coreboot-kgpe-d16/src/southbridge/intel/i82801gx/i82801gx_smihandler.c

627 lines
17 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008-2009 coresystems GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <types.h>
#include <arch/io.h>
#include <arch/romcc_io.h>
#include <console/console.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/smm.h>
#include "i82801gx.h"
#include "i82801gx_power.h"
#define DEBUG_SMI
#define APM_CNT 0xb2
#define CST_CONTROL 0x85 // 0x85 crashes the box
#define PST_CONTROL 0x80 // 0x80 crashes the box
#define ACPI_DISABLE 0x1e
#define ACPI_ENABLE 0xe1
#define GNVS_UPDATE 0xea
#define APM_STS 0xb3
/* I945 */
#define SMRAM 0x9d
#define D_OPEN (1 << 6)
#define D_CLS (1 << 5)
#define D_LCK (1 << 4)
#define G_SMRANE (1 << 3)
#define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0))
/* ICH7 */
#define PM1_STS 0x00
#define PM1_EN 0x02
#define PM1_CNT 0x04
#define SLP_EN (1 << 13)
#define SLP_TYP (7 << 10)
#define GBL_RLS (1 << 2)
#define BM_RLD (1 << 1)
#define SCI_EN (1 << 0)
#define PM1_TMR 0x08
#define PROC_CNT 0x10
#define LV2 0x14
#define LV3 0x15
#define LV4 0x16
#define PM2_CNT 0x20 // mobile only
#define GPE0_STS 0x28
#define GPE0_EN 0x2c
#define PME_B0_EN (1 << 13)
#define SMI_EN 0x30
#define EL_SMI_EN (1 << 25) // Intel Quick Resume Technology
#define INTEL_USB2_EN (1 << 18) // Intel-Specific USB2 SMI logic
#define LEGACY_USB2_EN (1 << 17) // Legacy USB2 SMI logic
#define PERIODIC_EN (1 << 14) // SMI on PERIODIC_STS in SMI_STS
#define TCO_EN (1 << 13) // Enable TCO Logic (BIOSWE et al)
#define MCSMI_EN (1 << 11) // Trap microcontroller range access
#define BIOS_RLS (1 << 7) // asserts SCI on bit set
#define SWSMI_TMR_EN (1 << 6) // start software smi timer on bit set
#define APMC_EN (1 << 5) // Writes to APM_CNT cause SMI#
#define SLP_SMI_EN (1 << 4) // Write to SLP_EN in PM1_CNT asserts SMI#
#define LEGACY_USB_EN (1 << 3) // Legacy USB circuit SMI logic
#define BIOS_EN (1 << 2) // Assert SMI# on setting GBL_RLS bit
#define EOS (1 << 1) // End of SMI (deassert SMI#)
#define GBL_SMI_EN (1 << 0) // SMI# generation at all?
#define SMI_STS 0x34
#define ALT_GP_SMI_EN 0x38
#define ALT_GP_SMI_STS 0x3a
#define GPE_CNTL 0x42
#define DEVACT_STS 0x44
#define SS_CNT 0x50
#define C3_RES 0x54
#include "i82801gx_nvs.h"
/* While we read PMBASE dynamically in case it changed, let's
* initialize it with a sane value
*/
u16 pmbase = DEFAULT_PMBASE;
/* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located
* by coreboot.
