coreboot-kgpe-d16/util/cbfstool/cbfs_image.c

1322 lines
40 KiB
C
Raw Normal View History

/*
* CBFS Image Manipulation
*
* Copyright (C) 2013 The Chromium OS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
Remove address from GPLv2 headers As per discussion with lawyers[tm], it's not a good idea to shorten the license header too much - not for legal reasons but because there are tools that look for them, and giving them a standard pattern simplifies things. However, we got confirmation that we don't have to update every file ever added to coreboot whenever the FSF gets a new lease, but can drop the address instead. util/kconfig is excluded because that's imported code that we may want to synchronize every now and then. $ find * -type f -exec sed -i "s:Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *MA[, ]*02110-1301[, ]*USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 59 Temple Place[-, ]*Suite 330, Boston, MA *02111-1307[, ]*USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.:Foundation, Inc.:" {} + $ find * -type f -a \! -name \*.patch \ -a \! -name \*_shipped \ -a \! -name LICENSE_GPL \ -a \! -name LGPL.txt \ -a \! -name COPYING \ -a \! -name DISCLAIMER \ -exec sed -i "/Foundation, Inc./ N;s:Foundation, Inc.* USA\.* *:Foundation, Inc. :;s:Foundation, Inc. $:Foundation, Inc.:" {} + Change-Id: Icc968a5a5f3a5df8d32b940f9cdb35350654bef9 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Reviewed-on: http://review.coreboot.org/9233 Tested-by: build bot (Jenkins) Reviewed-by: Vladimir Serbinenko <phcoder@gmail.com>
2015-03-26 15:17:45 +01:00
* Foundation, Inc.
*/
#include <inttypes.h>
#include <libgen.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
#include <strings.h>
#include "common.h"
#include "cbfs_image.h"
cbfstool: Make the add action choose an aligned entries capacity This fixes an inconsistency between `cbfstool create` and `cbfstool add` that was resulting in confusing claims about the amount of free space at the end of a CBFS. Calls to `cbfstool add` check whether a file fits under a given empty file entry by testing whether it would collide with the beginning of the *subsequent* file header; thus, if a file's end is unaligned, its reported size will not match the actual available capacity. Although deleted entries always end on an alignment boundary because `cbfstool remove` expands them to fill the available space, `cbfstool create` doesn't necessarily size a new entries region to result in an empty entry with an aligned end. This problem never resulted in clobbering important data because cbfstool would blindly reserve 64B (or the selected alignment) of free space immediately after the all-inclusive empty file entry. This change alters the way this reservation is reported: only the overhang past the alignment is used as hidden padding, and the empty entry's capacity is always reported such that it ends at an aligned address. Much of the time that went into this patch was spent building trust in the trickery cbfstool employs to avoid explicitly tracking the image's total capacity for entries, so below are two proofs of correctness to save others time and discourage inadvertent breakage: OBSERVATION (A): A check in cbfs_image_create() guarantees that an aligned CBFS empty file header is small enough that it won't cross another aligned address. OBSERVATION (B): In cbfs_image_create(), the initial empty entry is sized such that its contents end on an aligned address. THM. 1: Placing a new file within an empty entry located below an existing file entry will never leave an aligned flash address containing neither the beginning of a file header nor part of a file. We can prove this by contradiction: assume a newly-added file neither fills to the end of the preexisting empty entry nor leaves room for another aligned empty header after it. Then the first aligned address after the end of the newly-inserted file... - CASE 1: ...already contains a preexisting file entry header. + Then that address contains a file header. - CASE 2: ...does not already house a file entry header. + Then because CBFS content doesn't fall outside headers, the area between there and the *next* aligned address after that is unused. + By (A), we can fit a file header without clobbering anything. + Then that address now contains a file header. THM. 2: Placing a new file in an empty entry at the very end of the image such that it fits, but leaves no room for a final header, is guaranteed not to change the total amount of space for entries, even if that new file is later removed from the CBFS. Again, we use contradiction: assume that creating such a file causes a permanent... - CASE 1: ...increase in the amount of available space. + Then the combination of the inserted file, its header, and any padding must have exceeded the empty entry in size enough for it to cross at least one additional aligned address, since aligned addresses are how the limit on an entry's capacity is determined. + But adding the file couldn't have caused us to write past any further aligned addresses because they are the boundary's used when verifying that sufficient capacity exists; furthermore, by (B), no entry can ever terminate beyond where the initial empty entry did when the CBFS was first created. + Then the creation of the file did not result in a space increase. - CASE 2: ...decrease in the amount of available space. + Then the end of the new file entry crosses at least one fewer aligned address than did the empty file entry. + Then by (A), there is room to place a new file entry that describes the remaining available space at the first available aligned address. + Then there is now a new record showing the same amount of available space. + Then the creation of the file did not result in a space decrease. BUG=chromium:473726 TEST=Had the following conversation with cbfstool: $ ./cbfstool test.image create -s 0x100000 -m arm Created CBFS image (capacity = 1048408 bytes) $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 null 1048408 $ dd if=/dev/zero of=toobigmed.bin bs=1048409 count=1 1+0 records in 1+0 records out 1048409 bytes (1.0 MB) copied, 0.0057865 s, 181 MB/s $ ./cbfstool test.image add -t 0x50 -f toobigmed.bin -n toobig E: Could not add [toobigmed.bin, 1048409 bytes (1023 KB)@0x0]; too big? E: Failed to add 'toobigmed.bin' into ROM image. $ truncate -s -1 toobigmed.bin $ ./cbfstool test.image add -t 0x50 -f toobigmed.bin -n toobig $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size toobig 0x40 raw 1048408 $ ./cbfstool test.image remove -n toobig $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 deleted 1048408 $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 deleted 1048408 BRANCH=None Change-Id: I118743e37469ef0226970decc900db5d9b92c5df Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: e317ddca14bc36bc36e6406b758378c88e9ae04e Original-Change-Id: I294ee489b4918646c359b06aa1581918f2d8badc Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/263962 Original-Reviewed-by: Hung-Te Lin <hungte@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9939 Tested-by: build bot (Jenkins)
2015-04-03 18:13:04 +02:00
/* Even though the file-adding functions---cbfs_add_entry() and
* cbfs_add_entry_at()---perform their sizing checks against the beginning of
* the subsequent section rather than a stable recorded value such as an empty
* file header's len field, it's possible to prove two interesting properties
* about their behavior:
* - Placing a new file within an empty entry located below an existing file
* entry will never leave an aligned flash address containing neither the
* beginning of a file header nor part of a file.
* - Placing a new file in an empty entry at the very end of the image such
* that it fits, but leaves no room for a final header, is guaranteed not to
* change the total amount of space for entries, even if that new file is
* later removed from the CBFS.
* These properties are somewhat nonobvious from the implementation, so the
* reader is encouraged to blame this comment and examine the full proofs
* in the commit message before making significant changes that would risk
* removing said guarantees.
*/
/* The file name align is not defined in CBFS spec -- only a preference by
* (old) cbfstool. */
#define CBFS_FILENAME_ALIGN (16)
/* Type and format */
static const struct typedesc_t types_cbfs_compression[] = {
{CBFS_COMPRESS_NONE, "none"},
{CBFS_COMPRESS_LZMA, "LZMA"},
{0, NULL}
};
cbfs: fix issues with word size and endianness. Add XDR functions and use them to convert the ELF headers to native headers, using the Elf64 structs to ensure we accomodate all word sizes. Also, use these XDR functions for output. This may seem overly complex but it turned out to be much the easiest way to do this. Note that the basic elf parsing function in cbfs-mkstage.c now works over all ELF files, for all architectures, endian, and word size combinations. At the same time, the basic elf parsing in cbfs-mkstage.c is a loop that has no architecture-specific conditionals. Add -g to the LDFLAGS while we're here. It's on the CFLAGS so there is no harm done. This code has been tested on all chromebooks that use coreboot to date. I added most of the extra checks from ChromeOS and they triggered a lot of warnings, hence the other changes. I had to take -Wshadow back out due to the many errors it triggers in LZMA. BUG=None TEST=Build and boot for Peppy; works fine. Build and boot for nyan, works fine. Build for qemu targets and armv8 targets. BRANCH=None Change-Id: I5a4cee9854799189115ac701e22efc406a8d902f Signed-off-by: Ronald G. Minnich <rminnich@google.com> Reviewed-on: https://chromium-review.googlesource.com/178606 Reviewed-by: Ronald Minnich <rminnich@chromium.org> Commit-Queue: Ronald Minnich <rminnich@chromium.org> Tested-by: Ronald Minnich <rminnich@chromium.org> Reviewed-on: http://review.coreboot.org/4817 Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com> Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-12-03 20:13:35 +01:00
static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
const char *default_value)
{
int i;
for (i = 0; desc[i].name; i++)
if (desc[i].type == type)
return desc[i].name;
return default_value;
}
static int lookup_type_by_name(const struct typedesc_t *desc, const char *name)
{
int i;
for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i);
return desc[i].name ? (int)desc[i].type : -1;
}
static const char *get_cbfs_entry_type_name(uint32_t type)
{
return lookup_name_by_type(filetypes, type, "(unknown)");
}
int cbfs_parse_comp_algo(const char *name)
{
return lookup_type_by_name(types_cbfs_compression, name);
}
static const char *get_hash_attr_name(uint16_t hash_type)
{
return lookup_name_by_type(types_cbfs_hash, hash_type, "(invalid)");
}
int cbfs_parse_hash_algo(const char *name)
{
return lookup_type_by_name(types_cbfs_hash, name);
}
/* CBFS image */
size_t cbfs_calculate_file_header_size(const char *name)
{
return (sizeof(struct cbfs_file) +
align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN));
}
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
/* Only call on legacy CBFSes possessing a master header. */
static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc)
{
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
assert(image);
assert(cbfs_is_legacy_cbfs(image));
// A bug in old cbfstool may produce extra few bytes (by alignment) and
// cause cbfstool to overwrite things after free space -- which is
// usually CBFS header on x86. We need to workaround that.
