2011-02-22 15:35:05 +01:00
##
## This file is part of the coreboot project.
##
## Copyright (C) 2011 secunet Security Networks AG
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
#######################################################################
# misleadingly named, this is the coreboot version
2012-12-11 00:47:23 +01:00
export KERNELVERSION := $ ( shell if [ - d " $ (top)/.git " - a - f " `which git` " ]; \
then git describe -- dirty -- always || git describe ; \
else echo 4.0 $ ( KERNELREVISION ); fi )
2011-02-22 15:35:05 +01:00
2013-12-29 18:45:23 +01:00
#######################################################################
# Test for coreboot toolchain (except when explicitely not requested)
ifneq ( $ ( NOCOMPILE ), 1 )
# only run if we're doing a build (not for tests, kconfig, ...)
ifneq ( $ ( CONFIG_ANY_TOOLCHAIN ), y )
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
_toolchain = $ ( shell $ ( CC_x86_32 ) - v 2 >& 1 | grep - q " gcc version .*coreboot toolchain " && echo coreboot )
2014-05-09 20:39:06 +02:00
ifeq ( $ ( CONFIG_COMPILER_LLVM_CLANG ), y )
2014-06-27 10:22:53 +02:00
_toolchain = $ ( shell $ ( CC_x86_32 ) - v 2 >& 1 | grep - q " clang version " && echo coreboot )
2014-05-09 20:39:06 +02:00
endif
2013-12-29 18:45:23 +01:00
ifneq ( $ ( _toolchain ), coreboot )
$ ( error Please use the coreboot toolchain ( or prove that your toolchain works ))
endif
endif
endif
2011-02-22 15:35:05 +01:00
#######################################################################
# Basic component discovery
MAINBOARDDIR = $ ( call strip_quotes , $ ( CONFIG_MAINBOARD_DIR ))
export MAINBOARDDIR
2012-04-19 11:00:06 +02:00
## Final build results, which CBFSTOOL uses to create the final
## rom image file, are placed under $(objcbfs).
## These typically have suffixes .debug .elf .bin and .map
2012-08-09 20:09:44 +02:00
export objcbfs := $ ( obj ) / cbfs / $ ( call strip_quotes , $ ( CONFIG_CBFS_PREFIX ))
2012-04-19 11:00:06 +02:00
## Based on the active configuration, Makefile conditionally collects
## the required assembly includes and saves them in a file.
## Such files that do not have a clear one-to-one relation to a source
## file under src/ are placed and built under $(objgenerated)
export objgenerated := $ ( obj ) / generated
2011-02-22 15:35:05 +01:00
#######################################################################
# root rule to resolve if in build mode (ie. configuration exists)
real - target : $ ( obj ) / config . h coreboot
2014-07-10 09:42:03 +02:00
coreboot : build - dirs $ ( obj ) / coreboot . rom $ ( obj ) / cbfstool $ ( obj ) / rmodtool
2011-02-22 15:35:05 +01:00
#######################################################################
# our phony targets
2012-04-19 11:00:06 +02:00
PHONY += clean - abuild coreboot lint lint - stable build - dirs
2011-02-22 15:35:05 +01:00
#######################################################################
# root source directories of coreboot
2013-09-07 07:41:48 +02:00
subdirs - y := src / lib src / console src / device src / ec src / southbridge src / soc
2011-12-01 16:49:43 +01:00
subdirs - y += src / northbridge src / superio src / drivers src / cpu src / vendorcode
2012-03-09 10:53:52 +01:00
subdirs - y += util / cbfstool util / sconfig util / nvramtool
2014-04-29 01:39:40 +02:00
subdirs - y += src / arch / arm src / arch / arm64 src / arch / x86
2011-02-22 15:35:05 +01:00
subdirs - y += src / mainboard / $ ( MAINBOARDDIR )
2011-09-02 09:57:01 +02:00
subdirs - y += site - local
2011-02-22 15:35:05 +01:00
#######################################################################
# Add source classes and their build options
2014-07-31 18:28:55 +02:00
classes - y := ramstage romstage bootblock smm smmstub cpu_microcode
# Add dynamic classes for rmodules
$ ( foreach supported_arch , $ ( ARCH_SUPPORTED ), \
$ ( eval $ ( call define_class , rmodules_ $ ( supported_arch ), $ ( supported_arch ))))