*/
global_nvs_t *gnvs = (global_nvs_t *)0x0;
void *tcg = (void *)0x0;
void *smi1 = (void *)0x0;
/**
* @brief read and clear PM1_STS
* @return PM1_STS register
*/
static u16 reset_pm1_status(void)
{
u16 reg16;
reg16 = inw(pmbase + PM1_STS);
/* set status bits are cleared by writing 1 to them */
outw(reg16, pmbase + PM1_STS);
return reg16;
}
static void dump_pm1_status(u16 pm1_sts)
{
printk_debug("PM1_STS: ");
if (pm1_sts & (1 << 15)) printk_debug("WAK ");
if (pm1_sts & (1 << 14)) printk_debug("PCIEXPWAK ");
if (pm1_sts & (1 << 11)) printk_debug("PRBTNOR ");
if (pm1_sts & (1 << 10)) printk_debug("RTC ");
if (pm1_sts & (1 << 8)) printk_debug("PWRBTN ");
if (pm1_sts & (1 << 5)) printk_debug("GBL ");
if (pm1_sts & (1 << 4)) printk_debug("BM ");
if (pm1_sts & (1 << 0)) printk_debug("TMROF ");
printk_debug("\n");
}
/**
* @brief read and clear SMI_STS
* @return SMI_STS register
*/
static u32 reset_smi_status(void)
{
u32 reg32;
reg32 = inl(pmbase + SMI_STS);
/* set status bits are cleared by writing 1 to them */
outl(reg32, pmbase + SMI_STS);
return reg32;
}
static void dump_smi_status(u32 smi_sts)
{
printk_debug("SMI_STS: ");
if (smi_sts & (1 << 26)) printk_debug("SPI ");
if (smi_sts & (1 << 25)) printk_debug("EL_SMI ");
if (smi_sts & (1 << 21)) printk_debug("MONITOR ");
if (smi_sts & (1 << 20)) printk_debug("PCI_EXP_SMI ");
if (smi_sts & (1 << 18)) printk_debug("INTEL_USB2 ");
if (smi_sts & (1 << 17)) printk_debug("LEGACY_USB2 ");
if (smi_sts & (1 << 16)) printk_debug("SMBUS_SMI ");
if (smi_sts & (1 << 15)) printk_debug("SERIRQ_SMI ");
if (smi_sts & (1 << 14)) printk_debug("PERIODIC ");
if (smi_sts & (1 << 13)) printk_debug("TCO ");
if (smi_sts & (1 << 12)) printk_debug("DEVMON ");
if (smi_sts & (1 << 11)) printk_debug("MCSMI ");
if (smi_sts & (1 << 10)) printk_debug("GPI ");
if (smi_sts & (1 << 9)) printk_debug("GPE0 ");
if (smi_sts & (1 << 8)) printk_debug("PM1 ");
if (smi_sts & (1 << 6)) printk_debug("SWSMI_TMR ");
if (smi_sts & (1 << 5)) printk_debug("APM ");
if (smi_sts & (1 << 4)) printk_debug("SLP_SMI ");
if (smi_sts & (1 << 3)) printk_debug("LEGACY_USB ");
if (smi_sts & (1 << 2)) printk_debug("BIOS ");
printk_debug("\n");
}
/**
* @brief read and clear GPE0_STS
* @return GPE0_STS register
*/
static u32 reset_gpe0_status(void)
{
u32 reg32;
reg32 = inl(pmbase + GPE0_STS);
/* set status bits are cleared by writing 1 to them */
outl(reg32, pmbase + GPE0_STS);
return reg32;
}
static void dump_gpe0_status(u32 gpe0_sts)
{
int i;
printk_debug("GPE0_STS: ");
for (i=31; i<= 16; i--) {
if (gpe0_sts & (1 << i)) printk_debug("GPIO%d ", (i-16));
}
if (gpe0_sts & (1 << 14)) printk_debug("USB4 ");
if (gpe0_sts & (1 << 13)) printk_debug("PME_B0 ");
if (gpe0_sts & (1 << 12)) printk_debug("USB3 ");
if (gpe0_sts & (1 << 11)) printk_debug("PME ");
if (gpe0_sts & (1 << 10)) printk_debug("EL_SCI/BATLOW ");
if (gpe0_sts & (1 << 9)) printk_debug("PCI_EXP ");
if (gpe0_sts & (1 << 8)) printk_debug("RI ");
if (gpe0_sts & (1 << 7)) printk_debug("SMB_WAK ");
if (gpe0_sts & (1 << 6)) printk_debug("TCO_SCI ");
if (gpe0_sts & (1 << 5)) printk_debug("AC97 ");
if (gpe0_sts & (1 << 4)) printk_debug("USB2 ");
if (gpe0_sts & (1 << 3)) printk_debug("USB1 ");
if (gpe0_sts & (1 << 2)) printk_debug("HOT_PLUG ");
if (gpe0_sts & (1 << 0)) printk_debug("THRM ");
printk_debug("\n");
}
/**
* @brief read and clear TCOx_STS
* @return TCOx_STS registers
*/
static u32 reset_tco_status(void)
{
u32 tcobase = pmbase + 0x60;
