coreboot-kgpe-d16/src/include/memlayout.h

196 lines
5.8 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
/* This file contains macro definitions for memlayout.ld linker scripts. */
#ifndef __MEMLAYOUT_H
#define __MEMLAYOUT_H
#include <arch/memlayout.h>
#include <vb2_constants.h>
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#include "fmap_config.h"
/* Macros that the architecture can override. */
#ifndef ARCH_POINTER_ALIGN_SIZE
#define ARCH_POINTER_ALIGN_SIZE 8
#endif
#ifndef ARCH_CACHELINE_ALIGN_SIZE
#define ARCH_CACHELINE_ALIGN_SIZE 64
#endif
#define STR(x) XSTR(x)
#define XSTR(x) #x
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define ALIGN_COUNTER(align) \
. = ALIGN(align);
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define SET_COUNTER(name, addr) \
_ = ASSERT(. <= addr, STR(name overlaps the previous region!)); \
. = addr;
#define SYMBOL(name, addr) \
SET_COUNTER(name, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_##name = ABSOLUTE(.);
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define REGION(name, addr, size, expected_align) \
SYMBOL(name, addr) \
_ = ASSERT(. == ALIGN(expected_align), \
STR(name must be aligned to expected_align!)); \
SYMBOL(e##name, addr + size)
#define ALIAS_REGION(name, alias) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_##alias = ABSOLUTE(_##name); \
_e##alias = ABSOLUTE(_e##name); \
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
/* Declare according to SRAM/DRAM ranges in SoC hardware-defined address map. */
#define SRAM_START(addr) SYMBOL(sram, addr)
#define SRAM_END(addr) SYMBOL(esram, addr)
#define DRAM_START(addr) SYMBOL(dram, addr)
#define TIMESTAMP(addr, size) \
REGION(timestamp, addr, size, 8) \
_ = ASSERT(size >= 212, "Timestamp region must fit timestamp_cache!");
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define PRERAM_CBMEM_CONSOLE(addr, size) \
REGION(preram_cbmem_console, addr, size, 4)
arch/x86: Implement RESET_VECTOR_IN_RAM Add support for devices with the reset vector pointing into DRAM. This is a specific implementation that assumes a paradigm of AMD Family 17h (a.k.a. "Zen"). Until the first ljmpl for protected mode, the core's state appears to software like other designs, and then the actual physical addressing becomes recognizable. These systems cannot implement cache-as-RAM as in more traditional x86 products. Therefore instead of reusing CAR names and variables, a substitute called "earlyram" is introduced. This change makes adjustments to CAR-aware files accordingly. Enable NO_XIP_EARLY_STAGES. The first stage is already in DRAM, and running subsequent stages as XIP in the boot device would reduce performance. Finally, add a new early_ram.ld linker file. Because all stages run in DRAM, they can be linked with their .data and .bss as normal, i.e. they don't need to rely on storage available only at a fixed location like CAR systems. The primary purpose of the early_ram.ld is to provide consistent locations for PRERAM_CBMEM_CONSOLE, TIMESTAMP regions, etc. across stages until cbmem is brought online. BUG=b:147042464 TEST=Build for trembyle, and boot to ramstage. $ objdump -h cbfs/fallback/bootblock.debug Idx ,Name ,Size ,VMA ,LMA ,File off Algn 0 ,.text ,000074d0 ,08076000 ,08076000 ,00001000 2**12 1 ,.data ,00000038 ,0807d4d0 ,0807d4d0 ,000084d0 2**2 2 ,.bss ,00000048 ,0807d508 ,0807d508 ,00008508 2**2 3 ,.stack ,00000800 ,0807daf0 ,0807daf0 ,00000000 2**0 4 ,.persistent ,00001cfa ,0807e2f0 ,0807e2f0 ,00000000 2**0 5 ,.reset ,00000010 ,0807fff0 ,0807fff0 ,0000aff0 2**0 6 ,.debug_info ,0002659c ,00000000 ,00000000 ,0000b000 2**0 7 ,.debug_abbrev ,000074a2 ,00000000 ,00000000 ,0003159c 2**0 8 ,.debug_aranges,00000dd0 ,00000000 ,00000000 ,00038a40 2**3 9 ,.debug_line ,0000ad65 ,00000000 ,00000000 ,00039810 2**0 10 ,.debug_str ,00009655 ,00000000 ,00000000 ,00044575 2**0 11 ,.debug_loc ,0000b7ce ,00000000 ,00000000 ,0004dbca 2**0 12 ,.debug_ranges ,000029c0 ,00000000 ,00000000 ,00059398 2**3 Change-Id: I9c084ff6fdcf7e9154436f038705e8679daea780 Signed-off-by: Marshall Dawson <marshalldawson3rd@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/35035 Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-by: Furquan Shaikh <furquan@google.com> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2020-04-04 01:47:37 +02:00