2011-02-22 15:35:05 +01:00
2012-11-25 17:10:47 +01:00
#######################################################################
# Helper functions for ramstage postprocess
spc :=
spc +=
$ ( spc ) :=
$ ( spc ) +=
# files-in-dir-recursive,dir,files
files - in - dir - recursive = $ ( filter $ ( 1 ) % , $ ( 2 ))
# parent-dir,dir/
2014-05-21 22:36:13 +02:00
parent - dir = $ ( dir $ ( if $ ( patsubst /% ,, $ ( 1 )),, / ) $ ( subst $ ( ), / , $ ( strip $ ( subst / , , $ ( 1 )))))
2012-11-25 17:10:47 +01:00
# filters out exactly the directory specified
# filter-out-dir,dir_to_keep,dirs
filter - out - dir = $ ( filter - out $ ( 1 ), $ ( 2 ))
# filters out dir_to_keep and all its parents
# filter-out-dirs,dir_to_keep,dirs
2014-05-21 22:36:13 +02:00
filter - out - dirs = $ ( if $ ( filter - out ./ / , $ ( 1 )), $ ( call filter - out - dirs , $ ( call parent - dir , $ ( 1 )), $ ( call filter - out - dir , $ ( 1 ), $ ( 2 ))), $ ( call filter - out - dir , $ ( 1 ), $ ( 2 )))
2012-11-25 17:10:47 +01:00
# dir-wildcards,dirs
dir - wildcards = $ ( addsuffix % , $ ( 1 ))
# files-in-dir,dir,files
2014-05-21 22:36:13 +02:00
files - in - dir = $ ( filter - out $ ( call dir - wildcards , $ ( call filter - out - dirs , $ ( 1 ), $ ( sort $ ( dir $ ( 2 ))))), $ ( call files - in - dir - recursive , $ ( 1 ), $ ( 2 )))
2012-11-25 17:10:47 +01:00
#######################################################################
# reduce command line length by linking the objects of each
# directory into an intermediate file
ramstage - postprocess = $ ( foreach d , $ ( sort $ ( dir $ ( 1 ))), \
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$ ( eval $ ( d ) ramstage . o : $ ( call files - in - dir , $ ( d ), $ ( 1 )); $ $ ( LD_ramstage ) - o $ $ @ - r $ $ ^ ) \
2012-11-25 17:10:47 +01:00
$ ( eval ramstage - objs := $ ( d ) ramstage . o $ ( filter - out $ ( call files - in - dir , $ ( d ), $ ( 1 )), $ ( ramstage - objs ))))
2014-11-06 23:50:22 +01:00
romstage - c - ccopts :=- D__PRE_RAM__
romstage - S - ccopts :=- D__PRE_RAM__
2011-09-02 23:23:41 +02:00
ifeq ( $ ( CONFIG_TRACE ), y )
2014-11-06 23:50:22 +01:00
ramstage - c - ccopts := - finstrument - functions
2011-09-02 23:23:41 +02:00
endif
Implement GCC code coverage analysis
In order to provide some insight on what code is executed during
coreboot's run time and how well our test scenarios work, this
adds code coverage support to coreboot's ram stage. This should
be easily adaptable for payloads, and maybe even romstage.
See http://gcc.gnu.org/onlinedocs/gcc/Gcov.html for
more information.
To instrument coreboot, select CONFIG_COVERAGE ("Code coverage
support") in Kconfig, and recompile coreboot. coreboot will then
store its code coverage information into CBMEM, if possible.
Then, run "cbmem -CV" as root on the target system running the
instrumented coreboot binary. This will create a whole bunch of
.gcda files that contain coverage information. Tar them up, copy
them to your build system machine, and untar them. Then you can
use your favorite coverage utility (gcov, lcov, ...) to visualize
code coverage.
For a sneak peak of what will expect you, please take a look
at http://www.coreboot.org/~stepan/coreboot-coverage/
Change-Id: Ib287d8309878a1f5c4be770c38b1bc0bb3aa6ec7
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2052
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
Reviewed-by: Martin Roth <martin@se-eng.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2012-12-19 01:23:28 +01:00
ifeq ( $ ( CONFIG_COVERAGE ), y )
2014-11-06 23:50:22 +01:00
ramstage - c - ccopts +=- fprofile - arcs - ftest - coverage
Implement GCC code coverage analysis
In order to provide some insight on what code is executed during
coreboot's run time and how well our test scenarios work, this
adds code coverage support to coreboot's ram stage. This should
be easily adaptable for payloads, and maybe even romstage.
