coreboot-kgpe-d16/payloads/libpayload/drivers/video/graphics.c

859 lines
24 KiB
C
Raw Normal View History

/*
* This file is part of the libpayload project.
*
* Copyright (C) 2015 Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <libpayload.h>
#include <cbfs.h>
#include <sysinfo.h>
#include "bitmap.h"
/*
* 'canvas' is the drawing area located in the center of the screen. It's a
* square area, stretching vertically to the edges of the screen, leaving
* non-drawing areas on the left and right. The screen is assumed to be
* landscape.
*/
static struct rect canvas;
static struct rect screen;
/*
* Framebuffer is assumed to assign a higher coordinate (larger x, y) to
* a higher address
*/
static struct cb_framebuffer *fbinfo;
static uint8_t *fbaddr;
#define LOG(x...) printf("CBGFX: " x)
#define PIVOT_H_MASK (PIVOT_H_LEFT|PIVOT_H_CENTER|PIVOT_H_RIGHT)
#define PIVOT_V_MASK (PIVOT_V_TOP|PIVOT_V_CENTER|PIVOT_V_BOTTOM)
#define ROUNDUP(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#define ABS(x) ((x) < 0 ? -(x) : (x))
static char initialized = 0;
static const struct vector vzero = {
.x = 0,
.y = 0,
};
static void add_vectors(struct vector *out,
const struct vector *v1, const struct vector *v2)
{
out->x = v1->x + v2->x;
out->y = v1->y + v2->y;
}
static int is_valid_fraction(const struct fraction *f)
{
return f->d != 0;
}
/*
* Transform a vector:
* x' = x * a_x + offset_x
* y' = y * a_y + offset_y
*/
static int transform_vector(struct vector *out,
const struct vector *in,
const struct scale *a,
const struct vector *offset)
{
if (!is_valid_fraction(&a->x) || !is_valid_fraction(&a->y))
return CBGFX_ERROR_INVALID_PARAMETER;
out->x = a->x.n * in->x / a->x.d + offset->x;
out->y = a->y.n * in->y / a->y.d + offset->y;
return CBGFX_SUCCESS;
}
/*
* Returns 1 if v is exclusively within box, 0 if v is inclusively within box,
* or -1 otherwise. Note that only the right and bottom edges are examined.
*/
static int within_box(const struct vector *v, const struct rect *bound)
{
if (v->x < bound->offset.x + bound->size.width &&
v->y < bound->offset.y + bound->size.height)
return 1;
else if (v->x <= bound->offset.x + bound->size.width &&
v->y <= bound->offset.y + bound->size.height)
return 0;
else
return -1;
}
static inline uint32_t calculate_color(const struct rgb_color *rgb,
uint8_t invert)
{
uint32_t color = 0;
color |= (rgb->red >> (8 - fbinfo->red_mask_size))
<< fbinfo->red_mask_pos;
color |= (rgb->green >> (8 - fbinfo->green_mask_size))
<< fbinfo->green_mask_pos;
color |= (rgb->blue >> (8 - fbinfo->blue_mask_size))
<< fbinfo->blue_mask_pos;
if (invert)
color ^= 0xffffffff;
return color;
}
/*
* Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim
* and do the validation at callers' site.
*/
static inline void set_pixel(struct vector *coord, uint32_t color)
{
const int bpp = fbinfo->bits_per_pixel;
const int bpl = fbinfo->bytes_per_line;
struct vector rcoord;
int i;
switch (fbinfo->orientation) {
case CB_FB_ORIENTATION_NORMAL:
default:
rcoord.x = coord->x;
rcoord.y = coord->y;
break;
case CB_FB_ORIENTATION_BOTTOM_UP:
rcoord.x = screen.size.width - 1 - coord->x;
rcoord.y = screen.size.height - 1 - coord->y;
break;
case CB_FB_ORIENTATION_LEFT_UP:
rcoord.x = coord->y;
rcoord.y = screen.size.width - 1 - coord->x;
break;
case CB_FB_ORIENTATION_RIGHT_UP:
rcoord.x = screen.size.height - 1 - coord->y;
rcoord.y = coord->x;
break;
}
uint8_t * const pixel = fbaddr + rcoord.y * bpl + rcoord.x * bpp / 8;
for (i = 0; i < bpp / 8; i++)
pixel[i] = (color >> (i * 8));
}
/*
* Initializes the library. Automatically called by APIs. It sets up
* the canvas and the framebuffer.