struct cbfs_file *entry, *first = NULL, *last = NULL;
for (first = entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
last = entry;
}
if ((char *)first < (char *)hdr_loc &&
(char *)entry > (char *)hdr_loc) {
WARN("CBFS image was created with old cbfstool with size bug. "
"Fixing size in last entry...\n");
last->len = htonl(ntohl(last->len) - image->header.align);
DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
cbfs_get_entry_addr(image, entry),
cbfs_get_entry_addr(image,
cbfs_find_next_entry(image, last)));
}
return 0;
}
void cbfs_put_header(void *dest, const struct cbfs_header *header)
{
struct buffer outheader;
outheader.data = dest;
outheader.size = 0;
xdr_be.put32(&outheader, header->magic);
xdr_be.put32(&outheader, header->version);
xdr_be.put32(&outheader, header->romsize);
xdr_be.put32(&outheader, header->bootblocksize);
xdr_be.put32(&outheader, header->align);
xdr_be.put32(&outheader, header->offset);
xdr_be.put32(&outheader, header->architecture);
}
static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output,
struct cbfs_payload_segment *input)
{
struct buffer seg = {
.data = (void *)input,
.size = sizeof(*input),
};
output->type = xdr_be.get32(&seg);
output->compression = xdr_be.get32(&seg);
output->offset = xdr_be.get32(&seg);
output->load_addr = xdr_be.get64(&seg);
output->len = xdr_be.get32(&seg);
output->mem_len = xdr_be.get32(&seg);
assert(seg.size == 0);
}
static int cbfs_file_get_compression_info(struct cbfs_file *entry,
uint32_t *decompressed_size)
{
unsigned int compression = CBFS_COMPRESS_NONE;
*decompressed_size = ntohl(entry->len);
for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
attr != NULL;
attr = cbfs_file_next_attr(entry, attr)) {
if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) {
struct cbfs_file_attr_compression *ac =
(struct cbfs_file_attr_compression *)attr;
compression = ntohl(ac->compression);
if (decompressed_size)
*decompressed_size =
ntohl(ac->decompressed_size);
}
}
return compression;
}
static struct cbfs_file_attr_hash *cbfs_file_get_next_hash(
struct cbfs_file *entry, struct cbfs_file_attr_hash *cur)
{
struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur;
if (attr == NULL) {
attr = cbfs_file_first_attr(entry);
if (attr == NULL)
return NULL;
if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
return (struct cbfs_file_attr_hash *)attr;
}
while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) {
if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
return (struct cbfs_file_attr_hash *)attr;
};
return NULL;
}
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
void cbfs_get_header(struct cbfs_header *header, void *src)
{
struct buffer outheader;
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
outheader.data = src; /* We're not modifying the data */
outheader.size = 0;
header->magic = xdr_be.get32(&outheader);
header->version = xdr_be.get32(&outheader);
header->romsize = xdr_be.get32(&outheader);
header->bootblocksize = xdr_be.get32(&outheader);
header->align = xdr_be.get32(&outheader);
header->offset = xdr_be.get32(&outheader);
header->architecture = xdr_be.get32(&outheader);
}
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
int cbfs_image_create(struct cbfs_image *image, size_t entries_size)
{
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
assert(image);
assert(image->buffer.data);
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
size_t empty_header_len = cbfs_calculate_file_header_size("");
uint32_t entries_offset = 0;
uint32_t align = CBFS_ENTRY_ALIGNMENT;
if (image->has_header) {
entries_offset = image->header.offset;
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
if (entries_offset > image->buffer.size) {
ERROR("CBFS file entries are located outside CBFS itself\n");
return -1;
}
align = image->header.align;
}
cbfstool: Make the add action choose an aligned entries capacity This fixes an inconsistency between `cbfstool create` and `cbfstool add` that was resulting in confusing claims about the amount of free space at the end of a CBFS. Calls to `cbfstool add` check whether a file fits under a given empty file entry by testing whether it would collide with the beginning of the *subsequent* file header; thus, if a file's end is unaligned, its reported size will not match the actual available capacity. Although deleted entries always end on an alignment boundary because `cbfstool remove` expands them to fill the available space, `cbfstool create` doesn't necessarily size a new entries region to result in an empty entry with an aligned end. This problem never resulted in clobbering important data because cbfstool would blindly reserve 64B (or the selected alignment) of free space immediately after the all-inclusive empty file entry. This change alters the way this reservation is reported: only the overhang past the alignment is used as hidden padding, and the empty entry's capacity is always reported such that it ends at an aligned address. Much of the time that went into this patch was spent building trust in the trickery cbfstool employs to avoid explicitly tracking the image's total capacity for entries, so below are two proofs of correctness to save others time and discourage inadvertent breakage: OBSERVATION (A): A check in cbfs_image_create() guarantees that an aligned CBFS empty file header is small enough that it won't cross another aligned address. OBSERVATION (B): In cbfs_image_create(), the initial empty entry is sized such that its contents end on an aligned address. THM. 1: Placing a new file within an empty entry located below an existing file entry will never leave an aligned flash address containing neither the beginning of a file header nor part of a file. We can prove this by contradiction: assume a newly-added file neither fills to the end of the preexisting empty entry nor leaves room for another aligned empty header after it. Then the first aligned address after the end of the newly-inserted file... - CASE 1: ...already contains a preexisting file entry header. + Then that address contains a file header. - CASE 2: ...does not already house a file entry header. + Then because CBFS content doesn't fall outside headers, the area between there and the *next* aligned address after that is unused. + By (A), we can fit a file header without clobbering anything. + Then that address now contains a file header. THM. 2: Placing a new file in an empty entry at the very end of the image such that it fits, but leaves no room for a final header, is guaranteed not to change the total amount of space for entries, even if that new file is later removed from the CBFS. Again, we use contradiction: assume that creating such a file causes a permanent... - CASE 1: ...increase in the amount of available space. + Then the combination of the inserted file, its header, and any padding must have exceeded the empty entry in size enough for it to cross at least one additional aligned address, since aligned addresses are how the limit on an entry's capacity is determined. + But adding the file couldn't have caused us to write past any further aligned addresses because they are the boundary's used when verifying that sufficient capacity exists; furthermore, by (B), no entry can ever terminate beyond where the initial empty entry did when the CBFS was first created. + Then the creation of the file did not result in a space increase. - CASE 2: ...decrease in the amount of available space. + Then the end of the new file entry crosses at least one fewer aligned address than did the empty file entry. + Then by (A), there is room to place a new file entry that describes the remaining available space at the first available aligned address. + Then there is now a new record showing the same amount of available space. + Then the creation of the file did not result in a space decrease. BUG=chromium:473726 TEST=Had the following conversation with cbfstool: $ ./cbfstool test.image create -s 0x100000 -m arm Created CBFS image (capacity = 1048408 bytes) $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 null 1048408 $ dd if=/dev/zero of=toobigmed.bin bs=1048409 count=1 1+0 records in 1+0 records out 1048409 bytes (1.0 MB) copied, 0.0057865 s, 181 MB/s $ ./cbfstool test.image add -t 0x50 -f toobigmed.bin -n toobig E: Could not add [toobigmed.bin, 1048409 bytes (1023 KB)@0x0]; too big? E: Failed to add 'toobigmed.bin' into ROM image. $ truncate -s -1 toobigmed.bin $ ./cbfstool test.image add -t 0x50 -f toobigmed.bin -n toobig $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size toobig 0x40 raw 1048408 $ ./cbfstool test.image remove -n toobig $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 deleted 1048408 $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 deleted 1048408 BRANCH=None Change-Id: I118743e37469ef0226970decc900db5d9b92c5df Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: e317ddca14bc36bc36e6406b758378c88e9ae04e Original-Change-Id: I294ee489b4918646c359b06aa1581918f2d8badc Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/263962 Original-Reviewed-by: Hung-Te Lin <hungte@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9939 Tested-by: build bot (Jenkins)
2015-04-03 18:13:04 +02:00
// This attribute must be given in order to prove that this module
// correctly preserves certain CBFS properties. See the block comment
// near the top of this file (and the associated commit message).
if (align < empty_header_len) {
ERROR("CBFS must be aligned to at least %zu bytes\n",
empty_header_len);
return -1;
}
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
if (entries_size > image->buffer.size - entries_offset) {
ERROR("CBFS doesn't have enough space to fit its file entries\n");
return -1;
}
if (empty_header_len > entries_size) {
ERROR("CBFS is too small to fit any header\n");
return -1;
}
struct cbfs_file *entry_header =
(struct cbfs_file *)(image->buffer.data + entries_offset);
// This alignment is necessary in order to prove that this module
// correctly preserves certain CBFS properties. See the block comment
// near the top of this file (and the associated commit message).
entries_size -= entries_size % align;
size_t capacity = entries_size - empty_header_len;
LOG("Created CBFS (capacity = %zu bytes)\n", capacity);
return cbfs_create_empty_entry(entry_header, CBFS_COMPONENT_NULL,
capacity, "");
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
}
int cbfs_legacy_image_create(struct cbfs_image *image,
uint32_t architecture,
uint32_t align,
struct buffer *bootblock,
uint32_t bootblock_offset,
uint32_t header_offset,
uint32_t entries_offset)
{
assert(image);
assert(image->buffer.data);
assert(bootblock);
int32_t *rel_offset;
uint32_t cbfs_len;
void *header_loc;
size_t size = image->buffer.size;
DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
"header=0x%x+0x%zx, entries_offset=0x%x\n",
bootblock_offset, bootblock->size, header_offset,
sizeof(image->header), entries_offset);
// Adjust legacy top-aligned address to ROM offset.
