAGESIZE - 1) | NX));
return (void*)( MmPhysicalPageTable[(ulong)physicalAddr
/ ((ulong)KPAGESIZE)
] + ((ulong)physicalAddr - phyAddrPage));
}
//
// Add flags to a page
//
void MmSetPage(void* virtualAddr, ulong flags)
{
ulong *page = MmGetPageDescriptorFromVirtual(virtualAddr);
KeFlushTlbSingle(*page);
}
//
// Remove flags of a page
//
void MmUnsetPage(void* virtualAddr, ulong flags)
{
ulong *page = MmGetPageDescriptorFromVirtual(virtualAddr);
KeFlushTlbSingle(*page);
}
//
// Map a page in memory
//
void MmMapPage(void* virtualAddr, void* physicalAddr, ulong flags)
{
//DebugLog("Request %p:%p with %lu\n", virtualAddr, physicalAddr, flags);
ulong *page = MmGetPageDescriptorFromVirtual(virtualAddr);
*page = (ulong)physicalAddr | flags;
MmPhysicalPageTable[(ulong)physicalAddr
/ ((ulong)KPAGESIZE)
] = (ulong)virtualAddr;
KeFlushTlbSingle(virtualAddr);
//DebugLog("Done %p at page %p\n", *page, page);
if ((ulong)virtualAddr > MmVirtLastAddress)
MmVirtLastAddress = (ulong)virtualAddr + KPAGESIZE;
}
//
// Unmap a page in memory
//
void MmUnmapPage(void* virtualAddr)
{
ulong *page = MmGetPageDescriptorFromVirtual(virtualAddr);
/* MmPhysicalPageTable[(ulong)(MmTransVirtToPhyAddr(virtualAddr)) */
/* / ((ulong)KPAGESIZE) */
/* ] = 0; */
/* pt[ */
/* (virtualAddr / (ulong)KPAGESIZE) % 512 */
/* ] = 0; */
KeFlushTlbSingle(virtualAddr);
}
//-----------
//
// Returns the rank of the Stack Guards
//
void *MmGetStackGuards(char rank)
{
return (void *)MmStackGuards[(int)rank];
}
//
// Page fault handler
//
static void PagingHandler(ISRFrame_t *regs)
{
ulong StackGuardOne = (ulong)MmGetStackGuards(0);
ulong StackGuardTwo = (ulong)MmGetStackGuards(1);
if ((regs->cr2 >= StackGuardOne) && (regs->cr2 <= StackGuardOne + KPAGESIZE) && (regs->rsp <= regs->cr2)) {
bprintf(BStdOut,
"\n\n%CPANIC\n[ISR 0x8] Irrecoverable Kernel Stack Underflow\n\n"
" Page Fault Error code : %#x (%b)\n"
" Stack Guard bypassed : %#x",
VGA_COLOR_LIGHT_RED,
regs->ErrorCode,
regs->ErrorCode,
StackGuardOne
);
} else if ((regs->cr2 >= StackGuardTwo) && (regs->cr2 <= StackGuardTwo + KPAGESIZE) && (regs->rsp >= regs->cr2)) {
bprintf(BStdOut,
"\n\n%CPANIC\n[ISR 0x8] Irrecoverable Kernel Stack Overflow\n\n"
" Page Fault Error code : %#x (%b)\n"
" Stack Guard bypassed : %#x",
VGA_COLOR_LIGHT_RED,
regs->ErrorCode,
regs->ErrorCode,
StackGuardTwo
);
} else if (regs->cr2 == 0) {
bprintf(BStdOut,
"\n\n%CPANIC\n[ISR 0x8] Null vector exception !\n\n"
" Page Fault Error code : %#x (%b)\n",
VGA_COLOR_LIGHT_RED,
regs->intNo,
regs->ErrorCode,
regs->ErrorCode
);
} else if (regs->cr2 >= MmVirtLastAddress || regs->cr2 <= 0) {
bprintf(BStdOut,
"\n\n%CPANIC\n[ISR 0x8] Out of bound of the address space at %p !\n\n"
" End of the address space : %p\n"
" Page Fault Error code : %#x (%b)\n",
VGA_COLOR_LIGHT_RED,
regs->cr2,
MmVirtLastAddress,
regs->ErrorCode,
regs->ErrorCode
);
} else {
//XXX page fault
bprintf(BStdOut, "\n\n%CPANIC\n[ISR 0x8] Irrecoverable Page Fault at %p\n\n"
" Error code : 0x%x (%b)",
VGA_COLOR_LIGHT_RED,
regs->cr2,
regs->ErrorCode,
regs->ErrorCode
);
}
bprintf(BStdOut, "\n Description : ");
if (regs->ErrorCode & PRESENT) {
bprintf(BStdOut, "Page-protection violation ");
} else {
bprintf(BStdOut, "Non present page ");
}
if (regs->ErrorCode & READWRITE) {
bprintf(BStdOut, "during write access ");
} else {
bprintf(BStdOut, "during read access ");
}
if (regs->ErrorCode & (1 << 3))
bprintf(BStdOut, "from userspace ");
if (regs->ErrorCode & (1 << 4))
bprintf(BStdOut, "after instruction fetching ");
KeBrkDumpRegisters(regs);
BStdOut->flusher(BStdOut);
KeHaltCPU();
}
void MmActivatePageHandler(void)
{
KeRegisterISR(PagingHandler, 0xe);
//DebugLog("\tPage handler activated\n");
}