*/
static int cbgfx_init(void)
{
if (initialized)
return 0;
fbinfo = lib_sysinfo.framebuffer;
if (!fbinfo)
return CBGFX_ERROR_FRAMEBUFFER_INFO;
fbaddr = phys_to_virt((uint8_t *)(uintptr_t)(fbinfo->physical_address));
if (!fbaddr)
return CBGFX_ERROR_FRAMEBUFFER_ADDR;
switch (fbinfo->orientation) {
default: /* Normal or rotated 180 degrees. */
screen.size.width = fbinfo->x_resolution;
screen.size.height = fbinfo->y_resolution;
break;
case CB_FB_ORIENTATION_LEFT_UP: /* 90 degree rotation. */
case CB_FB_ORIENTATION_RIGHT_UP:
screen.size.width = fbinfo->y_resolution;
screen.size.height = fbinfo->x_resolution;
break;
}
screen.offset.x = 0;
screen.offset.y = 0;
/* Calculate canvas size & offset. Canvas is always square. */
if (screen.size.height > screen.size.width) {
canvas.size.height = screen.size.width;
canvas.size.width = canvas.size.height;
canvas.offset.x = 0;
canvas.offset.y = (screen.size.height - canvas.size.height) / 2;
} else {
canvas.size.height = screen.size.height;
canvas.size.width = canvas.size.height;
canvas.offset.x = (screen.size.width - canvas.size.width) / 2;
canvas.offset.y = 0;
}
initialized = 1;
LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n",
screen.size.width, screen.size.height, screen.offset.x,
canvas.size.width, canvas.size.height, canvas.offset.x);
return 0;
}
int draw_box(const struct rect *box, const struct rgb_color *rgb)
{
struct vector top_left;
struct vector size;
struct vector p, t;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
const uint32_t color = calculate_color(rgb, 0);
const struct scale top_left_s = {
.x = { .n = box->offset.x, .d = CANVAS_SCALE, },
.y = { .n = box->offset.y, .d = CANVAS_SCALE, }
};
const struct scale size_s = {
.x = { .n = box->size.x, .d = CANVAS_SCALE, },
.y = { .n = box->size.y, .d = CANVAS_SCALE, }
};
transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset);
transform_vector(&size, &canvas.size, &size_s, &vzero);
add_vectors(&t, &top_left, &size);
if (within_box(&t, &canvas) < 0) {
LOG("Box exceeds canvas boundary\n");
return CBGFX_ERROR_BOUNDARY;
}
for (p.y = top_left.y; p.y < t.y; p.y++)
for (p.x = top_left.x; p.x < t.x; p.x++)
set_pixel(&p, color);
return CBGFX_SUCCESS;
}
int draw_rounded_box(const struct scale *pos_rel, const struct scale *dim_rel,
const struct rgb_color *rgb,
const struct fraction *thickness,
const struct fraction *radius)
{
struct vector top_left;
struct vector size;
struct vector p, t;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
const uint32_t color = calculate_color(rgb, 0);
transform_vector(&top_left, &canvas.size, pos_rel, &canvas.offset);
transform_vector(&size, &canvas.size, dim_rel, &vzero);
add_vectors(&t, &top_left, &size);
if (within_box(&t, &canvas) < 0) {
LOG("Box exceeds canvas boundary\n");
return CBGFX_ERROR_BOUNDARY;
}
if (!is_valid_fraction(thickness) || !is_valid_fraction(radius))
return CBGFX_ERROR_INVALID_PARAMETER;
struct scale thickness_scale = {
.x = { .n = thickness->n, .d = thickness->d },
.y = { .n = thickness->n, .d = thickness->d },
};
struct scale radius_scale = {
.x = { .n = radius->n, .d = radius->d },
.y = { .n = radius->n, .d = radius->d },
};
struct vector d, r, s;
transform_vector(&d, &canvas.size, &thickness_scale, &vzero);
transform_vector(&r, &canvas.size, &radius_scale, &vzero);
const uint8_t has_thickness = d.x > 0 && d.y > 0;
if (thickness->n != 0 && !has_thickness)
LOG("Thickness truncated to 0\n");