#define EARLYRAM_STACK(addr, size) \
REGION(earlyram_stack, addr, size, ARCH_STACK_ALIGN_SIZE)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
/* Use either CBFS_CACHE (unified) or both (PRERAM|POSTRAM)_CBFS_CACHE */
#define CBFS_CACHE(addr, size) \
REGION(cbfs_cache, addr, size, 4) \
ALIAS_REGION(cbfs_cache, preram_cbfs_cache) \
ALIAS_REGION(cbfs_cache, postram_cbfs_cache)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define FMAP_CACHE(addr, sz) \
REGION(fmap_cache, addr, sz, 4) \
_ = ASSERT(sz >= FMAP_SIZE, \
STR(FMAP does not fit in FMAP_CACHE! (sz < FMAP_SIZE)));
#define CBFS_MCACHE(addr, sz) \
REGION(cbfs_mcache, addr, sz, 4)
#if ENV_ROMSTAGE_OR_BEFORE
#define PRERAM_CBFS_CACHE(addr, size) \
REGION(preram_cbfs_cache, addr, size, 4) \
ALIAS_REGION(preram_cbfs_cache, cbfs_cache)
#define POSTRAM_CBFS_CACHE(addr, size) \
REGION(postram_cbfs_cache, addr, size, 4)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#else
#define PRERAM_CBFS_CACHE(addr, size) \
REGION(preram_cbfs_cache, addr, size, 4)
#define POSTRAM_CBFS_CACHE(addr, size) \
REGION(postram_cbfs_cache, addr, size, 4) \
ALIAS_REGION(postram_cbfs_cache, cbfs_cache)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#endif
/* Careful: 'INCLUDE <filename>' must always be at the end of the output line */
Introduce bootblock self-decompression Masked ROMs are the silent killers of boot speed on devices without memory-mapped SPI flash. They often contain awfully slow SPI drivers (presumably bit-banged) that take hundreds of milliseconds to load our bootblock, and every extra kilobyte of bootblock size has a hugely disproportionate impact on boot speed. The coreboot timestamps can never show that component, but it impacts our users all the same. This patch tries to alleviate that issue a bit by allowing us to compress the bootblock with LZ4, which can cut its size down to nearly half. Of course, masked ROMs usually don't come with decompression algorithms built in, so we need to introduce a little decompression stub that can decompress the rest of the bootblock. This is done by creating a new "decompressor" stage which runs before the bootblock, but includes the compressed bootblock code in its data section. It needs to be as small as possible to get a real benefit from this approach, which means no device drivers, no console output, no exception handling, etc. Besides the decompression algorithm itself we only include the timer driver so that we can measure the boot speed impact of decompression. On ARM and ARM64 systems, we also need to give SoC code a chance to initialize the MMU, since running decompression without MMU is prohibitively slow on these architectures. This feature is implemented for ARM and ARM64 architectures for now, although most of it is architecture-independent and it should be relatively simple to port to other platforms where a masked ROM loads the bootblock into SRAM. It is also supposed to be a clean starting point from which later optimizations can hopefully cut down the decompression stub size (currently ~4K on RK3399) a bit more. NOTE: Bootblock compression is not for everyone. Possible side effects include trying to run LZ4 on CPUs that come out of reset extremely underclocked or enabling this too early in SoC bring-up and getting frustrated trying to find issues in an undebuggable environment. Ask your SoC vendor if bootblock compression is right for you. Change-Id: I0dc1cad9ae7508892e477739e743cd1afb5945e8 Signed-off-by: Julius Werner <jwerner@chromium.org> Reviewed-on: https://review.coreboot.org/26340 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2018-05-16 23:14:04 +02:00
#if ENV_DECOMPRESSOR
#define DECOMPRESSOR(addr, sz) \
SYMBOL(decompressor, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_edecompressor = ABSOLUTE(_decompressor + sz); \