See http://gcc.gnu.org/onlinedocs/gcc/Gcov.html for
more information.
To instrument coreboot, select CONFIG_COVERAGE ("Code coverage
support") in Kconfig, and recompile coreboot. coreboot will then
store its code coverage information into CBMEM, if possible.
Then, run "cbmem -CV" as root on the target system running the
instrumented coreboot binary. This will create a whole bunch of
.gcda files that contain coverage information. Tar them up, copy
them to your build system machine, and untar them. Then you can
use your favorite coverage utility (gcov, lcov, ...) to visualize
code coverage.
For a sneak peak of what will expect you, please take a look
at http://www.coreboot.org/~stepan/coreboot-coverage/
Change-Id: Ib287d8309878a1f5c4be770c38b1bc0bb3aa6ec7
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2052
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
Reviewed-by: Martin Roth <martin@se-eng.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2012-12-19 01:23:28 +01:00
endif
2011-09-02 23:23:41 +02:00
2014-10-29 15:50:32 +01:00
# try to fetch non-optional submodules
forgetthis := $ ( shell git submodule update -- init )
2012-04-30 21:06:10 +02:00
ifeq ( $ ( CONFIG_USE_BLOBS ), y )
2014-10-29 15:50:32 +01:00
# this is necessary because 3rdparty is update=none, and so is ignored
# unless explicitly requested and enabled through --checkout
2012-04-30 21:06:10 +02:00
forgetthis := $ ( shell git submodule update -- init -- checkout 3 rdparty )
endif
2014-11-06 23:50:22 +01:00
bootblock - c - ccopts :=- D__BOOT_BLOCK__ - D__PRE_RAM__
bootblock - S - ccopts :=- D__BOOT_BLOCK__ - D__PRE_RAM__
2013-01-31 18:09:24 +01:00
2014-11-06 23:50:22 +01:00
smmstub - c - ccopts :=- D__SMM__
smmstub - S - ccopts :=- D__SMM__
smm - c - ccopts :=- D__SMM__
smm - S - ccopts :=- D__SMM__
2011-02-22 15:35:05 +01:00
2012-04-02 22:24:04 +02:00
# SMM TSEG base is dynamic
2013-01-04 00:38:47 +01:00
ifneq ( $ ( CONFIG_SMM_MODULES ), y )
2012-04-02 22:24:04 +02:00
ifeq ( $ ( CONFIG_SMM_TSEG ), y )
2014-11-06 23:50:22 +01:00
smm - c - ccopts += - fpic
2012-04-02 22:24:04 +02:00
endif
2013-01-04 00:38:47 +01:00
endif
2012-04-02 22:24:04 +02:00
2011-03-08 21:49:18 +01:00
ramstage - c - deps := $ $ ( OPTION_TABLE_H )
romstage - c - deps := $ $ ( OPTION_TABLE_H )
2013-01-31 18:09:24 +01:00
bootblock - c - deps := $ $ ( OPTION_TABLE_H )
2013-11-30 20:06:18 +01:00
smm - c - deps := $ $ ( OPTION_TABLE_H )
2011-03-08 21:49:18 +01:00
2011-02-22 15:35:05 +01:00
#######################################################################
# Add handler to compile ACPI's ASL
define ramstage - objs_asl_template
2011-03-29 11:01:10 +02:00
$ ( obj ) / $ ( 1 ) . ramstage . o : src / $ ( 1 ) . asl $ ( obj ) / config . h
2011-02-22 15:35:05 +01:00
@ printf " IASL $ $ (subst $ (top)/,, $ $ (@)) \n "
2014-05-17 14:02:08 +02:00
$ ( CC_ramstage ) - x assembler - with - cpp - E - MMD - MT $ $ ( @ ) - D__ACPI__ - P - include $ ( src ) / include / kconfig . h - I $ ( obj ) - I $ ( src ) - I $ ( src ) / include - I $ ( src ) / arch / $ ( ARCHDIR - $ ( ARCH - ramstage - y )) / include - I $ ( src ) / mainboard / $ ( MAINBOARDDIR ) $ $ < - o $ $ ( basename $ $ @ ) . asl
2011-08-09 00:07:50 +02:00
cd $ $ ( dir $ $ @ ); $ ( IASL ) - p $ $ ( notdir $ $ @ ) - tc $ $ ( notdir $ $ ( basename $ $ @ )) . asl
2011-06-01 21:54:16 +02:00