u32 reg32;
reg32 = inl(tcobase + 0x04);
/* set status bits are cleared by writing 1 to them */
outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS
if (reg32 & (1 << 18))
outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS
return reg32;
}
static void dump_tco_status(u32 tco_sts)
{
printk_debug("TCO_STS: ");
if (tco_sts & (1 << 20)) printk_debug("SMLINK_SLV ");
if (tco_sts & (1 << 18)) printk_debug("BOOT ");
if (tco_sts & (1 << 17)) printk_debug("SECOND_TO ");
if (tco_sts & (1 << 16)) printk_debug("INTRD_DET ");
if (tco_sts & (1 << 12)) printk_debug("DMISERR ");
if (tco_sts & (1 << 10)) printk_debug("DMISMI ");
if (tco_sts & (1 << 9)) printk_debug("DMISCI ");
if (tco_sts & (1 << 8)) printk_debug("BIOSWR ");
if (tco_sts & (1 << 7)) printk_debug("NEWCENTURY ");
if (tco_sts & (1 << 3)) printk_debug("TIMEOUT ");
if (tco_sts & (1 << 2)) printk_debug("TCO_INT ");
if (tco_sts & (1 << 1)) printk_debug("SW_TCO ");
if (tco_sts & (1 << 0)) printk_debug("NMI2SMI ");
printk_debug("\n");
}
/* We are using PCIe accesses for now
* 1. the chipset can do it
* 2. we don't need to worry about how we leave 0xcf8/0xcfc behind
*/
#include "../../../northbridge/intel/i945/pcie_config.c"
int southbridge_io_trap_handler(int smif)
{
switch (smif) {
case 0x32:
printk_debug("OS Init\n");
gnvs->smif = 0;
break;
default:
/* Not handled */
return 0;
}
/* On success, the IO Trap Handler returns 0
* On failure, the IO Trap Handler returns a value != 0
*
* For now, we force the return value to 0 and log all traps to
* see what's going on.
*/
//gnvs->smif = 0;
return 1; /* IO trap handled */
}
/**
* @brief Set the EOS bit
*/
void southbridge_smi_set_eos(void)
{
u8 reg8;
reg8 = inb(pmbase + SMI_EN);
reg8 |= EOS;
outb(reg8, pmbase + SMI_EN);
}
static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *state_save)
{
u8 reg8;
u32 reg32;
u8 slp_typ;
/* FIXME: the power state on boot should be read from
* CMOS or even better from GNVS. Right now it's hard
* coded at compile time.
*/
u8 s5pwr = MAINBOARD_POWER_ON_AFTER_FAIL;
/* First, disable further SMIs */
reg8 = inb(pmbase + SMI_EN);
reg8 &= ~SLP_SMI_EN;
outb(reg8, pmbase + SMI_EN);
/* Figure out SLP_TYP */
reg32 = inl(pmbase + PM1_CNT);
printk_spew("SMI#: SLP = 0x%08x\n", reg32);
slp_typ = (reg32 >> 10) & 7;
/* Next, do the deed.
*/
switch (slp_typ) {
case 0: printk_debug("SMI#: Entering S0 (On)\n"); break;
case 1: printk_debug("SMI#: Entering S1 (Assert STPCLK#)\n"); break;
case 5:
printk_debug("SMI#: Entering S3 (Suspend-To-RAM)\n");
/* Invalidate the cache before going to S3 */
wbinvd();
break;
case 6: printk_debug("SMI#: Entering S4 (Suspend-To-Disk)\n"); break;
case 7:
printk_debug("SMI#: Entering S5 (Soft Power off)\n");
#if 0
/* Set PME_B0_EN before going to S5 */
reg32 = inl(pmbase + GPE0_EN);
reg32 |= PME_B0_EN;
outl(reg32, pmbase + GPE0_EN);
#endif
/* Should we keep the power state after a power loss?
* In case the setting is "ON" or "OFF" we don't have
* to do anything. But if it's "KEEP" we have to switch
* to "OFF" before entering S5.
*/
if (s5pwr == MAINBOARD_POWER_KEEP) {
reg8 = pcie_read_config8(PCI_DEV(0, 0x1f, 0), GEN_PMCON_3);
reg8 |= 1;
pcie_write_config8(PCI_DEV(0, 0x1f, 0), GEN_PMCON_3, reg8);
}
break;
default: printk_debug("SMI#: ERROR: SLP_TYP reserved\n"); break;
}
/* Write back to the SLP register to cause the originally intended
* event again. We need to set BIT13 (SLP_EN) though to make the
* sleep happen.