Introduce bootblock self-decompression Masked ROMs are the silent killers of boot speed on devices without memory-mapped SPI flash. They often contain awfully slow SPI drivers (presumably bit-banged) that take hundreds of milliseconds to load our bootblock, and every extra kilobyte of bootblock size has a hugely disproportionate impact on boot speed. The coreboot timestamps can never show that component, but it impacts our users all the same. This patch tries to alleviate that issue a bit by allowing us to compress the bootblock with LZ4, which can cut its size down to nearly half. Of course, masked ROMs usually don't come with decompression algorithms built in, so we need to introduce a little decompression stub that can decompress the rest of the bootblock. This is done by creating a new "decompressor" stage which runs before the bootblock, but includes the compressed bootblock code in its data section. It needs to be as small as possible to get a real benefit from this approach, which means no device drivers, no console output, no exception handling, etc. Besides the decompression algorithm itself we only include the timer driver so that we can measure the boot speed impact of decompression. On ARM and ARM64 systems, we also need to give SoC code a chance to initialize the MMU, since running decompression without MMU is prohibitively slow on these architectures. This feature is implemented for ARM and ARM64 architectures for now, although most of it is architecture-independent and it should be relatively simple to port to other platforms where a masked ROM loads the bootblock into SRAM. It is also supposed to be a clean starting point from which later optimizations can hopefully cut down the decompression stub size (currently ~4K on RK3399) a bit more. NOTE: Bootblock compression is not for everyone. Possible side effects include trying to run LZ4 on CPUs that come out of reset extremely underclocked or enabling this too early in SoC bring-up and getting frustrated trying to find issues in an undebuggable environment. Ask your SoC vendor if bootblock compression is right for you. Change-Id: I0dc1cad9ae7508892e477739e743cd1afb5945e8 Signed-off-by: Julius Werner <jwerner@chromium.org> Reviewed-on: https://review.coreboot.org/26340 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2018-05-16 23:14:04 +02:00
_ = ASSERT(_eprogram - _program <= sz, \
STR(decompressor exceeded its allotted size! (sz))); \
INCLUDE "decompressor/lib/program.ld"
#define OVERLAP_DECOMPRESSOR_ROMSTAGE(addr, sz) DECOMPRESSOR(addr, sz)
#define OVERLAP_DECOMPRESSOR_VERSTAGE_ROMSTAGE(addr, sz) \
DECOMPRESSOR(addr, sz)
#else
#define DECOMPRESSOR(addr, sz) \
REGION(decompressor, addr, sz, 1)
#define OVERLAP_DECOMPRESSOR_ROMSTAGE(addr, sz) ROMSTAGE(addr, sz)
#define OVERLAP_DECOMPRESSOR_VERSTAGE_ROMSTAGE(addr, sz) \
OVERLAP_VERSTAGE_ROMSTAGE(addr, sz)
#endif
#if ENV_BOOTBLOCK
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define BOOTBLOCK(addr, sz) \
SYMBOL(bootblock, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_ebootblock = ABSOLUTE(_bootblock + sz); \
_ = ASSERT(_eprogram - _program <= sz, \
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
STR(Bootblock exceeded its allotted size! (sz))); \
INCLUDE "bootblock/lib/program.ld"
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#else
#define BOOTBLOCK(addr, sz) \
REGION(bootblock, addr, sz, 1)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#endif
#if ENV_ROMSTAGE
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define ROMSTAGE(addr, sz) \
SYMBOL(romstage, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_eromstage = ABSOLUTE(_romstage + sz); \
_ = ASSERT(_eprogram - _program <= sz, \
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
STR(Romstage exceeded its allotted size! (sz))); \
INCLUDE "romstage/lib/program.ld"
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#else
#define ROMSTAGE(addr, sz) \
REGION(romstage, addr, sz, 1)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#endif
#if ENV_RAMSTAGE
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#define RAMSTAGE(addr, sz) \
SYMBOL(ramstage, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_eramstage = ABSOLUTE(_ramstage + sz); \
_ = ASSERT(_eprogram - _program <= sz, \
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