mv $ $ ( basename $ $ @ ) . hex $ $ ( basename $ $ @ ) . c
2014-05-17 14:00:12 +02:00
$ ( CC_ramstage ) $ $ ( CFLAGS_ramstage ) $ $ ( CPPFLAGS_ramstage ) $ $ ( if $ $ ( subst dsdt ,, $ $ ( basename $ $ ( notdir $ ( 1 )))), - DAmlCode = AmlCode_ $ $ ( basename $ $ ( notdir $ ( 1 )))) - c - o $ $ @ $ $ ( basename $ $ @ ) . c
2011-02-22 15:35:05 +01:00
# keep %.o: %.c rule from catching the temporary .c file after a make clean
mv $ $ ( basename $ $ @ ) . c $ $ ( basename $ $ @ ) . hex
endef
2012-03-09 12:30:07 +01:00
#######################################################################
# Parse plaintext cmos defaults into binary format
# arg1: source file
# arg2: binary file name
cbfs - files - processor - nvramtool = \
$ ( eval $ ( 2 ) : $ ( 1 ) $ ( src ) / mainboard / $ ( MAINBOARDDIR ) / cmos . layout | $ ( objutil ) / nvramtool / nvramtool ; \
printf " CREATE $ (2) (from $ (1)) \n " ; $ ( objutil ) / nvramtool / nvramtool - y $ ( src ) / mainboard / $ ( MAINBOARDDIR ) / cmos . layout - D $ ( 2 ) . tmp - p $ ( 1 ) && mv $ ( 2 ) . tmp $ ( 2 ))
2012-04-30 23:15:17 +02:00
#######################################################################
# Link VSA binary to ELF-ish stage
# arg1: source file
# arg2: binary file name
cbfs - files - processor - vsa = \
$ ( eval $ ( 2 ) : $ ( 1 ) ; \
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
printf " CREATE $ (2) (from $ (1)) \n " ; $ ( OBJCOPY_ramstage ) -- set - start 0x20 -- adjust - vma 0x60000 - I binary - O elf32 - i386 - B i386 $ ( 1 ) $ ( 2 ) . tmp && $ ( LD_ramstage ) - m elf_i386 - e 0x60020 -- section - start . data = 0x60000 $ ( 2 ) . tmp - o $ ( 2 ))
2012-04-30 23:15:17 +02:00
2011-02-22 15:35:05 +01:00
#######################################################################
# Add handler for arbitrary files in CBFS
$ ( call add - special - class , cbfs - files )
cbfs - files - handler = \
2012-03-09 12:30:07 +01:00
$ ( eval tmp - cbfs - method := $ ( word 2 , $ ( subst : , , $ ( $ ( 2 ) - file )))) \
2012-11-15 14:51:54 +01:00
$ ( eval $ ( 2 ) - file := $ ( call strip_quotes , $ ( word 1 , $ ( subst : , , $ ( $ ( 2 ) - file ))))) \
2011-02-22 15:35:05 +01:00
$ ( if $ ( wildcard $ ( 1 ) $ ( $ ( 2 ) - file )), \
$ ( eval tmp - cbfs - file := $ ( wildcard $ ( 1 ) $ ( $ ( 2 ) - file ))), \
$ ( eval tmp - cbfs - file := $ ( $ ( 2 ) - file ))) \
2013-02-16 01:06:57 +01:00
$ ( if $ ( strip $ ( $ ( 2 ) - required )), \
$ ( if $ ( wildcard $ ( tmp - cbfs - file )),, \
$ ( info This build configuration requires $ ( $ ( 2 ) - required )) \
$ ( eval FAILBUILD := 1 ) \
)) \
2012-03-09 12:30:07 +01:00
$ ( if $ ( tmp - cbfs - method ), \
$ ( eval tmp - old - cbfs - file := $ ( tmp - cbfs - file )) \
2012-09-21 18:11:59 +02:00
$ ( eval tmp - cbfs - file := $ ( shell mkdir - p $ ( obj ) / mainboard / $ ( MAINBOARDDIR ); mktemp $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / cbfs - file . XXXXXX ) . out ) \
2012-03-09 12:30:07 +01:00
$ ( call cbfs - files - processor - $ ( tmp - cbfs - method ), $ ( tmp - old - cbfs - file ), $ ( tmp - cbfs - file ))) \
2012-08-14 19:01:53 +02:00
$ ( eval cbfs - files += $ ( tmp - cbfs - file ) | $ ( 2 ) | $ ( $ ( 2 ) - type ) | $ ( $ ( 2 ) - compression ) | $ ( $ ( 2 ) - position )) \
2011-02-22 15:35:05 +01:00
$ ( eval $ ( 2 ) - name := ) \
$ ( eval $ ( 2 ) - type := ) \