if (IS_TOP_ALIGNED_ADDRESS(entries_offset))
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
entries_offset = size + (int32_t)entries_offset;
if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset))
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
bootblock_offset = size + (int32_t)bootblock_offset;
if (IS_TOP_ALIGNED_ADDRESS(header_offset))
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
header_offset = size + (int32_t)header_offset;
DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
"header=0x%x, entries_offset=0x%x\n",
bootblock_offset, header_offset, entries_offset);
// Prepare bootblock
if (bootblock_offset + bootblock->size > size) {
ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
bootblock_offset, bootblock->size, size);
return -1;
}
if (entries_offset > bootblock_offset &&
entries_offset < bootblock->size) {
ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
bootblock_offset, bootblock->size, entries_offset);
return -1;
}
memcpy(image->buffer.data + bootblock_offset, bootblock->data,
bootblock->size);
// Prepare header
if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) {
ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
header_offset, sizeof(image->header), size);
return -1;
}
image->header.magic = CBFS_HEADER_MAGIC;
image->header.version = CBFS_HEADER_VERSION;
image->header.romsize = size;
image->header.bootblocksize = bootblock->size;
image->header.align = align;
image->header.offset = entries_offset;
image->header.architecture = architecture;
header_loc = (image->buffer.data + header_offset);
cbfs_put_header(header_loc, &image->header);
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
image->has_header = true;
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
// The last 4 byte of the image contain the relative offset from the end
// of the image to the master header as a 32-bit signed integer. x86
// relies on this also being its (memory-mapped, top-aligned) absolute
// 32-bit address by virtue of how two's complement numbers work.
assert(size % sizeof(int32_t) == 0);
rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t));
*rel_offset = header_offset - size;
// Prepare entries
if (align_up(entries_offset, align) != entries_offset) {
ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
entries_offset, align);
return -1;
}
// To calculate available length, find
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
// e = min(bootblock, header, rel_offset) where e > entries_offset.
cbfs_len = size - sizeof(int32_t);
if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
cbfs_len = bootblock_offset;
if (header_offset > entries_offset && header_offset < cbfs_len)
cbfs_len = header_offset;
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
if (cbfs_image_create(image, cbfs_len - entries_offset))
return -1;
return 0;
}
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in,
uint32_t offset)
{
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
assert(out);
assert(in);
assert(in->data);
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
buffer_clone(&out->buffer, in);
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
out->has_header = false;
if (cbfs_is_valid_cbfs(out)) {
return 0;
}
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
void *header_loc = cbfs_find_header(in->data, in->size, offset);
if (header_loc) {
cbfs_get_header(&out->header, header_loc);
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
out->has_header = true;
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
cbfs_fix_legacy_size(out, header_loc);
return 0;
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
} else if (offset != ~0u) {
ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n");
return 1;
}
ERROR("Selected image region is not a valid CBFS.\n");
return 1;
}
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
int cbfs_copy_instance(struct cbfs_image *image, size_t copy_offset,
size_t copy_size)
{
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
assert(image);
if (!cbfs_is_legacy_cbfs(image))
return -1;
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
struct cbfs_file *src_entry, *dst_entry;
struct cbfs_header *copy_header;
size_t align, entry_offset;
ssize_t last_entry_size;
size_t cbfs_offset, cbfs_end;
size_t copy_end = copy_offset + copy_size;
align = image->header.align;
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
cbfs_offset = image->header.offset;
cbfs_end = image->header.romsize;
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
if (copy_end > image->buffer.size) {
ERROR("Copy offset out of range: [%zx:%zx)\n",
copy_offset, copy_end);
return 1;
}
/* Range check requested copy region with source cbfs. */
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
if ((copy_offset >= cbfs_offset && copy_offset < cbfs_end) ||
(copy_end >= cbfs_offset && copy_end <= cbfs_end)) {
ERROR("New image would overlap old one.\n");
return 1;
}
/* This will work, let's create a copy. */
copy_header = (struct cbfs_header *)(image->buffer.data + copy_offset);
cbfs_put_header(copy_header, &image->header);
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
copy_header->bootblocksize = 0;
/* Romsize is a misnomer. It's the absolute limit of cbfs content.*/
copy_header->romsize = htonl(copy_end);
entry_offset = align_up(copy_offset + sizeof(*copy_header), align);
copy_header->offset = htonl(entry_offset);
dst_entry = (struct cbfs_file *)(image->buffer.data + entry_offset);
/* Copy non-empty files */
for (src_entry = cbfs_find_first_entry(image);
src_entry && cbfs_is_valid_entry(image, src_entry);
src_entry = cbfs_find_next_entry(image, src_entry)) {
size_t entry_size;
if ((src_entry->type == htonl(CBFS_COMPONENT_NULL)) ||
(src_entry->type == htonl(CBFS_COMPONENT_DELETED)))
continue;
entry_size = htonl(src_entry->len) + htonl(src_entry->offset);
memcpy(dst_entry, src_entry, entry_size);
dst_entry = (struct cbfs_file *)(
(uintptr_t)dst_entry + align_up(entry_size, align));
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
if ((size_t)((char *)dst_entry - image->buffer.data) >=
copy_end) {
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
ERROR("Ran out of room in copy region.\n");
return 1;
}
}
/* Last entry size is all the room above it. */
last_entry_size = copy_end - ((char *)dst_entry - image->buffer.data)
- cbfs_calculate_file_header_size("");
if (last_entry_size < 0)
WARN("No room to create the last entry!\n")
else
cbfs_create_empty_entry(dst_entry, CBFS_COMPONENT_NULL,
last_entry_size, "");
cbfstool: add a command to duplicate a cbfs instance The new command allows to create a file where the original CBFS image is duplicated at a different offset. The required options of the new command are -D, the offset where the copy CBFS header is placed, and -s, the size of the new CBFS copy. When a CBFS is copied, the bootblock area of the source CBFS is ignored, as well as empty and deleted files in the source CBFS. The size of the destination CBFS is calculated as the rombase size of the source CBFS less the bootblock size. The copy instance can be created in the image only above the original, which rules out the use of this new command for x86 images. If necessary, this limitation could be addressed later. As with other cbfstool commands, unless explicitly specified the lowest CBFS instance in the image is considered the source. If necessary, the user can specify the source CBFS using the -H option. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run multiple cbfstool commands on a storm image: $ cd /tmp $ cp /build/storm/firmware/image.serial.bin storm.bin $ cbfstool storm.bin print storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 $ cbfstool storm.bin copy -D 0x420000 E: You need to specify -s/--size. $ cbfstool storm.bin copy -D 0x420000 -s 0x70000 $ cbfstool storm.bin print W: Multiple (2) CBFS headers found, using the first one. storm.bin: 8192 kB, bootblocksize 34472, romsize 458752, offset 0x8700 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x8700 raw 416 ddr.mbn 0x8900 raw 25836 rpm.mbn 0xee40 raw 78576 tz.mbn 0x22180 raw 85360 fallback/verstage 0x36f40 stage 41620 fallback/romstage 0x41240 stage 19556 fallback/ramstage 0x45f00 stage 25579 config 0x4c340 raw 2878 fallback/payload 0x4cec0 payload 64811 u-boot.dtb 0x5cc40 (unknown) 2993 (empty) 0x5d840 null 75608 cbfstool storm.bin print -H 0x420000 storm.bin: 8192 kB, bootblocksize 0, romsize 4784128, offset 0x420040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x420040 raw 416 ddr.mbn 0x420240 raw 25836 rpm.mbn 0x426780 raw 78576 tz.mbn 0x439ac0 raw 85360 fallback/verstage 0x44e880 stage 41620 fallback/romstage 0x458b80 stage 19556 fallback/ramstage 0x45d840 stage 25579 config 0x463c80 raw 2878 fallback/payload 0x464800 payload 64811 u-boot.dtb 0x474580 (unknown) 2993 (empty) 0x475180 null 110168 $ cbfstool storm.bin remove -n config -H 0x420000 $ cbfstool storm.bin copy -H 0x420000 -D 0x620000 -s 0x70000 $ cbfstool storm.bin print -H 0x620000 storm.bin: 8192 kB, bootblocksize 0, romsize 6881280, offset 0x620040 alignment: 64 bytes, architecture: arm Name Offset Type Size cdt.mbn 0x620040 raw 416 ddr.mbn 0x620240 raw 25836 rpm.mbn 0x626780 raw 78576 tz.mbn 0x639ac0 raw 85360 fallback/verstage 0x64e880 stage 41620 fallback/romstage 0x658b80 stage 19556 fallback/ramstage 0x65d840 stage 25579 fallback/payload 0x663c80 payload 64811 u-boot.dtb 0x673a00 (unknown) 2993 (empty) 0x674600 null 113112 $ cbfstool /build/storm/firmware/image.serial.bin extract -n fallback/payload -f payload1 [..] $ cbfstool storm.bin extract -H 0x620000 -n fallback/payload -f payload2 [..] $ diff payload1 payload2 Change-Id: Ieb9205848aec361bb870de0d284dff06c597564f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: b8d3c1b09a47ca24d2d2effc6de0e89d1b0a8903 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Change-Id: I227e607ccf7a9a8e2a1f3c6bbc506b8d29a35b1b Original-Reviewed-on: https://chromium-review.googlesource.com/237561 Reviewed-on: http://review.coreboot.org/9742 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 04:26:54 +01:00
return 0;
}
int cbfs_image_delete(struct cbfs_image *image)
{
if (image == NULL)
return 0;
buffer_delete(&image->buffer);
return 0;
}
/* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
static int cbfs_add_entry_at(struct cbfs_image *image,
struct cbfs_file *entry,
const void *data,
uint32_t content_offset,
const struct cbfs_file *header)
{
struct cbfs_file *next = cbfs_find_next_entry(image, entry);
uint32_t addr = cbfs_get_entry_addr(image, entry),
addr_next = cbfs_get_entry_addr(image, next);
uint32_t min_entry_size = cbfs_calculate_file_header_size("");
uint32_t len, header_offset;
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
uint32_t align = image->has_header ? image->header.align :
CBFS_ENTRY_ALIGNMENT;
uint32_t header_size = ntohl(header->offset);
header_offset = content_offset - header_size;
if (header_offset % align)
header_offset -= header_offset % align;
if (header_offset < addr) {
ERROR("No space to hold cbfs_file header.");
return -1;
}
// Process buffer BEFORE content_offset.
if (header_offset - addr > min_entry_size) {
DEBUG("|min|...|header|content|... <create new entry>\n");
len = header_offset - addr - min_entry_size;
cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, len, "");
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
entry = cbfs_find_next_entry(image, entry);
addr = cbfs_get_entry_addr(image, entry);
}
len = content_offset - addr - header_size;
memcpy(entry, header, header_size);
if (len != 0) {
/* the header moved backwards a bit to accomodate cbfs_file
* alignment requirements, so patch up ->offset to still point
* to file data.