const uint8_t has_radius = r.x > 0 && r.y > 0;
if (radius->n != 0 && !has_radius)
LOG("Radius truncated to 0\n");
if (has_radius) {
if (d.x > r.x || d.y > r.y) {
LOG("Thickness cannot be greater than radius\n");
return CBGFX_ERROR_INVALID_PARAMETER;
}
if (r.x * 2 > t.x - top_left.x || r.y * 2 > t.y - top_left.y) {
LOG("Radius cannot be greater than half of the box\n");
return CBGFX_ERROR_INVALID_PARAMETER;
}
}
/* Step 1: Draw edges */
int32_t x_begin, x_end;
if (has_thickness) {
/* top */
for (p.y = top_left.y; p.y < top_left.y + d.y; p.y++)
for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
set_pixel(&p, color);
/* bottom */
for (p.y = t.y - d.y; p.y < t.y; p.y++)
for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
set_pixel(&p, color);
for (p.y = top_left.y + r.y; p.y < t.y - r.y; p.y++) {
/* left */
for (p.x = top_left.x; p.x < top_left.x + d.x; p.x++)
set_pixel(&p, color);
/* right */
for (p.x = t.x - d.x; p.x < t.x; p.x++)
set_pixel(&p, color);
}
} else {
/* Fill the regions except circular sectors */
for (p.y = top_left.y; p.y < t.y; p.y++) {
if (p.y >= top_left.y + r.y && p.y < t.y - r.y) {
x_begin = top_left.x;
x_end = t.x;
} else {
x_begin = top_left.x + r.x;
x_end = t.x - r.x;
}
for (p.x = x_begin; p.x < x_end; p.x++)
set_pixel(&p, color);
}
}
if (!has_radius)
return CBGFX_SUCCESS;
/*
* Step 2: Draw rounded corners
* When has_thickness, only the border is drawn. With fixed thickness,
* the time complexity is linear to the size of the box.
*/
if (has_thickness) {
s.x = r.x - d.x;
s.y = r.y - d.y;
} else {
s.x = 0;
s.y = 0;
}
/* Use 64 bits to avoid overflow */
int32_t x, y;
uint64_t yy;
const uint64_t rrx = (uint64_t)r.x * r.x, rry = (uint64_t)r.y * r.y;
const uint64_t ssx = (uint64_t)s.x * s.x, ssy = (uint64_t)s.y * s.y;
x_begin = 0;
x_end = 0;
for (y = r.y - 1; y >= 0; y--) {
/*
* The inequality is valid in the beginning of each iteration:
* y^2 + x_end^2 < r^2
*/
yy = (uint64_t)y * y;
/* Check yy/ssy + xx/ssx < 1 */
while (yy * ssx + x_begin * x_begin * ssy < ssx * ssy)
x_begin++;
/* The inequality must be valid now: y^2 + x_begin >= s^2 */
x = x_begin;
/* Check yy/rry + xx/rrx < 1 */
while (x < x_end || yy * rrx + x * x * rry < rrx * rry) {
/*
* Example sequence of (y, x) when s = (4, 4) and
* r = (5, 5):
* [(4, 0), (4, 1), (4, 2), (3, 3), (2, 4),
* (1, 4), (0, 4)].
* If s.x==s.y r.x==r.y, then the sequence will be
* symmetric, and x and y will range from 0 to (r-1).
*/
/* top left */
p.y = top_left.y + r.y - 1 - y;
p.x = top_left.x + r.x - 1 - x;
set_pixel(&p, color);
/* top right */
p.y = top_left.y + r.y - 1 - y;
p.x = t.x - r.x + x;
set_pixel(&p, color);
/* bottom left */
p.y = t.y - r.y + y;
p.x = top_left.x + r.x - 1 - x;
set_pixel(&p, color);
/* bottom right */
p.y = t.y - r.y + y;
p.x = t.x - r.x + x;
set_pixel(&p, color);
x++;
}
x_end = x;
/* (x_begin <= x_end) must hold now */
}
return CBGFX_SUCCESS;
}
int clear_canvas(const struct rgb_color *rgb)
{
const struct rect box = {
vzero,
.size = {
.width = CANVAS_SCALE,
.height = CANVAS_SCALE,
},
};
if (cbgfx_init())
return CBGFX_ERROR_INIT;
return draw_box(&box, rgb);
}
int clear_screen(const struct rgb_color *rgb)
{
if (cbgfx_init())
return CBGFX_ERROR_INIT;
struct vector p;
uint32_t color = calculate_color(rgb, 0);
const int bpp = fbinfo->bits_per_pixel;
const int bpl = fbinfo->bytes_per_line;
/* If all significant bytes in color are equal, fastpath through memset.