2012-08-14 19:01:53 +02:00
$ ( eval $ ( 2 ) - compression := ) \
2013-02-16 01:06:57 +01:00
$ ( eval $ ( 2 ) - position := ) \
$ ( eval $ ( 2 ) - required := )
2011-02-22 15:35:05 +01:00
#######################################################################
# a variety of flags for our build
2012-10-30 00:52:36 +01:00
CBFS_COMPRESS_FLAG := none
2011-05-02 21:53:04 +02:00
ifeq ( $ ( CONFIG_COMPRESS_RAMSTAGE ), y )
2012-10-30 00:52:36 +01:00
CBFS_COMPRESS_FLAG := LZMA
2011-05-02 21:53:04 +02:00
endif
2012-10-30 00:52:36 +01:00
CBFS_PAYLOAD_COMPRESS_FLAG := none
2011-02-22 15:35:05 +01:00
ifeq ( $ ( CONFIG_COMPRESSED_PAYLOAD_LZMA ), y )
2012-10-30 00:52:36 +01:00
CBFS_PAYLOAD_COMPRESS_FLAG := LZMA
2011-02-22 15:35:05 +01:00
endif
ifneq ( $ ( CONFIG_LOCALVERSION ), " " )
COREBOOT_EXTRA_VERSION := - $ ( call strip_quotes , $ ( CONFIG_LOCALVERSION ))
endif
2014-05-17 14:00:12 +02:00
CPPFLAGS_common := - Isrc - Isrc / include - I $ ( obj )
CPPFLAGS_common += - Isrc / device / oprom / include
CPPFLAGS_common += - include $ ( src ) / include / kconfig . h
2011-02-22 15:35:05 +01:00
2014-04-23 02:06:43 +02:00
CFLAGS_common += - pipe - g - nostdinc
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
CFLAGS_common += - nostdlib - Wall - Wundef - Wstrict - prototypes - Wmissing - prototypes
CFLAGS_common += - Wwrite - strings - Wredundant - decls - Wno - trigraphs
CFLAGS_common += - Wstrict - aliasing - Wshadow
2011-02-22 15:35:05 +01:00
ifeq ( $ ( CONFIG_WARNINGS_ARE_ERRORS ), y )
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
CFLAGS_common += - Werror
2011-02-22 15:35:05 +01:00
endif
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
CFLAGS_common += - fno - common - ffreestanding - fno - builtin - fomit - frame - pointer
2014-04-23 02:06:43 +02:00
ifneq ( $ ( GDB_DEBUG ),)
CFLAGS_common += - O0
else
CFLAGS_common += - Os
endif
2011-02-22 15:35:05 +01:00
2013-06-19 16:16:05 +02:00
additional - dirs := $ ( objutil ) / cbfstool $ ( objutil ) / romcc $ ( objutil ) / ifdtool \
2014-09-08 23:28:17 +02:00
$ ( objutil ) / ifdfake $ ( objutil ) / options $ ( objutil ) / fletcher \
$ ( objutil ) / cbootimage
2011-02-22 15:35:05 +01:00
#######################################################################
# generate build support files
$ ( obj ) / build . h : . xcompile
@ printf " GEN build.h \n "
rm - f $ ( obj ) / build . h
printf " /* build system definitions (autogenerated) */ \n " > $ ( obj ) / build . ht
printf " #ifndef __BUILD_H \n " >> $ ( obj ) / build . ht
printf " #define __BUILD_H \n \n " >> $ ( obj ) / build . ht
2011-03-17 08:47:49 +01:00
printf " #define COREBOOT_VERSION \" $ (KERNELVERSION) \" \n " >> $ ( obj ) / build . ht
2011-02-22 15:35:05 +01:00
printf " #define COREBOOT_EXTRA_VERSION \" $ (COREBOOT_EXTRA_VERSION) \" \n " >> $ ( obj ) / build . ht
printf " #define COREBOOT_BUILD \" `LANG= date` \" \n " >> $ ( obj ) / build . ht
2012-11-09 12:55:04 +01:00
printf " #define COREBOOT_BUILD_YEAR_BCD 0x`LANG= date + " % y " ` \n " >> $ ( obj ) / build . ht
printf " #define COREBOOT_BUILD_MONTH_BCD 0x`LANG= date + " % m " ` \n " >> $ ( obj ) / build . ht
printf " #define COREBOOT_BUILD_DAY_BCD 0x`LANG= date + " % d " ` \n " >> $ ( obj ) / build . ht
printf " #define COREBOOT_BUILD_WEEKDAY_BCD 0x`LANG= date + " % w " ` \n " >> $ ( obj ) / build . ht
2011-08-14 20:56:34 +02:00