*/
DEBUG("|..|header|content|... <use offset to create entry>\n");
DEBUG("before: offset=0x%x\n", ntohl(entry->offset));
// TODO reset expanded name buffer to 0xFF.
entry->offset = htonl(ntohl(entry->offset) + len);
DEBUG("after: offset=0x%x\n", ntohl(entry->len));
}
// Ready to fill data into entry.
DEBUG("content_offset: 0x%x, entry location: %x\n",
content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
image->buffer.data));
assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
(ptrdiff_t)content_offset);
memcpy(CBFS_SUBHEADER(entry), data, ntohl(entry->len));
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
// Process buffer AFTER entry.
entry = cbfs_find_next_entry(image, entry);
addr = cbfs_get_entry_addr(image, entry);
cbfstool: Fix ability to add files at offsets near the end of empty spaces Because cbfs_add_entry_at() previously *assumed* it would have to create a trailing empty entry, it was impossible to add files at exact offsets close enough to the end of an existing empty entry that they occupied the remainder of its space. This addresses the problem by skipping the step of creating the trailing empty entry if doing so would place it at the start offset of whatever already followed the original empty section. BUG=chromium:473511 TEST=Run the following commands: $ ./cbfstool test.image create -s 0x100000 -m arm $ dd if=/dev/zero of=twok.bin bs=1 count=2048 $ ./cbfstool test.image add -t 0x50 -f twok.bin -n at_end -b 0xff7c0 $ ./cbfstool test.image add -t 0x50 -f twok.bin -n near_end -b 0xfef80 $ ./cbfstool test.image print There shouldn't be any assertions, and the output should be: test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 null 1044184 near_end 0xfef40 raw 2048 at_end 0xff780 raw 2048 BRANCH=None Change-Id: Ic8a6c3dfa4f82346a067c0804afb6c5a5e89e6c8 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 1bbd353fddc818f725e488e8f2fb6e967033539d Original-Change-Id: I15d25df80787a8e34c2237262681720203509c72 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/263809 Original-Reviewed-by: Hung-Te Lin <hungte@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9938 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com> Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
2015-04-03 05:58:26 +02:00
if (addr == addr_next)
return 0;
cbfstool: Fix ability to add files at offsets near the end of empty spaces Because cbfs_add_entry_at() previously *assumed* it would have to create a trailing empty entry, it was impossible to add files at exact offsets close enough to the end of an existing empty entry that they occupied the remainder of its space. This addresses the problem by skipping the step of creating the trailing empty entry if doing so would place it at the start offset of whatever already followed the original empty section. BUG=chromium:473511 TEST=Run the following commands: $ ./cbfstool test.image create -s 0x100000 -m arm $ dd if=/dev/zero of=twok.bin bs=1 count=2048 $ ./cbfstool test.image add -t 0x50 -f twok.bin -n at_end -b 0xff7c0 $ ./cbfstool test.image add -t 0x50 -f twok.bin -n near_end -b 0xfef80 $ ./cbfstool test.image print There shouldn't be any assertions, and the output should be: test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 null 1044184 near_end 0xfef40 raw 2048 at_end 0xff780 raw 2048 BRANCH=None Change-Id: Ic8a6c3dfa4f82346a067c0804afb6c5a5e89e6c8 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 1bbd353fddc818f725e488e8f2fb6e967033539d Original-Change-Id: I15d25df80787a8e34c2237262681720203509c72 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/263809 Original-Reviewed-by: Hung-Te Lin <hungte@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9938 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com> Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
2015-04-03 05:58:26 +02:00
assert(addr < addr_next);
if (addr_next - addr < min_entry_size) {
cbfstool: Make the add action choose an aligned entries capacity This fixes an inconsistency between `cbfstool create` and `cbfstool add` that was resulting in confusing claims about the amount of free space at the end of a CBFS. Calls to `cbfstool add` check whether a file fits under a given empty file entry by testing whether it would collide with the beginning of the *subsequent* file header; thus, if a file's end is unaligned, its reported size will not match the actual available capacity. Although deleted entries always end on an alignment boundary because `cbfstool remove` expands them to fill the available space, `cbfstool create` doesn't necessarily size a new entries region to result in an empty entry with an aligned end. This problem never resulted in clobbering important data because cbfstool would blindly reserve 64B (or the selected alignment) of free space immediately after the all-inclusive empty file entry. This change alters the way this reservation is reported: only the overhang past the alignment is used as hidden padding, and the empty entry's capacity is always reported such that it ends at an aligned address. Much of the time that went into this patch was spent building trust in the trickery cbfstool employs to avoid explicitly tracking the image's total capacity for entries, so below are two proofs of correctness to save others time and discourage inadvertent breakage: OBSERVATION (A): A check in cbfs_image_create() guarantees that an aligned CBFS empty file header is small enough that it won't cross another aligned address. OBSERVATION (B): In cbfs_image_create(), the initial empty entry is sized such that its contents end on an aligned address. THM. 1: Placing a new file within an empty entry located below an existing file entry will never leave an aligned flash address containing neither the beginning of a file header nor part of a file. We can prove this by contradiction: assume a newly-added file neither fills to the end of the preexisting empty entry nor leaves room for another aligned empty header after it. Then the first aligned address after the end of the newly-inserted file... - CASE 1: ...already contains a preexisting file entry header. + Then that address contains a file header. - CASE 2: ...does not already house a file entry header. + Then because CBFS content doesn't fall outside headers, the area between there and the *next* aligned address after that is unused. + By (A), we can fit a file header without clobbering anything. + Then that address now contains a file header. THM. 2: Placing a new file in an empty entry at the very end of the image such that it fits, but leaves no room for a final header, is guaranteed not to change the total amount of space for entries, even if that new file is later removed from the CBFS. Again, we use contradiction: assume that creating such a file causes a permanent... - CASE 1: ...increase in the amount of available space. + Then the combination of the inserted file, its header, and any padding must have exceeded the empty entry in size enough for it to cross at least one additional aligned address, since aligned addresses are how the limit on an entry's capacity is determined. + But adding the file couldn't have caused us to write past any further aligned addresses because they are the boundary's used when verifying that sufficient capacity exists; furthermore, by (B), no entry can ever terminate beyond where the initial empty entry did when the CBFS was first created. + Then the creation of the file did not result in a space increase. - CASE 2: ...decrease in the amount of available space. + Then the end of the new file entry crosses at least one fewer aligned address than did the empty file entry. + Then by (A), there is room to place a new file entry that describes the remaining available space at the first available aligned address. + Then there is now a new record showing the same amount of available space. + Then the creation of the file did not result in a space decrease. BUG=chromium:473726 TEST=Had the following conversation with cbfstool: $ ./cbfstool test.image create -s 0x100000 -m arm Created CBFS image (capacity = 1048408 bytes) $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 null 1048408 $ dd if=/dev/zero of=toobigmed.bin bs=1048409 count=1 1+0 records in 1+0 records out 1048409 bytes (1.0 MB) copied, 0.0057865 s, 181 MB/s $ ./cbfstool test.image add -t 0x50 -f toobigmed.bin -n toobig E: Could not add [toobigmed.bin, 1048409 bytes (1023 KB)@0x0]; too big? E: Failed to add 'toobigmed.bin' into ROM image. $ truncate -s -1 toobigmed.bin $ ./cbfstool test.image add -t 0x50 -f toobigmed.bin -n toobig $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size toobig 0x40 raw 1048408 $ ./cbfstool test.image remove -n toobig $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 deleted 1048408 $ ./cbfstool test.image print test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40 alignment: 64 bytes, architecture: arm Name Offset Type Size (empty) 0x40 deleted 1048408 BRANCH=None Change-Id: I118743e37469ef0226970decc900db5d9b92c5df Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: e317ddca14bc36bc36e6406b758378c88e9ae04e Original-Change-Id: I294ee489b4918646c359b06aa1581918f2d8badc Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/263962 Original-Reviewed-by: Hung-Te Lin <hungte@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9939 Tested-by: build bot (Jenkins)
2015-04-03 18:13:04 +02:00
DEBUG("No need for new \"empty\" entry\n");
/* No need to increase the size of the just
* stored file to extend to next file. Alignment
* of next file takes care of this.
*/
return 0;
}
len = addr_next - addr - min_entry_size;
cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, len, "");
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
return 0;
}
int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
uint32_t content_offset,
struct cbfs_file *header)
{
assert(image);
assert(buffer);
assert(buffer->data);
assert(!IS_TOP_ALIGNED_ADDRESS(content_offset));
const char *name = header->filename;
uint32_t entry_type;
uint32_t addr, addr_next;
struct cbfs_file *entry, *next;
uint32_t need_size;
uint32_t header_size = ntohl(header->offset);
need_size = header_size + buffer->size;
DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
name, content_offset, header_size, buffer->size, need_size);
// Merge empty entries.