* We assume that for 32bpp the high byte gets ignored anyway. */
if ((((color >> 8) & 0xff) == (color & 0xff)) && (bpp == 16 ||
(((color >> 16) & 0xff) == (color & 0xff)))) {
memset(fbaddr, color & 0xff, fbinfo->y_resolution * bpl);
} else {
for (p.y = 0; p.y < screen.size.height; p.y++)
for (p.x = 0; p.x < screen.size.width; p.x++)
set_pixel(&p, color);
}
return CBGFX_SUCCESS;
}
/*
* Bi-linear Interpolation
*
* It estimates the value of a middle point (tx, ty) using the values from four
* adjacent points (q00, q01, q10, q11).
*/
static uint32_t bli(uint32_t q00, uint32_t q10, uint32_t q01, uint32_t q11,
struct fraction *tx, struct fraction *ty)
{
uint32_t r0 = (tx->n * q10 + (tx->d - tx->n) * q00) / tx->d;
uint32_t r1 = (tx->n * q11 + (tx->d - tx->n) * q01) / tx->d;
uint32_t p = (ty->n * r1 + (ty->d - ty->n) * r0) / ty->d;
return p;
}
static int draw_bitmap_v3(const struct vector *top_left,
const struct scale *scale,
const struct vector *dim,
const struct vector *dim_org,
const struct bitmap_header_v3 *header,
const struct bitmap_palette_element_v3 *pal,
const uint8_t *pixel_array,
uint8_t invert)
{
const int bpp = header->bits_per_pixel;
int32_t dir;
struct vector p;
if (header->compression) {
LOG("Compressed bitmaps are not supported\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (bpp >= 16) {
LOG("Non-palette bitmaps are not supported\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (bpp != 8) {
LOG("Unsupported bits per pixel: %d\n", bpp);
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (scale->x.n == 0 || scale->y.n == 0) {
LOG("Scaling out of range\n");
return CBGFX_ERROR_SCALE_OUT_OF_RANGE;
}
const int32_t y_stride = ROUNDUP(dim_org->width * bpp / 8, 4);
/*
* header->height can be positive or negative.
*
* If it's negative, pixel data is stored from top to bottom. We render
* image from the lowest row to the highest row.
*
* If it's positive, pixel data is stored from bottom to top. We render
* image from the highest row to the lowest row.
*/
p.y = top_left->y;
if (header->height < 0) {
dir = 1;
} else {
p.y += dim->height - 1;
dir = -1;
}
/*
* Plot pixels scaled by the bilinear interpolation. We scan over the
* image on canvas (using d) and find the corresponding pixel in the
* bitmap data (using s0, s1).
*
* When d hits the right bottom corner, s0 also hits the right bottom
* corner of the pixel array because that's how scale->x and scale->y
* have been set. Since the pixel array size is already validated in
* parse_bitmap_header_v3, s0 is guaranteed not to exceed pixel array
* boundary.
*/
struct vector s0, s1, d;
struct fraction tx, ty;
for (d.y = 0; d.y < dim->height; d.y++, p.y += dir) {
s0.y = d.y * scale->y.d / scale->y.n;
s1.y = s0.y;
if (s1.y + 1 < dim_org->height)
s1.y++;
ty.d = scale->y.n;
ty.n = (d.y * scale->y.d) % scale->y.n;
const uint8_t *data0 = pixel_array + s0.y * y_stride;
const uint8_t *data1 = pixel_array + s1.y * y_stride;
p.x = top_left->x;
for (d.x = 0; d.x < dim->width; d.x++, p.x++) {
s0.x = d.x * scale->x.d / scale->x.n;
s1.x = s0.x;
if (s1.x + 1 < dim_org->width)
s1.x++;
tx.d = scale->x.n;
tx.n = (d.x * scale->x.d) % scale->x.n;
uint8_t c00 = data0[s0.x];
uint8_t c10 = data0[s1.x];
uint8_t c01 = data1[s0.x];
uint8_t c11 = data1[s1.x];
if (c00 >= header->colors_used
|| c10 >= header->colors_used
|| c01 >= header->colors_used
|| c11 >= header->colors_used) {
LOG("Color index exceeds palette boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