printf " #define COREBOOT_DMI_DATE \" `LANG= date + " % m /% d /% Y " ` \" \n " >> $ ( obj ) / build . ht
2011-02-22 15:35:05 +01:00
printf " \n " >> $ ( obj ) / build . ht
printf " #define COREBOOT_COMPILE_TIME \" `LANG= date +%T` \" \n " >> $ ( obj ) / build . ht
printf " #define COREBOOT_COMPILE_BY \" $ (subst \ ,@, $ (shell PATH= $ $PATH :/usr/ucb whoami)) \" \n " >> $ ( obj ) / build . ht
2012-09-28 10:06:44 +02:00
printf " #define COREBOOT_COMPILE_HOST \" $ (shell hostname -s 2>/dev/null || hostname 2>/dev/null) \" \n " >> $ ( obj ) / build . ht
2011-02-22 15:35:05 +01:00
printf " #define COREBOOT_COMPILE_DOMAIN \" $ (shell test `uname -s` = " Linux " && dnsdomainname || domainname 2>/dev/null) \" \n " >> $ ( obj ) / build . ht
printf " #endif \n " >> $ ( obj ) / build . ht
mv $ ( obj ) / build . ht $ ( obj ) / build . h
$ ( obj ) / ldoptions : $ ( obj ) / config . h
awk '/^#define ([^"])* ([^"])*$$/ {gsub("\\r","",$$3); print $$2 " = " $$3 ";";}' $ < > $ @
2012-04-19 11:00:06 +02:00
build - dirs :
mkdir - p $ ( objcbfs ) $ ( objgenerated )
2011-02-22 15:35:05 +01:00
#######################################################################
# Build the tools
2014-07-10 09:42:03 +02:00
CBFSTOOL := $ ( objutil ) / cbfstool / cbfstool
RMODTOOL := $ ( objutil ) / cbfstool / rmodtool
2011-02-22 15:35:05 +01:00
2014-07-10 09:42:03 +02:00
$ ( obj ) / cbfstool : $ ( CBFSTOOL )
2011-02-22 15:35:05 +01:00
cp $ < $ @
2014-07-10 09:42:03 +02:00
$ ( obj ) / rmodtool : $ ( RMODTOOL )
2014-03-10 22:13:58 +01:00
cp $ < $ @
2011-02-22 15:35:05 +01:00
_WINCHECK = $ ( shell uname - o 2 > / dev / null )
STACK =
ifeq ( $ ( _WINCHECK ), Msys )
STACK =- Wl , -- stack , 16384000
endif
ifeq ( $ ( _WINCHECK ), Cygwin )
STACK =- Wl , -- stack , 16384000
endif
2014-05-17 19:05:56 +02:00
# this allows ccache to prepend itself
# (ccache handling happens first)
ROMCC_BIN = $ ( objutil ) / romcc / romcc
ROMCC ? = $ ( ROMCC_BIN )
$ ( ROMCC_BIN ) : $ ( top ) / util / romcc / romcc . c
2011-02-22 15:35:05 +01:00
@ printf " HOSTCC $ (subst $ (obj)/,, $ (@)) (this may take a while) \n "
@ # Note: Adding -O2 here might cause problems. For details see:
@ # http://www.coreboot.org/pipermail/coreboot/2010-February/055825.html
$ ( HOSTCC ) - g $ ( STACK ) - Wall - o $ @ $ <
2012-08-16 23:05:42 +02:00
IFDTOOL := $ ( objutil ) / ifdtool / ifdtool
$ ( IFDTOOL ) : $ ( top ) / util / ifdtool / ifdtool . c
@ printf " HOSTCC $ (subst $ (obj)/,, $ (@)) \n "
$ ( HOSTCC ) $ ( HOSTCFLAGS ) - o $ @ $ <
2013-06-19 16:16:05 +02:00
IFDFAKE := $ ( objutil ) / ifdfake / ifdfake
$ ( IFDFAKE ) : $ ( top ) / util / ifdfake / ifdfake . c
@ printf " HOSTCC $ (subst $ (obj)/,, $ (@)) \n "
$ ( HOSTCC ) $ ( HOSTCFLAGS ) - o $ @ $ <
2014-08-11 01:09:15 +02:00
FLETCHER := $ ( objutil ) / fletcher / fletcher
$ ( FLETCHER ) : $ ( top ) / util / fletcher / fletcher . c
@ printf " HOSTCC $ (subst $ (obj)/,, $ (@)) \n "
$ ( HOSTCC ) $ ( HOSTCFLAGS ) - o $ @ $ <
2014-09-08 23:28:17 +02:00
CBOOTIMAGE := $ ( objutil ) / cbootimage / cbootimage
2014-09-27 11:37:46 +02:00
subdirs - y += util / nvidia
2014-09-08 23:28:17 +02:00
2011-02-22 15:35:05 +01:00
#######################################################################