STR(Ramstage exceeded its allotted size! (sz))); \
INCLUDE "ramstage/lib/program.ld"
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#else
#define RAMSTAGE(addr, sz) \
REGION(ramstage, addr, sz, 1)
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#endif
/* VBOOT2_WORK must always use VB2_FIRMWARE_WORKBUF_RECOMMENDED_SIZE for its
* size argument. The constant is imported via vb2_workbuf_size.h. */
#define VBOOT2_WORK(addr, sz) \
REGION(vboot2_work, addr, sz, 16) \
_ = ASSERT(sz == VB2_FIRMWARE_WORKBUF_RECOMMENDED_SIZE, \
STR(vboot2 work buffer size must be equivalent to \
VB2_FIRMWARE_WORKBUF_RECOMMENDED_SIZE! (sz)));
security/vboot: Decouple measured boot from verified boot Currently, those who want to use measured boot implemented within vboot should enable verified boot first, along with sections such as GBB and RW slots defined with manually written fmd files, even if they do not actually want to verify anything. As discussed in CB:34977, measured boot should be decoupled from verified boot and make them two fully independent options. Crypto routines necessary for measurement could be reused, and TPM and CRTM init should be done somewhere other than vboot_logic_executed() if verified boot is not enabled. In this revision, only TCPA log is initialized during bootblock. Before TPM gets set up, digests are not measured into tpm immediately, but cached in TCPA log, and measured into determined PCRs right after TPM is up. This change allows those who do not want to use the verified boot scheme implemented by vboot as well as its requirement of a more complex partition scheme designed for chromeos to make use of the measured boot functionality implemented within vboot library to measure the boot process. TODO: Measure MRC Cache somewhere, as MRC Cache has never resided in CBFS any more, so it cannot be covered by tspi_measure_cbfs_hook(). Change-Id: I1fb376b4a8b98baffaee4d574937797bba1f8aee Signed-off-by: Bill XIE <persmule@hardenedlinux.org> Reviewed-on: https://review.coreboot.org/c/coreboot/+/35077 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Philipp Deppenwiese <zaolin.daisuki@gmail.com> Reviewed-by: Julius Werner <jwerner@chromium.org> Reviewed-by: Werner Zeh <werner.zeh@siemens.com>
2019-08-22 14:28:36 +02:00
#define TPM_TCPA_LOG(addr, size) \
REGION(tpm_tcpa_log, addr, size, 16) \
_ = ASSERT(size >= 2K, "tpm tcpa log buffer must be at least 2K!");
#if ENV_SEPARATE_VERSTAGE
#define VERSTAGE(addr, sz) \
SYMBOL(verstage, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_everstage = ABSOLUTE(_verstage + sz); \
_ = ASSERT(_eprogram - _program <= sz, \
STR(Verstage exceeded its allotted size! (sz))); \
INCLUDE "verstage/lib/program.ld"
vboot: Disallow separate verstage after romstage, try to clarify logic No board has ever tried to combine CONFIG_SEPARATE_VERSTAGE with CONFIG_VBOOT_STARTS_IN_ROMSTAGE. There are probably many reasons why this wouldn't work (e.g. x86 CAR migration logic currently always assumes verstage code to run pre-migration). It would also not really make sense: the reason we use separate verstages is to decrease bootblock size (mitigating the boot speed cost of slow boot ROM SPI drivers) and to allow the SRAM-saving RETURN_FROM_VERSTAGE trick, neither of which would apply to the after-romstage case. It is better to just forbid that case explicitly and give programmers more guarantees about what the verstage is (e.g. now the assumption that it runs pre-RAM is always valid). Since Kconfig dependencies aren't always guaranteed in the face of 'select' statements, also add some explicit compile-time assertions to the vboot code. We can simplify some of the loader logic which now no longer needs to provide for the forbidden case. In addition, also try to make some of the loader logic more readable by writing it in a more functional style that allows us to put more assertions about which cases should be unreachable in there, which will hopefully make it more robust and fail-fast with future changes (e.g. addition of new stages). Change-Id: Iaf60040af4eff711d9b80ee0e5950ce05958b3aa Signed-off-by: Julius Werner <jwerner@chromium.org> Reviewed-on: https://review.coreboot.org/18983 Reviewed-by: Aaron Durbin <adurbin@chromium.org> Tested-by: build bot (Jenkins)