DEBUG("(trying to merge empty entries...)\n");
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
entry_type = ntohl(entry->type);
if (entry_type != CBFS_COMPONENT_NULL)
continue;
addr = cbfs_get_entry_addr(image, entry);
next = cbfs_find_next_entry(image, entry);
addr_next = cbfs_get_entry_addr(image, next);
DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
addr, addr_next - addr, addr_next - addr);
/* Will the file fit? Don't yet worry if we have space for a new
* "empty" entry. We take care of that later.
*/
if (addr + need_size > addr_next)
continue;
// Test for complicated cases
if (content_offset > 0) {
if (addr_next < content_offset) {
DEBUG("Not for specified offset yet");
continue;
} else if (addr > content_offset) {
DEBUG("Exceed specified content_offset.");
break;
} else if (addr + header_size > content_offset) {
ERROR("Not enough space for header.\n");
break;
} else if (content_offset + buffer->size > addr_next) {
ERROR("Not enough space for content.\n");
break;
}
}
// TODO there are more few tricky cases that we may
// want to fit by altering offset.
if (content_offset == 0) {
// we tested every condition earlier under which
// placing the file there might fail
content_offset = addr + header_size;
}
DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
addr, addr_next - addr, content_offset);
if (cbfs_add_entry_at(image, entry, buffer->data,
content_offset, header) == 0) {
return 0;
}
break;
}
ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
buffer->name, buffer->size, buffer->size / 1024, content_offset);
return -1;
}
struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
{
struct cbfs_file *entry;
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
if (strcasecmp(entry->filename, name) == 0) {
DEBUG("cbfs_get_entry: found %s\n", name);
return entry;
}
}
return NULL;
}
int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
const char *filename)
{
struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
struct buffer buffer;
if (!entry) {
ERROR("File not found: %s\n", entry_name);
return -1;
}
unsigned int decompressed_size = 0;
unsigned int compression = cbfs_file_get_compression_info(entry,
&decompressed_size);
decomp_func_ptr decompress = decompression_function(compression);
if (!decompress) {
ERROR("looking up decompression routine failed\n");
return -1;
}
LOG("Found file %.30s at 0x%x, type %.12s, size %d\n",
entry_name, cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)), decompressed_size);
if (ntohl(entry->type) == CBFS_COMPONENT_STAGE) {
WARN("Stages are extracted in SELF format.\n");
}
if (ntohl(entry->type) == CBFS_COMPONENT_PAYLOAD) {
WARN("Payloads are extracted in SELF format.\n");
}
buffer.data = malloc(decompressed_size);
buffer.size = decompressed_size;
if (decompress(CBFS_SUBHEADER(entry), ntohl(entry->len),
buffer.data, buffer.size, NULL)) {
ERROR("decompression failed for %s\n", entry_name);
return -1;
}
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
buffer.name = strdup("(cbfs_export_entry)");
if (buffer_write_file(&buffer, filename) != 0) {
ERROR("Failed to write %s into %s.\n",
entry_name, filename);
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
free(buffer.name);
return -1;
}
free(buffer.data);
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
free(buffer.name);
INFO("Successfully dumped the file to: %s\n", filename);
return 0;
}
int cbfs_remove_entry(struct cbfs_image *image, const char *name)
{
struct cbfs_file *entry;
entry = cbfs_get_entry(image, name);
if (!entry) {
ERROR("CBFS file %s not found.\n", name);
return -1;
}
DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
entry->filename, cbfs_get_entry_addr(image, entry));
entry->type = htonl(CBFS_COMPONENT_DELETED);
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
return 0;
}
int cbfs_print_header_info(struct cbfs_image *image)
{
char *name = strdup(image->buffer.name);
assert(image);
printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
"alignment: %d bytes, architecture: %s\n\n",
basename(name),
image->buffer.size / 1024,
image->header.bootblocksize,
image->header.romsize,
image->header.offset,
image->header.align,
arch_to_string(image->header.architecture));
free(name);
return 0;
}
static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp)
{
fprintf(fp,
" %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
"length: %d/%d\n",
lookup_name_by_type(types_cbfs_compression,
stage->compression, "(unknown)"),
stage->entry,
stage->load,
stage->len,
stage->memlen);
return 0;
}
static int cbfs_print_decoded_payload_segment_info(
struct cbfs_payload_segment *seg, FILE *fp)
{
/* The input (seg) must be already decoded by
* cbfs_decode_payload_segment.
*/
switch (seg->type) {
case PAYLOAD_SEGMENT_CODE:
case PAYLOAD_SEGMENT_DATA:
fprintf(fp, " %s (%s compression, offset: 0x%x, "
"load: 0x%" PRIx64 ", length: %d/%d)\n",
(seg->type == PAYLOAD_SEGMENT_CODE ?
"code " : "data"),
lookup_name_by_type(types_cbfs_compression,
seg->compression,
"(unknown)"),
seg->offset, seg->load_addr, seg->len,
seg->mem_len);
break;
case PAYLOAD_SEGMENT_ENTRY:
fprintf(fp, " entry (0x%" PRIx64 ")\n",
seg->load_addr);
break;
case PAYLOAD_SEGMENT_BSS:
fprintf(fp, " BSS (address 0x%016" PRIx64 ", "
"length 0x%x)\n",
seg->load_addr, seg->len);
break;
case PAYLOAD_SEGMENT_PARAMS:
fprintf(fp, " parameters\n");
break;
default:
fprintf(fp, " 0x%x (%s compression, offset: 0x%x, "
"load: 0x%" PRIx64 ", length: %d/%d\n",
seg->type,
lookup_name_by_type(types_cbfs_compression,
seg->compression,
"(unknown)"),
seg->offset, seg->load_addr, seg->len,
seg->mem_len);
break;
}
return 0;
}
int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
void *arg)
{
const char *name = entry->filename;
struct cbfs_payload_segment *payload;
FILE *fp = (FILE *)arg;
if (!cbfs_is_valid_entry(image, entry)) {
ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
cbfs_get_entry_addr(image, entry));
return -1;
}
if (!fp)
fp = stdout;
unsigned int decompressed_size = 0;
unsigned int compression = cbfs_file_get_compression_info(entry,
&decompressed_size);
if (compression == CBFS_COMPRESS_NONE) {
fprintf(fp, "%-30s 0x%-8x %-12s %d\n",
*name ? name : "(empty)",
cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)),
ntohl(entry->len));
} else {
fprintf(fp, "%-30s 0x%-8x %-12s %d (%d after %s decompression)\n",
*name ? name : "(empty)",
cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)),
ntohl(entry->len),
decompressed_size,
lookup_name_by_type(types_cbfs_compression,
compression, "(unknown)")
);
}
struct cbfs_file_attr_hash *hash = NULL;
while ((hash = cbfs_file_get_next_hash(entry, hash)) != NULL) {
unsigned int hash_type = ntohl(hash->hash_type);
if (hash_type > CBFS_NUM_SUPPORTED_HASHES) {
fprintf(fp, "invalid hash type %d\n", hash_type);
break;
}
size_t hash_len = widths_cbfs_hash[hash_type];
char *hash_str = bintohex(hash->hash_data, hash_len);
uint8_t local_hash[hash_len];
if (vb2_digest_buffer(CBFS_SUBHEADER(entry),
ntohl(entry->len), hash_type, local_hash,
hash_len) != VB2_SUCCESS) {
fprintf(fp, "failed to hash '%s'\n", name);
break;
}
int valid = memcmp(local_hash, hash->hash_data, hash_len) == 0;
const char *valid_str = valid ? "valid" : "invalid";
fprintf(fp, " hash %s:%s %s\n",
get_hash_attr_name(hash_type),
hash_str, valid_str);
free(hash_str);
}
if (!verbose)
return 0;
DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
cbfs_get_entry_addr(image, entry), ntohl(entry->offset),
cbfs_get_entry_addr(image, entry) + ntohl(entry->offset),
ntohl(entry->len));
/* note the components of the subheader may be in host order ... */
switch (ntohl(entry->type)) {
case CBFS_COMPONENT_STAGE:
cbfs_print_stage_info((struct cbfs_stage *)
CBFS_SUBHEADER(entry), fp);
break;
case CBFS_COMPONENT_PAYLOAD:
payload = (struct cbfs_payload_segment *)
CBFS_SUBHEADER(entry);
while (payload) {
struct cbfs_payload_segment seg;
cbfs_decode_payload_segment(&seg, payload);
cbfs_print_decoded_payload_segment_info(
&seg, fp);
if (seg.type == PAYLOAD_SEGMENT_ENTRY)
break;
else
payload ++;
}
break;
default:
break;
}
return 0;
}
int cbfs_print_directory(struct cbfs_image *image)
{
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
if (cbfs_is_legacy_cbfs(image))
cbfs_print_header_info(image);
printf("%-30s %-10s %-12s Size\n", "Name", "Offset", "Type");
cbfs_walk(image, cbfs_print_entry_info, NULL);
return 0;
}
int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
cbfstool: Clean up in preparation for adding new files This enables more warnings on the cbfstool codebase and fixes the issues that surface as a result. A memory leak that used to occur when compressing files with lzma is also found and fixed. Finally, there are several fixes for the Makefile: - Its autodependencies used to be broken because the target for the .dependencies file was misnamed; this meant that Make didn't know how to rebuild the file, and so would silently skip the step of updating it before including it. - The ability to build to a custom output directory by defining the obj variable had bitrotted. - The default value of the obj variable was causing implicit rules not to apply when specifying a file as a target without providing a custom value for obj. - Add a distclean target for removing the .dependencies file. BUG=chromium:461875 TEST=Build an image with cbfstool both before and after. BRANCH=None Change-Id: I951919d63443f2b053c2e67c1ac9872abc0a43ca Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 49293443b4e565ca48d284e9a66f80c9c213975d Original-Change-Id: Ia7350c2c3306905984cfa711d5fc4631f0b43d5b Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/257340 Original-Reviewed-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@chromium.org> Reviewed-on: http://review.coreboot.org/9937 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-06 00:38:03 +01:00
unused void *arg)
{
struct cbfs_file *next;
cbfstool: Fix removing and adding file with same name Currently, cbfstool regressed that removing a file from CBFS the space is marked as empty but the filename is still shown, preventing adding a file with the same name again. [1] ``` $ echo a > a $ echo b > b $ ./util/cbfstool/cbfstool test.rom create -m x86 -s 1024 Created CBFS (capacity = 920 bytes) $ ./util/cbfstool/cbfstool test.rom add -f a -n a -t raw $ ./util/cbfstool/cbfstool test.rom add -f b -n b -t raw $ cp test.rom test.rom.original $ ./util/cbfstool/cbfstool test.rom remove -n $ diff -up <(hexdump -C test.rom.original) <(hexdump -C test.rom) --- /dev/fd/63 2015-08-07 08:43:42.118430961 -0500 +++ /dev/fd/62 2015-08-07 08:43:42.114430961 -0500 @@ -1,4 +1,4 @@ -00000000 4c 41 52 43 48 49 56 45 00 00 00 02 00 00 00 50 |LARCHIVE.......P| +00000000 4c 41 52 43 48 49 56 45 00 00 00 02 ff ff ff ff |LARCHIVE........| 00000010 00 00 00 00 00 00 00 28 61 00 00 00 00 00 00 00 |.......(a.......| 00000020 00 00 00 00 00 00 00 00 61 0a ff ff ff ff ff ff |........a.......| 00000030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................| $ ./util/cbfstool/cbfstool test.rom add -f c -n c -t raw $ ./util/cbfstool/cbfstool test.rom print test.rom: 1 kB, bootblocksize 0, romsize 1024, offset 0x0 alignment: 64 bytes, architecture: x86 Name Offset Type Size c 0x0 raw 2 b 0x40 raw 2 (empty) 0x80 null 792 ``` So it is “deteled” as the type changed. But the name was not changed to match the *(empty)* heuristic. So also adapt the name when removing a file by writing a null byte to the beginning of the name, so that the heuristic works. (Though remove doesn't really clear contents.) ``` $ ./util/cbfstool/cbfstool test.rom remove -n c $ ./util/cbfstool/cbfstool test.rom print test.rom: 1 kB, bootblocksize 0, romsize 1024, offset 0x0 alignment: 64 bytes, architecture: x86 Name Offset Type Size (empty) 0x0 null 2 b 0x40 raw 2 (empty) 0x80 null 792 ``` [1] http://www.coreboot.org/pipermail/coreboot/2015-August/080201.html Change-Id: I033456ab10e3e1b402ac2374f3a887cefd3e5abf Signed-off-by: Aaron Durbin <adurbin@chromium.org> Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-on: http://review.coreboot.org/11632 Tested-by: build bot (Jenkins) Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
2015-08-08 20:25:17 +02:00
uint8_t *name;
uint32_t type, addr, last_addr;
type = ntohl(entry->type);
if (type == CBFS_COMPONENT_DELETED) {
// Ready to be recycled.