# needed objects that every mainboard uses
# Creation of these is architecture and mainboard independent
$ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / static . c : $ ( src ) / mainboard / $ ( MAINBOARDDIR ) / devicetree . cb $ ( objutil ) / sconfig / sconfig
@ printf " SCONFIG $ (subst $ (src)/,, $ (<)) \n "
mkdir - p $ ( obj ) / mainboard / $ ( MAINBOARDDIR )
$ ( objutil ) / sconfig / sconfig $ ( MAINBOARDDIR ) $ ( obj ) / mainboard / $ ( MAINBOARDDIR )
ramstage - y += $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / static . c
Make the device tree available in the rom stage
We thought about two ways to do this change. The way we decided to try
was to
1. drop all ops from devices in romstage
2. constify all devices in romstage (make them read-only) so we can
compile static.c into romstage
3. the device tree "devices" can be used to read configuration from
the device tree (and nothing else, really)
4. the device tree devices are accessed through struct device * in
romstage only. device_t stays the typedef to int in romstage
5. Use the same static.c file in ramstage and romstage
We declare structs as follows:
ROMSTAGE_CONST struct bus dev_root_links[];
ROMSTAGE_CONST is const in romstage and empty in ramstage; This
forces all of the device tree into the text area.
So a struct looks like this:
static ROMSTAGE_CONST struct device _dev21 = {
#ifndef __PRE_RAM__
.ops = 0,
#endif
.bus = &_dev7_links[0],
.path = {.type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x1c,3)}}},
.enabled = 0,
.on_mainboard = 1,
.subsystem_vendor = 0x1ae0,
.subsystem_device = 0xc000,
.link_list = NULL,
.sibling = &_dev22,
#ifndef __PRE_RAM__
.chip_ops = &southbridge_intel_bd82x6x_ops,
#endif
.chip_info = &southbridge_intel_bd82x6x_info_10,
.next=&_dev22
};
Change-Id: I722454d8d3c40baf7df989f5a6891f6ba7db5727
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1398
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2012-08-01 01:47:25 +02:00
romstage - y += $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / static . c
2011-02-22 15:35:05 +01:00
$ ( objutil ) /%. o : $ ( objutil ) /%. c
@ printf " HOSTCC $ (subst $ (objutil)/,, $ (@)) \n "
$ ( HOSTCC ) - MMD - I $ ( subst $ ( objutil ) / , util / , $ ( dir $ < )) - I $ ( dir $ < ) $ ( HOSTCFLAGS ) - c - o $ @ $ <
2011-05-21 01:08:12 +02:00
$ ( obj ) /%. ramstage . o $ ( abspath $ ( obj )) /%. ramstage . o : $ ( obj ) /%. c $ ( obj ) / config . h $ ( OPTION_TABLE_H )
2011-02-22 15:35:05 +01:00
@ printf " CC $ (subst $ (obj)/,, $ (@)) \n "
2014-11-06 23:50:22 +01:00
$ ( CC_ramstage ) - MMD $ ( CFLAGS_ramstage ) $ ( CPPFLAGS_ramstage ) $ ( ramstage - c - ccopts ) - c - o $ @ $ <
2011-02-22 15:35:05 +01:00
Make the device tree available in the rom stage
We thought about two ways to do this change. The way we decided to try
was to
1. drop all ops from devices in romstage
2. constify all devices in romstage (make them read-only) so we can
compile static.c into romstage
3. the device tree "devices" can be used to read configuration from
the device tree (and nothing else, really)
4. the device tree devices are accessed through struct device * in
romstage only. device_t stays the typedef to int in romstage
5. Use the same static.c file in ramstage and romstage
We declare structs as follows:
ROMSTAGE_CONST struct bus dev_root_links[];
ROMSTAGE_CONST is const in romstage and empty in ramstage; This
forces all of the device tree into the text area.