const struct rgb_color rgb = {
.red = bli(pal[c00].red, pal[c10].red,
pal[c01].red, pal[c11].red,
&tx, &ty),
.green = bli(pal[c00].green, pal[c10].green,
pal[c01].green, pal[c11].green,
&tx, &ty),
.blue = bli(pal[c00].blue, pal[c10].blue,
pal[c01].blue, pal[c11].blue,
&tx, &ty),
};
set_pixel(&p, calculate_color(&rgb, invert));
}
}
return CBGFX_SUCCESS;
}
static int get_bitmap_file_header(const void *bitmap, size_t size,
struct bitmap_file_header *file_header)
{
const struct bitmap_file_header *fh;
if (sizeof(*file_header) > size) {
LOG("Invalid bitmap data\n");
return CBGFX_ERROR_BITMAP_DATA;
}
fh = (struct bitmap_file_header *)bitmap;
if (fh->signature[0] != 'B' || fh->signature[1] != 'M') {
LOG("Bitmap signature mismatch\n");
return CBGFX_ERROR_BITMAP_SIGNATURE;
}
file_header->file_size = le32toh(fh->file_size);
if (file_header->file_size != size) {
LOG("Bitmap file size does not match cbfs file size\n");
return CBGFX_ERROR_BITMAP_DATA;
}
file_header->bitmap_offset = le32toh(fh->bitmap_offset);
return CBGFX_SUCCESS;
}
static int parse_bitmap_header_v3(
const uint8_t *bitmap,
size_t size,
/* ^--- IN / OUT ---v */
struct bitmap_header_v3 *header,
const struct bitmap_palette_element_v3 **palette,
const uint8_t **pixel_array,
struct vector *dim_org)
{
struct bitmap_file_header file_header;
struct bitmap_header_v3 *h;
int rv;
rv = get_bitmap_file_header(bitmap, size, &file_header);
if (rv)
return rv;
size_t header_offset = sizeof(struct bitmap_file_header);
size_t header_size = sizeof(struct bitmap_header_v3);
size_t palette_offset = header_offset + header_size;
size_t file_size = file_header.file_size;
h = (struct bitmap_header_v3 *)(bitmap + header_offset);
header->header_size = le32toh(h->header_size);
if (header->header_size != header_size) {
LOG("Unsupported bitmap format\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
header->width = le32toh(h->width);
header->height = le32toh(h->height);
if (header->width == 0 || header->height == 0) {
LOG("Invalid image width or height\n");
return CBGFX_ERROR_BITMAP_DATA;
}
dim_org->width = header->width;
dim_org->height = ABS(header->height);
header->bits_per_pixel = le16toh(h->bits_per_pixel);
header->compression = le32toh(h->compression);
header->size = le32toh(h->size);
header->colors_used = le32toh(h->colors_used);
size_t palette_size = header->colors_used
* sizeof(struct bitmap_palette_element_v3);
size_t pixel_offset = file_header.bitmap_offset;
if (pixel_offset > file_size) {
LOG("Bitmap pixel data exceeds buffer boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
if (palette_offset + palette_size > pixel_offset) {
LOG("Bitmap palette data exceeds palette boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
*palette = (struct bitmap_palette_element_v3 *)(bitmap +
palette_offset);
size_t pixel_size = header->size;
if (pixel_size != dim_org->height *
ROUNDUP(dim_org->width * header->bits_per_pixel / 8, 4)) {
LOG("Bitmap pixel array size does not match expected size\n");
return CBGFX_ERROR_BITMAP_DATA;
}
if (pixel_offset + pixel_size > file_size) {
LOG("Bitmap pixel array exceeds buffer boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
*pixel_array = bitmap + pixel_offset;
return CBGFX_SUCCESS;
}
/*
* This calculates the dimension of the image projected on the canvas from the
* dimension relative to the canvas size. If either width or height is zero, it
* is derived from the other (non-zero) value to keep the aspect ratio.