type = CBFS_COMPONENT_NULL;
entry->type = htonl(type);
cbfstool: Fix removing and adding file with same name Currently, cbfstool regressed that removing a file from CBFS the space is marked as empty but the filename is still shown, preventing adding a file with the same name again. [1] ``` $ echo a > a $ echo b > b $ ./util/cbfstool/cbfstool test.rom create -m x86 -s 1024 Created CBFS (capacity = 920 bytes) $ ./util/cbfstool/cbfstool test.rom add -f a -n a -t raw $ ./util/cbfstool/cbfstool test.rom add -f b -n b -t raw $ cp test.rom test.rom.original $ ./util/cbfstool/cbfstool test.rom remove -n $ diff -up <(hexdump -C test.rom.original) <(hexdump -C test.rom) --- /dev/fd/63 2015-08-07 08:43:42.118430961 -0500 +++ /dev/fd/62 2015-08-07 08:43:42.114430961 -0500 @@ -1,4 +1,4 @@ -00000000 4c 41 52 43 48 49 56 45 00 00 00 02 00 00 00 50 |LARCHIVE.......P| +00000000 4c 41 52 43 48 49 56 45 00 00 00 02 ff ff ff ff |LARCHIVE........| 00000010 00 00 00 00 00 00 00 28 61 00 00 00 00 00 00 00 |.......(a.......| 00000020 00 00 00 00 00 00 00 00 61 0a ff ff ff ff ff ff |........a.......| 00000030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................| $ ./util/cbfstool/cbfstool test.rom add -f c -n c -t raw $ ./util/cbfstool/cbfstool test.rom print test.rom: 1 kB, bootblocksize 0, romsize 1024, offset 0x0 alignment: 64 bytes, architecture: x86 Name Offset Type Size c 0x0 raw 2 b 0x40 raw 2 (empty) 0x80 null 792 ``` So it is “deteled” as the type changed. But the name was not changed to match the *(empty)* heuristic. So also adapt the name when removing a file by writing a null byte to the beginning of the name, so that the heuristic works. (Though remove doesn't really clear contents.) ``` $ ./util/cbfstool/cbfstool test.rom remove -n c $ ./util/cbfstool/cbfstool test.rom print test.rom: 1 kB, bootblocksize 0, romsize 1024, offset 0x0 alignment: 64 bytes, architecture: x86 Name Offset Type Size (empty) 0x0 null 2 b 0x40 raw 2 (empty) 0x80 null 792 ``` [1] http://www.coreboot.org/pipermail/coreboot/2015-August/080201.html Change-Id: I033456ab10e3e1b402ac2374f3a887cefd3e5abf Signed-off-by: Aaron Durbin <adurbin@chromium.org> Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-on: http://review.coreboot.org/11632 Tested-by: build bot (Jenkins) Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
2015-08-08 20:25:17 +02:00
// Place NUL byte as first byte of name to be viewed as "empty".
name = (void *)&entry[1];
*name = '\0';
}
if (type != CBFS_COMPONENT_NULL)
return 0;
next = cbfs_find_next_entry(image, entry);
while (next && cbfs_is_valid_entry(image, next)) {
type = ntohl(next->type);
if (type == CBFS_COMPONENT_DELETED) {
type = CBFS_COMPONENT_NULL;
next->type = htonl(type);
}
if (type != CBFS_COMPONENT_NULL)
return 0;
addr = cbfs_get_entry_addr(image, entry);
last_addr = cbfs_get_entry_addr(
image, cbfs_find_next_entry(image, next));
// Now, we find two deleted/empty entries; try to merge now.
DEBUG("join_empty_entry: combine 0x%x+0x%x and 0x%x+0x%x.\n",
cbfs_get_entry_addr(image, entry), ntohl(entry->len),
cbfs_get_entry_addr(image, next), ntohl(next->len));
cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL,
(last_addr - addr -
cbfs_calculate_file_header_size("")),
"");
DEBUG("new empty entry: length=0x%x\n", ntohl(entry->len));
next = cbfs_find_next_entry(image, entry);
}
return 0;
}
int cbfs_walk(struct cbfs_image *image, cbfs_entry_callback callback,
void *arg)
{
int count = 0;
struct cbfs_file *entry;
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
count ++;
if (callback(image, entry, arg) != 0)
break;
}
return count;
}
cbfstool: allow user to explicitly specify header location There potentially could be multiple CBFS instances present in the firmware image. cbfstool should be able to operate on any of them, not just the first one present. To accomplish that, allow all CBFS commands to accept the -H parameter (which specifies the exact CBFS header location in the image). If this parameter is specified, the image is not searched for the CBFS header, only the specified location is checked for validity, If the location is valid, it is considered to be the CBFS header, if not - the tool exits with an error status. Note, that default behavior of the tool does not change. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run the following experiments: - examined an image with three CBFS instances, was able to print all of them. - built a rambi coreboot image and tried the following (cbfstool output abbreviated): $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ \od -tx4 -Ax /build/rambi/firmware/coreboot.rom | tail -2 7ffff0 fff67de9 000000ff fff6dfe9 fffff650 800000 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff650 coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff654 E: /build/rambi/firmware/coreboot.rom does not have CBFS master header. E: Could not load ROM image '/build/rambi/firmware/coreboot.rom'. $ Change-Id: I64cbdc79096f3c7a113762b641305542af7bbd60 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 86b88222df6eed25bb176d653305e2e57e18b73a Original-Change-Id: I486092e222c96c65868ae7d41a9e8976ffcc93c4 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/237485 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Patrick Georgi <pgeorgi@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9741 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 00:10:12 +01:00
static int cbfs_header_valid(struct cbfs_header *header, size_t size)
{
if ((ntohl(header->magic) == CBFS_HEADER_MAGIC) &&
((ntohl(header->version) == CBFS_HEADER_VERSION1) ||
(ntohl(header->version) == CBFS_HEADER_VERSION2)) &&
(ntohl(header->romsize) <= size) &&
(ntohl(header->offset) < ntohl(header->romsize)))
return 1;
return 0;
}
struct cbfs_header *cbfs_find_header(char *data, size_t size,
uint32_t forced_offset)
{
size_t offset;
int found = 0;
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
int32_t rel_offset;
struct cbfs_header *header, *result = NULL;
cbfstool: allow user to explicitly specify header location There potentially could be multiple CBFS instances present in the firmware image. cbfstool should be able to operate on any of them, not just the first one present. To accomplish that, allow all CBFS commands to accept the -H parameter (which specifies the exact CBFS header location in the image). If this parameter is specified, the image is not searched for the CBFS header, only the specified location is checked for validity, If the location is valid, it is considered to be the CBFS header, if not - the tool exits with an error status. Note, that default behavior of the tool does not change. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run the following experiments: - examined an image with three CBFS instances, was able to print all of them. - built a rambi coreboot image and tried the following (cbfstool output abbreviated): $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ \od -tx4 -Ax /build/rambi/firmware/coreboot.rom | tail -2 7ffff0 fff67de9 000000ff fff6dfe9 fffff650 800000 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff650 coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff654 E: /build/rambi/firmware/coreboot.rom does not have CBFS master header. E: Could not load ROM image '/build/rambi/firmware/coreboot.rom'. $ Change-Id: I64cbdc79096f3c7a113762b641305542af7bbd60 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 86b88222df6eed25bb176d653305e2e57e18b73a Original-Change-Id: I486092e222c96c65868ae7d41a9e8976ffcc93c4 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/237485 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Patrick Georgi <pgeorgi@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9741 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 00:10:12 +01:00
if (forced_offset < (size - sizeof(struct cbfs_header))) {
/* Check if the forced header is valid. */
header = (struct cbfs_header *)(data + forced_offset);
if (cbfs_header_valid(header, size))
return header;
return NULL;
}
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
// Try finding relative offset of master header at end of file first.