*/
outl(reg32 | SLP_EN, pmbase + PM1_CNT);
/* In most sleep states, the code flow of this function ends at
* the line above. However, if we entered sleep state S1 and wake
* up again, we will continue to execute code in this function.
*/
reg32 = inl(pmbase + PM1_CNT);
if (reg32 & SCI_EN) {
/* The OS is not an ACPI OS, so we set the state to S0 */
reg32 &= ~(SLP_EN | SLP_TYP);
outl(reg32, pmbase + PM1_CNT);
}
}
static void southbridge_smi_apmc(unsigned int node, smm_state_save_area_t *state_save)
{
u32 pmctrl;
u8 reg8;
/* Emulate B2 register as the FADT / Linux expects it */
reg8 = inb(APM_CNT);
switch (reg8) {
case CST_CONTROL:
/* Calling this function seems to cause
* some kind of race condition in Linux
* and causes a kernel oops
*/
printk_debug("C-state control\n");
break;
case PST_CONTROL:
/* Calling this function seems to cause
* some kind of race condition in Linux
* and causes a kernel oops
*/
printk_debug("P-state control\n");
break;
case ACPI_DISABLE:
pmctrl = inl(pmbase + PM1_CNT);
pmctrl &= ~SCI_EN;
outl(pmctrl, pmbase + PM1_CNT);
printk_debug("SMI#: ACPI disabled.\n");
break;
case ACPI_ENABLE:
pmctrl = inl(pmbase + PM1_CNT);
pmctrl |= SCI_EN;
outl(pmctrl, pmbase + PM1_CNT);
printk_debug("SMI#: ACPI enabled.\n");
break;
case GNVS_UPDATE:
gnvs = *(global_nvs_t **)0x500;
tcg = *(void **)0x504;
smi1 = *(void **)0x508;
printk_debug("SMI#: Setting up structures to %p, %p, %p\n", gnvs, tcg, smi1);
break;
default:
printk_debug("SMI#: Unknown function APM_CNT=%02x\n", reg8);
}
}
static void southbridge_smi_pm1(unsigned int node, smm_state_save_area_t *state_save)
{
u16 pm1_sts;
pm1_sts = reset_pm1_status();
dump_pm1_status(pm1_sts);
}
static void southbridge_smi_gpe0(unsigned int node, smm_state_save_area_t *state_save)
{
u32 gpe0_sts;
gpe0_sts = reset_gpe0_status();
dump_gpe0_status(gpe0_sts);
}
static void southbridge_smi_mc(unsigned int node, smm_state_save_area_t *state_save)
{
u32 reg32;
reg32 = inl(pmbase + SMI_EN);
/* Are periodic SMIs enabled? */
if ((reg32 & MCSMI_EN) == 0)
return;
printk_debug("Microcontroller SMI.\n");
}
static void southbridge_smi_tco(unsigned int node, smm_state_save_area_t *state_save)
{
u32 tco_sts;
tco_sts = reset_tco_status();
/* Any TCO event? */
if (!tco_sts)
return;
if (tco_sts & (1 << 8)) { // BIOSWR
u8 bios_cntl;
bios_cntl = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0xdc);
if (bios_cntl & 1) {
/* BWE is RW, so the SMI was caused by a
* write to BWE, not by a write to the BIOS
*/
/* This is the place where we notice someone
* is trying to tinker with the BIOS. We are
* trying to be nice and just ignore it. A more
* resolute answer would be to power down the
* box.