2017-03-18 00:54:48 +01:00
#define OVERLAP_VERSTAGE_ROMSTAGE(addr, size) \
_ = ASSERT(CONFIG(VBOOT_RETURN_FROM_VERSTAGE) == 1, \
vboot: Disallow separate verstage after romstage, try to clarify logic No board has ever tried to combine CONFIG_SEPARATE_VERSTAGE with CONFIG_VBOOT_STARTS_IN_ROMSTAGE. There are probably many reasons why this wouldn't work (e.g. x86 CAR migration logic currently always assumes verstage code to run pre-migration). It would also not really make sense: the reason we use separate verstages is to decrease bootblock size (mitigating the boot speed cost of slow boot ROM SPI drivers) and to allow the SRAM-saving RETURN_FROM_VERSTAGE trick, neither of which would apply to the after-romstage case. It is better to just forbid that case explicitly and give programmers more guarantees about what the verstage is (e.g. now the assumption that it runs pre-RAM is always valid). Since Kconfig dependencies aren't always guaranteed in the face of 'select' statements, also add some explicit compile-time assertions to the vboot code. We can simplify some of the loader logic which now no longer needs to provide for the forbidden case. In addition, also try to make some of the loader logic more readable by writing it in a more functional style that allows us to put more assertions about which cases should be unreachable in there, which will hopefully make it more robust and fail-fast with future changes (e.g. addition of new stages). Change-Id: Iaf60040af4eff711d9b80ee0e5950ce05958b3aa Signed-off-by: Julius Werner <jwerner@chromium.org> Reviewed-on: https://review.coreboot.org/18983 Reviewed-by: Aaron Durbin <adurbin@chromium.org> Tested-by: build bot (Jenkins)
2017-03-18 00:54:48 +01:00
"Must set RETURN_FROM_VERSTAGE to overlap romstage."); \
VERSTAGE(addr, size)
#else
#define VERSTAGE(addr, sz) \
REGION(verstage, addr, sz, 1)
#define OVERLAP_VERSTAGE_ROMSTAGE(addr, size) ROMSTAGE(addr, size)
#endif
#if ENV_POSTCAR
#define POSTCAR(addr, sz) \
SYMBOL(postcar, addr) \
rmodtool: Make memlayout symbols absolute and do not relocate them Memlayout is a mechanism to define memory areas outside the normal program segment constructed by the linker. Therefore, it generally doesn't make sense to relocate memlayout symbols when the program is relocated. They tend to refer to things that are always in one specific spot, independent of where the program is loaded. This hasn't really hurt us in the past because the use case we have for rmodules (ramstage on x86) just happens to not really need to refer to any memlayout-defined areas at the moment. But that use case may come up in the future so it's still worth fixing. This patch declares all memlayout-defined symbols as ABSOLUTE() in the linker, which is then reflected in the symbol table of the generated ELF. We can then use that distinction to have rmodtool skip them when generating the relocation table for an rmodule. (Also rearrange rmodtool a little to make the primary string table more easily accessible to the rest of the code, so we can refer to symbol names in debug output.) A similar problem can come up with userspace unit tests, but we cannot modify the userspace relocation toolchain (and for unfortunate historical reasons, it tries to relocate even absolute symbols). We'll just disable PIC and make those binaries fully static to avoid that issue. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ic51d9add3dc463495282b365c1b6d4a9bf11dbf2 Reviewed-on: https://review.coreboot.org/c/coreboot/+/50629 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2021-02-13 02:37:27 +01:00
_epostcar = ABSOLUTE(_postcar + sz); \
_ = ASSERT(_eprogram - _program <= sz, \
STR(Aftercar exceeded its allotted size! (sz))); \
INCLUDE "postcar/lib/program.ld"
#else
#define POSTCAR(addr, sz) \
REGION(postcar, addr, sz, 1)
#endif
#define WATCHDOG_TOMBSTONE(addr, size) \
REGION(watchdog_tombstone, addr, size, 4) \
_ = ASSERT(size == 4, "watchdog tombstones should be exactly 4 byte!");
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#endif /* __MEMLAYOUT_H */