rel_offset = *(int32_t *)(data + size - sizeof(int32_t));
offset = size + rel_offset;
DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n",
(size_t)rel_offset, (size_t)-rel_offset, offset);
cbfstool: allow user to explicitly specify header location There potentially could be multiple CBFS instances present in the firmware image. cbfstool should be able to operate on any of them, not just the first one present. To accomplish that, allow all CBFS commands to accept the -H parameter (which specifies the exact CBFS header location in the image). If this parameter is specified, the image is not searched for the CBFS header, only the specified location is checked for validity, If the location is valid, it is considered to be the CBFS header, if not - the tool exits with an error status. Note, that default behavior of the tool does not change. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run the following experiments: - examined an image with three CBFS instances, was able to print all of them. - built a rambi coreboot image and tried the following (cbfstool output abbreviated): $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ \od -tx4 -Ax /build/rambi/firmware/coreboot.rom | tail -2 7ffff0 fff67de9 000000ff fff6dfe9 fffff650 800000 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff650 coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff654 E: /build/rambi/firmware/coreboot.rom does not have CBFS master header. E: Could not load ROM image '/build/rambi/firmware/coreboot.rom'. $ Change-Id: I64cbdc79096f3c7a113762b641305542af7bbd60 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 86b88222df6eed25bb176d653305e2e57e18b73a Original-Change-Id: I486092e222c96c65868ae7d41a9e8976ffcc93c4 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/237485 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Patrick Georgi <pgeorgi@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9741 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 00:10:12 +01:00
if (offset >= size - sizeof(*header) ||
cbfstool: allow user to explicitly specify header location There potentially could be multiple CBFS instances present in the firmware image. cbfstool should be able to operate on any of them, not just the first one present. To accomplish that, allow all CBFS commands to accept the -H parameter (which specifies the exact CBFS header location in the image). If this parameter is specified, the image is not searched for the CBFS header, only the specified location is checked for validity, If the location is valid, it is considered to be the CBFS header, if not - the tool exits with an error status. Note, that default behavior of the tool does not change. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run the following experiments: - examined an image with three CBFS instances, was able to print all of them. - built a rambi coreboot image and tried the following (cbfstool output abbreviated): $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ \od -tx4 -Ax /build/rambi/firmware/coreboot.rom | tail -2 7ffff0 fff67de9 000000ff fff6dfe9 fffff650 800000 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff650 coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff654 E: /build/rambi/firmware/coreboot.rom does not have CBFS master header. E: Could not load ROM image '/build/rambi/firmware/coreboot.rom'. $ Change-Id: I64cbdc79096f3c7a113762b641305542af7bbd60 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 86b88222df6eed25bb176d653305e2e57e18b73a Original-Change-Id: I486092e222c96c65868ae7d41a9e8976ffcc93c4 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/237485 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Patrick Georgi <pgeorgi@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9741 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 00:10:12 +01:00
!cbfs_header_valid((struct cbfs_header *)(data + offset), size)) {
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
// Some use cases append non-CBFS data to the end of the ROM.
DEBUG("relative offset seems wrong, scanning whole image...\n");
offset = 0;
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
}
for (; offset + sizeof(*header) < size; offset++) {
header = (struct cbfs_header *)(data + offset);
cbfstool: allow user to explicitly specify header location There potentially could be multiple CBFS instances present in the firmware image. cbfstool should be able to operate on any of them, not just the first one present. To accomplish that, allow all CBFS commands to accept the -H parameter (which specifies the exact CBFS header location in the image). If this parameter is specified, the image is not searched for the CBFS header, only the specified location is checked for validity, If the location is valid, it is considered to be the CBFS header, if not - the tool exits with an error status. Note, that default behavior of the tool does not change. BRANCH=storm BUG=chrome-os-partner:34161, chromium:445938 TEST=run the following experiments: - examined an image with three CBFS instances, was able to print all of them. - built a rambi coreboot image and tried the following (cbfstool output abbreviated): $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ \od -tx4 -Ax /build/rambi/firmware/coreboot.rom | tail -2 7ffff0 fff67de9 000000ff fff6dfe9 fffff650 800000 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff650 coreboot.rom: 8192 kB, bootblocksize 2448, romsize 8388608, offset 0x700000 alignment: 64 bytes, architecture: x86 Name Offset Type Size cmos_layout.bin 0x700000 cmos_layout 1164 ... (empty) 0x7ec600 null 77848 $ ./util/cbfstool/cbfstool /build/rambi/firmware/coreboot.rom print -H 0x7ff654 E: /build/rambi/firmware/coreboot.rom does not have CBFS master header. E: Could not load ROM image '/build/rambi/firmware/coreboot.rom'. $ Change-Id: I64cbdc79096f3c7a113762b641305542af7bbd60 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 86b88222df6eed25bb176d653305e2e57e18b73a Original-Change-Id: I486092e222c96c65868ae7d41a9e8976ffcc93c4 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/237485 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Patrick Georgi <pgeorgi@chromium.org> Original-Reviewed-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/9741 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-24 00:10:12 +01:00
if (!cbfs_header_valid(header, size))
continue;
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
if (!found++)
result = header;
}
CBFS: Automate ROM image layout and remove hardcoded offsets Non-x86 boards currently need to hardcode the position of their CBFS master header in a Kconfig. This is very brittle because it is usually put in between the bootblock and the first CBFS entry, without any checks to guarantee that it won't overlap either of those. It is not fun to debug random failures that move and disappear with tiny alignment changes because someone decided to write "ORBC1112" over some part of your data section (in a way that is not visible in the symbolized .elf binaries, only in the final image). This patch seeks to prevent those issues and reduce the need for manual configuration by making the image layout a completely automated part of cbfstool. Since automated placement of the CBFS header means we can no longer hardcode its position into coreboot, this patch takes the existing x86 solution of placing a pointer to the header at the very end of the CBFS-managed section of the ROM and generalizes it to all architectures. This is now even possible with the read-only/read-write split in ChromeOS, since coreboot knows how large that section is from the CBFS_SIZE Kconfig (which is by default equal to ROM_SIZE, but can be changed on systems that place other data next to coreboot/CBFS in ROM). Also adds a feature to cbfstool that makes the -B (bootblock file name) argument on image creation optional, since we have recently found valid use cases for CBFS images that are not the first boot medium of the device (instead opened by an earlier bootloader that can already interpret CBFS) and therefore don't really need a bootblock. BRANCH=None BUG=None TEST=Built and booted on Veyron_Pinky, Nyan_Blaze and Falco. Change-Id: Ib715bb8db258e602991b34f994750a2d3e2d5adf Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: e9879c0fbd57f105254c54bacb3e592acdcad35c Original-Change-Id: Ifcc755326832755cfbccd6f0a12104cba28a20af Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/229975 Reviewed-on: http://review.coreboot.org/9620 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-11-10 22:14:24 +01:00
if (found > 1)
// Top-aligned images usually have a working relative offset
// field, so this is more likely to happen on bottom-aligned
// ones (where the first header is the "outermost" one)
WARN("Multiple (%d) CBFS headers found, using the first one.\n",
found);
return result;
}
struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
{
assert(image);
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
return image->has_header ? (struct cbfs_file *)(image->buffer.data +
image->header.offset) :
(struct cbfs_file *)image->buffer.data;
}
struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
struct cbfs_file *entry)
{
uint32_t addr = cbfs_get_entry_addr(image, entry);
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
int align = image->has_header ? image->header.align :
CBFS_ENTRY_ALIGNMENT;
assert(entry && cbfs_is_valid_entry(image, entry));
addr += ntohl(entry->offset) + ntohl(entry->len);
addr = align_up(addr, align);
return (struct cbfs_file *)(image->buffer.data + addr);
}
uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
{
assert(image && image->buffer.data && entry);
return (int32_t)((char *)entry - image->buffer.data);
}
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
int cbfs_is_valid_cbfs(struct cbfs_image *image)
{
return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC,
strlen(CBFS_FILE_MAGIC));
}
int cbfs_is_legacy_cbfs(struct cbfs_image *image)
{
return image->has_header;
}
int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
{