*/
printk_debug("Switching back to RO\n");
pcie_write_config32(PCI_DEV(0, 0x1f, 0), 0xdc, (bios_cntl & ~1));
} /* No else for now? */
} else if (tco_sts & (1 << 3)) { /* TIMEOUT */
/* Handle TCO timeout */
printk_debug("TCO Timeout.\n");
} else if (!tco_sts) {
dump_tco_status(tco_sts);
}
}
static void southbridge_smi_periodic(unsigned int node, smm_state_save_area_t *state_save)
{
u32 reg32;
reg32 = inl(pmbase + SMI_EN);
/* Are periodic SMIs enabled? */
if ((reg32 & PERIODIC_EN) == 0)
return;
printk_debug("Periodic SMI.\n");
}
static void southbridge_smi_monitor(unsigned int node, smm_state_save_area_t *state_save)
{
#define IOTRAP(x) (trap_sts & (1 << x))
u32 trap_sts, trap_cycle;
u32 data, mask = 0;
int i;
trap_sts = RCBA32(0x1e00); // TRSR - Trap Status Register
RCBA32(0x1e00) = trap_sts; // Clear trap(s) in TRSR
trap_cycle = RCBA32(0x1e10);
for (i=16; i<20; i++) {
if (trap_cycle & (1 << i))
mask |= (0xff << ((i - 16) << 2));
}
/* IOTRAP(3) SMI function call */
if (IOTRAP(3)) {
if (gnvs && gnvs->smif)
io_trap_handler(gnvs->smif); // call function smif
return;
}
/* IOTRAP(2) currently unused
* IOTRAP(1) currently unused */
/* IOTRAP(0) SMIC */
if (IOTRAP(0)) {
if (!(trap_cycle & (1 << 24))) { // It's a write
printk_debug("SMI1 command\n");
data = RCBA32(0x1e18);
data &= mask;
// if (smi1)
// southbridge_smi_command(data);
// return;
}
// Fall through to debug
}
printk_debug(" trapped io address = 0x%x\n", trap_cycle & 0xfffc);
for (i=0; i < 4; i++) if(IOTRAP(i)) printk_debug(" TRAP = %d\n", i);
printk_debug(" AHBE = %x\n", (trap_cycle >> 16) & 0xf);
printk_debug(" MASK = 0x%08x\n", mask);
printk_debug(" read/write: %s\n", (trap_cycle & (1 << 24)) ? "read" : "write");
if (!(trap_cycle & (1 << 24))) {
/* Write Cycle */
data = RCBA32(0x1e18);
printk_debug(" iotrap written data = 0x%08x\n", data);
}
#undef IOTRAP
}
typedef void (*smi_handler)(unsigned int node,
smm_state_save_area_t *state_save);
smi_handler southbridge_smi[32] = {
NULL, // [0] reserved
NULL, // [1] reserved
NULL, // [2] BIOS_STS
NULL, // [3] LEGACY_USB_STS
southbridge_smi_sleep, // [4] SLP_SMI_STS
southbridge_smi_apmc, // [5] APM_STS
NULL, // [6] SWSMI_TMR_STS
NULL, // [7] reserved
southbridge_smi_pm1, // [8] PM1_STS
southbridge_smi_gpe0, // [9] GPE0_STS
NULL, // [10] GPI_STS
southbridge_smi_mc, // [11] MCSMI_STS
NULL, // [12] DEVMON_STS
southbridge_smi_tco, // [13] TCO_STS
southbridge_smi_periodic, // [14] PERIODIC_STS
NULL, // [15] SERIRQ_SMI_STS
NULL, // [16] SMBUS_SMI_STS
NULL, // [17] LEGACY_USB2_STS
NULL, // [18] INTEL_USB2_STS
NULL, // [19] reserved
NULL, // [20] PCI_EXP_SMI_STS
southbridge_smi_monitor, // [21] MONITOR_STS
NULL, // [22] reserved
NULL, // [23] reserved
NULL, // [24] reserved
NULL, // [25] EL_SMI_STS
NULL, // [26] SPI_STS
NULL, // [27] reserved
NULL, // [28] reserved
NULL, // [29] reserved
NULL, // [30] reserved
NULL // [31] reserved
};
/**
* @brief Interrupt handler for SMI#
*
* @param smm_revision revision of the smm state save map
*/
void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save)
{
int i, dump = 0;
u32 smi_sts;
/* Update global variable pmbase */
pmbase = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0x40) & 0xfffc;
/* We need to clear the SMI status registers, or we won't see what's
* happening in the following calls.
*/
smi_sts = reset_smi_status();
/* Filter all non-enabled SMI events */
// FIXME Double check, this clears MONITOR
// smi_sts &= inl(pmbase + SMI_EN);
/* Call SMI sub handler for each of the status bits */
for (i = 0; i < 31; i++) {
if (smi_sts & (1 << i)) {
if (southbridge_smi[i])
southbridge_smi[i](node, state_save);
else {
printk_debug("SMI_STS[%d] occured, but no "
"handler available.\n", i);
dump = 1;
}
}
}
if(dump) {
dump_smi_status(smi_sts);
}
}