*/
static int calculate_dimension(const struct vector *dim_org,
const struct scale *dim_rel,
struct vector *dim)
{
if (dim_rel->x.n == 0 && dim_rel->y.n == 0)
return CBGFX_ERROR_INVALID_PARAMETER;
if (dim_rel->x.n > dim_rel->x.d || dim_rel->y.n > dim_rel->y.d)
return CBGFX_ERROR_INVALID_PARAMETER;
if (dim_rel->x.n > 0) {
if (!is_valid_fraction(&dim_rel->x))
return CBGFX_ERROR_INVALID_PARAMETER;
dim->width = canvas.size.width * dim_rel->x.n / dim_rel->x.d;
}
if (dim_rel->y.n > 0) {
if (!is_valid_fraction(&dim_rel->y))
return CBGFX_ERROR_INVALID_PARAMETER;
dim->height = canvas.size.height * dim_rel->y.n / dim_rel->y.d;
}
/* Derive height from width using aspect ratio */
if (dim_rel->y.n == 0)
dim->height = dim->width * dim_org->height / dim_org->width;
/* Derive width from height using aspect ratio */
if (dim_rel->x.n == 0)
dim->width = dim->height * dim_org->width / dim_org->height;
return CBGFX_SUCCESS;
}
static int calculate_position(const struct vector *dim,
const struct scale *pos_rel, uint8_t pivot,
struct vector *top_left)
{
int rv;
rv = transform_vector(top_left, &canvas.size, pos_rel, &canvas.offset);
if (rv)
return rv;
switch (pivot & PIVOT_H_MASK) {
case PIVOT_H_LEFT:
break;
case PIVOT_H_CENTER:
top_left->x -= dim->width / 2;
break;
case PIVOT_H_RIGHT:
top_left->x -= dim->width;
break;
default:
return CBGFX_ERROR_INVALID_PARAMETER;
}
switch (pivot & PIVOT_V_MASK) {
case PIVOT_V_TOP:
break;
case PIVOT_V_CENTER:
top_left->y -= dim->height / 2;
break;
case PIVOT_V_BOTTOM:
top_left->y -= dim->height;
break;
default:
return CBGFX_ERROR_INVALID_PARAMETER;
}
return CBGFX_SUCCESS;
}
static int check_boundary(const struct vector *top_left,
const struct vector *dim,
const struct rect *bound)
{
struct vector v;
add_vectors(&v, dim, top_left);
if (top_left->x < bound->offset.x
|| top_left->y < bound->offset.y
|| within_box(&v, bound) < 0)
return CBGFX_ERROR_BOUNDARY;
return CBGFX_SUCCESS;
}
int draw_bitmap(const void *bitmap, size_t size,
const struct scale *pos_rel, const struct scale *dim_rel,
uint32_t flags)
{
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector top_left, dim, dim_org;
struct scale scale;
int rv;
const uint8_t pivot = flags & PIVOT_MASK;
const uint8_t invert = (flags & INVERT_COLORS) >> INVERT_SHIFT;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
/* only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, size,
&header, &palette, &pixel_array, &dim_org);
if (rv)
return rv;
/* Calculate height and width of the image */
rv = calculate_dimension(&dim_org, dim_rel, &dim);
if (rv)
return rv;
/* Calculate self scale */
scale.x.n = dim.width;
scale.x.d = dim_org.width;
scale.y.n = dim.height;
scale.y.d = dim_org.height;
/* Calculate coordinate */
rv = calculate_position(&dim, pos_rel, pivot, &top_left);
if (rv)
return rv;
rv = check_boundary(&top_left, &dim, &canvas);
if (rv) {
LOG("Bitmap image exceeds canvas boundary\n");
return rv;
}
return draw_bitmap_v3(&top_left, &scale, &dim, &dim_org,
&header, palette, pixel_array, invert);
}
int draw_bitmap_direct(const void *bitmap, size_t size,
const struct vector *top_left)
{
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector dim;
struct scale scale;
int rv;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
/* only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, size,
&header, &palette, &pixel_array, &dim);
if (rv)
return rv;
/* Calculate self scale */
scale.x.n = 1;
scale.x.d = 1;
scale.y.n = 1;
scale.y.d = 1;
rv = check_boundary(top_left, &dim, &screen);
if (rv) {
LOG("Bitmap image exceeds screen boundary\n");
return rv;
}
return draw_bitmap_v3(top_left, &scale, &dim, &dim,
&header, palette, pixel_array, 0);
}
int get_bitmap_dimension(const void *bitmap, size_t sz, struct scale *dim_rel)
{
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector dim, dim_org;
int rv;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
/* Only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, sz,
&header, &palette, &pixel_array, &dim_org);
if (rv)
return rv;
/* Calculate height and width of the image */
rv = calculate_dimension(&dim_org, dim_rel, &dim);
if (rv)
return rv;
/* Calculate size relative to the canvas */
dim_rel->x.n = dim.width;
dim_rel->x.d = canvas.size.width;
dim_rel->y.n = dim.height;
dim_rel->y.d = canvas.size.height;
return CBGFX_SUCCESS;
}