cbfstool: Restructure around support for reading/writing portions of files The buffer API that cbfstool uses to read and write files only directly supports one-shot operations on whole files. This adds an intermediate partitioned_file module that sits on top of the buffer system and has an awareness of FMAP entries. It provides an easy way to get a buffer for an individual region of a larger image file based on FMAP section name, as well as incrementally write those smaller buffers back to the backing file at the appropriate offset. The module has two distinct modes of operation: - For new images whose layout is described exclusively by an FMAP section, all the aforementioned functionality will be available. - For images in the current format, where the CBFS master header serves as the root of knowledge of the image's size and layout, the module falls back to a legacy operation mode, where it only allows manipulation of the entire image as one unit, but exposes this support through the same interface by mapping the region named SECTION_NAME_PRIMARY_CBFS ("COREBOOT") to the whole file. The tool is presently only ported onto the new module running in legacy mode: higher-level support for true "partitioned" images will be forthcoming. However, as part of this change, the crusty cbfs_image_from_file() and cbfs_image_write_file() abstractions are removed and replaced with a single cbfs_image function, cbfs_image_from_buffer(), as well as centralized image reading/writing directly in cbfstool's main() function. This reduces the boilerplate required to implement each new action, makes the create action much more similar to the others, and will make implementing additional actions and adding in support for the new format much easier. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom images with and without this patch and diff their hexdumps. Ensure that no differences occur at different locations from the diffs between subsequent builds of an identical source tree. Then flash a full new build onto nyan_big and watch it boot normally. BRANCH=None Change-Id: I25578c7b223bc8434c3074cb0dd8894534f8c500 Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 7e1c96a48e7a27fc6b90289d35e6e169d5e7ad20 Original-Change-Id: Ia4a1a4c48df42b9ec2d6b9471b3a10eb7b24bb39 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265581 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10134 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-03-25 21:40:08 +01:00
uint32_t offset = cbfs_get_entry_addr(image, entry);
if (offset >= image->buffer.size)
return 0;
struct buffer entry_data;
buffer_clone(&entry_data, &image->buffer);
buffer_seek(&entry_data, offset);
return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC,
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
strlen(CBFS_FILE_MAGIC));
}
struct cbfs_file *cbfs_create_file_header(int type,
size_t len, const char *name)
{
struct cbfs_file *entry = malloc(MAX_CBFS_FILE_HEADER_BUFFER);
memset(entry, CBFS_CONTENT_DEFAULT_VALUE, MAX_CBFS_FILE_HEADER_BUFFER);
memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
entry->type = htonl(type);
entry->len = htonl(len);
entry->attributes_offset = 0;
entry->offset = htonl(cbfs_calculate_file_header_size(name));
memset(entry->filename, 0, ntohl(entry->offset) - sizeof(*entry));
strcpy(entry->filename, name);
return entry;
}
int cbfs_create_empty_entry(struct cbfs_file *entry, int type,
size_t len, const char *name)
{
struct cbfs_file *tmp = cbfs_create_file_header(type, len, name);
memcpy(entry, tmp, ntohl(tmp->offset));
free(tmp);
memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
return 0;
}
struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file)
{
/* attributes_offset should be 0 when there is no attribute, but all
* values that point into the cbfs_file header are invalid, too. */
if (ntohl(file->attributes_offset) <= sizeof(*file))
return NULL;
/* There needs to be enough space for the file header and one
* attribute header for this to make sense. */
if (ntohl(file->offset) <=
sizeof(*file) + sizeof(struct cbfs_file_attribute))
return NULL;
return (struct cbfs_file_attribute *)
(((uint8_t *)file) + ntohl(file->attributes_offset));
}
struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file,
struct cbfs_file_attribute *attr)
{
/* ex falso sequitur quodlibet */
if (attr == NULL)
return NULL;
/* Is there enough space for another attribute? */
if ((uint8_t *)attr + ntohl(attr->len) +
sizeof(struct cbfs_file_attribute) >=
(uint8_t *)file + ntohl(file->offset))
return NULL;
struct cbfs_file_attribute *next = (struct cbfs_file_attribute *)
(((uint8_t *)attr) + ntohl(attr->len));
/* If any, "unused" attributes must come last. */
if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED)
return NULL;
if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2)
return NULL;
return next;
}
struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header,
uint32_t tag,
uint32_t size)
{
struct cbfs_file_attribute *attr, *next;
next = cbfs_file_first_attr(header);
do {
attr = next;
next = cbfs_file_next_attr(header, attr);
} while (next != NULL);
uint32_t header_size = ntohl(header->offset) + size;
if (header_size > MAX_CBFS_FILE_HEADER_BUFFER) {
DEBUG("exceeding allocated space for cbfs_file headers");
return NULL;
}
/* attr points to the last valid attribute now.
* If NULL, we have to create the first one. */
if (attr == NULL) {
/* New attributes start where the header ends.
* header->offset is later set to accomodate the
* additional structure.
* No endianess translation necessary here, because both
* fields are encoded the same way. */
header->attributes_offset = header->offset;
attr = (struct cbfs_file_attribute *)
(((uint8_t *)header) +
ntohl(header->attributes_offset));
} else {
attr = (struct cbfs_file_attribute *)
(((uint8_t *)attr) +
ntohl(attr->len));
}
header->offset = htonl(header_size);
memset(attr, CBFS_CONTENT_DEFAULT_VALUE, size);
attr->tag = htonl(tag);
attr->len = htonl(size);
return attr;
}
int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer,
enum vb2_hash_algorithm hash_type)
{
if (hash_type >= CBFS_NUM_SUPPORTED_HASHES)
return -1;
unsigned hash_size = widths_cbfs_hash[hash_type];
if (hash_size == 0)
return -1;
struct cbfs_file_attr_hash *attrs =
(struct cbfs_file_attr_hash *)cbfs_add_file_attr(header,
CBFS_FILE_ATTR_TAG_HASH,
sizeof(struct cbfs_file_attr_hash) + hash_size);
if (attrs == NULL)
return -1;
attrs->hash_type = htonl(hash_type);
if (vb2_digest_buffer(buffer_get(buffer), buffer_size(buffer),
hash_type, attrs->hash_data, hash_size) != VB2_SUCCESS)
return -1;
return 0;
}
/* Finds a place to hold whole data in same memory page. */
static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
{
if (!page)
return 1;
return (start / page) == (start + size - 1) / page;
}
/* Tests if data can fit in a range by given offset:
* start ->| metadata_size | offset (+ size) |<- end
*/
static int is_in_range(size_t start, size_t end, size_t metadata_size,
size_t offset, size_t size)
{
return (offset >= start + metadata_size && offset + size <= end);
}
int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size,
size_t page_size, size_t align, size_t metadata_size)
{
struct cbfs_file *entry;
size_t need_len;
size_t addr, addr_next, addr2, addr3, offset;
/* Default values: allow fitting anywhere in ROM. */
if (!page_size)
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
page_size = image->has_header ? image->header.romsize :
image->buffer.size;
if (!align)
align = 1;
if (size > page_size)
ERROR("Input file size (%zd) greater than page size (%zd).\n",
size, page_size);
size_t image_align = image->has_header ? image->header.align :
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
CBFS_ENTRY_ALIGNMENT;
if (page_size % image_align)
WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n",
cbfstool: New image format w/ required FMAP and w/o CBFS master header These new-style firmware images use the FMAP of the root of knowledge about their layout, which allows them to have sections containing raw data whose offset and size can easily be determined at runtime or when modifying or flashing the image. Furthermore, they can even have multiple CBFSes, each of which occupies a different FMAP region. It is assumed that the first entry of each CBFS, including the primary one, will be located right at the start of its region. This means that the bootblock needs to be moved into its own FMAP region, but makes the CBFS master header obsolete because, with the exception of the version and alignment, all its fields are redundant once its CBFS has an entry in the FMAP. The version code will be addressed in a future commit before the new format comes into use, while the alignment will just be defined to 64 bytes in both cbfstool and coreboot itself, since there's almost no reason to ever change it in practice. The version code field and all necessary coreboot changes will come separately. BUG=chromium:470407 TEST=Build panther and nyan_big coreboot.rom and image.bin images with and without this patch, diff their hexdumps, and note that no locations differ except for those that do between subsequent builds of the same codebase. Try working with new-style images: use fmaptool to produce an FMAP section from an fmd file having raw sections and multiple CBFSes, pass the resulting file to cbfstool create -M -F, then try printing its layout and CBFSes' contents, add and remove CBFS files, and read and write raw sections. BRANCH=None Change-Id: I7dd2578d2143d0cedd652fdba5b22221fcc2184a Signed-off-by: Sol Boucher <solb@chromium.org> Original-Commit-Id: 8a670322297f83135b929a5b20ff2bd0e7d2abd3 Original-Change-Id: Ib86fb50edc66632f4e6f717909bbe4efb6c874e5 Original-Signed-off-by: Sol Boucher <solb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/265863 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/10135 Tested-by: build bot (Jenkins)
2015-03-18 20:36:27 +01:00
__func__, page_size, image_align);
need_len = metadata_size + size;
// Merge empty entries to build get max available space.
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
/* Three cases of content location on memory page:
* case 1.
* | PAGE 1 | PAGE 2 |
* | <header><content>| Fit. Return start of content.
*
* case 2.
* | PAGE 1 | PAGE 2 |
* | <header><content> | Fits when we shift content to align
* shift-> | <header>|<content> | at starting of PAGE 2.
*
* case 3. (large content filling whole page)
* | PAGE 1 | PAGE 2 | PAGE 3 |
* | <header>< content > | Can't fit. If we shift content to
* |trial-> <header>< content > | PAGE 2, header can't fit in free
* | shift-> <header><content> space, so we must use PAGE 3.
*
* The returned address can be then used as "base-address" (-b) in add-*
* commands (will be re-calculated and positioned by cbfs_add_entry_at).
* For stage targets, the address is also used to re-link stage before
* being added into CBFS.
*/
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
uint32_t type = ntohl(entry->type);
if (type != CBFS_COMPONENT_NULL)
continue;
addr = cbfs_get_entry_addr(image, entry);
addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
image, entry));
if (addr_next - addr < need_len)
continue;
offset = align_up(addr + metadata_size, align);
if (is_in_same_page(offset, size, page_size) &&
is_in_range(addr, addr_next, metadata_size, offset, size)) {
DEBUG("cbfs_locate_entry: FIT (PAGE1).");
return offset;
}
addr2 = align_up(addr, page_size);
offset = align_up(addr2, align);
if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
return offset;
}
/* Assume page_size >= metadata_size so adding one page will
* definitely provide the space for header. */
assert(page_size >= metadata_size);
addr3 = addr2 + page_size;
offset = align_up(addr3, align);
if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
return offset;
}
}
return -1;
}