So a struct looks like this:
static ROMSTAGE_CONST struct device _dev21 = {
#ifndef __PRE_RAM__
.ops = 0,
#endif
.bus = &_dev7_links[0],
.path = {.type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x1c,3)}}},
.enabled = 0,
.on_mainboard = 1,
.subsystem_vendor = 0x1ae0,
.subsystem_device = 0xc000,
.link_list = NULL,
.sibling = &_dev22,
#ifndef __PRE_RAM__
.chip_ops = &southbridge_intel_bd82x6x_ops,
#endif
.chip_info = &southbridge_intel_bd82x6x_info_10,
.next=&_dev22
};
Change-Id: I722454d8d3c40baf7df989f5a6891f6ba7db5727
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1398
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2012-08-01 01:47:25 +02:00
$ ( obj ) /%. romstage . o $ ( abspath $ ( obj )) /%. romstage . o : $ ( obj ) /%. c $ ( obj ) / config . h $ ( OPTION_TABLE_H )
@ printf " CC $ (subst $ (obj)/,, $ (@)) \n "
2014-11-06 23:50:22 +01:00
$ ( CC_romstage ) - MMD $ ( CFLAGS_romstage ) $ ( CPPFLAGS_romstage ) $ ( romstage - c - ccopts ) - c - o $ @ $ <
Make the device tree available in the rom stage
We thought about two ways to do this change. The way we decided to try
was to
1. drop all ops from devices in romstage
2. constify all devices in romstage (make them read-only) so we can
compile static.c into romstage
3. the device tree "devices" can be used to read configuration from
the device tree (and nothing else, really)
4. the device tree devices are accessed through struct device * in
romstage only. device_t stays the typedef to int in romstage
5. Use the same static.c file in ramstage and romstage
We declare structs as follows:
ROMSTAGE_CONST struct bus dev_root_links[];
ROMSTAGE_CONST is const in romstage and empty in ramstage; This
forces all of the device tree into the text area.
So a struct looks like this:
static ROMSTAGE_CONST struct device _dev21 = {
#ifndef __PRE_RAM__
.ops = 0,
#endif
.bus = &_dev7_links[0],
.path = {.type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x1c,3)}}},
.enabled = 0,
.on_mainboard = 1,
.subsystem_vendor = 0x1ae0,
.subsystem_device = 0xc000,
.link_list = NULL,
.sibling = &_dev22,
#ifndef __PRE_RAM__
.chip_ops = &southbridge_intel_bd82x6x_ops,
#endif
.chip_info = &southbridge_intel_bd82x6x_info_10,
.next=&_dev22
};
Change-Id: I722454d8d3c40baf7df989f5a6891f6ba7db5727
Signed-off-by: Ronald G. Minnich <rminnich@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1398
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2012-08-01 01:47:25 +02:00
2013-01-31 18:09:24 +01:00
$ ( obj ) /%. bootblock . o $ ( abspath $ ( obj )) /%. bootblock . o : $ ( obj ) /%. c $ ( obj ) / config . h $ ( OPTION_TABLE_H )
@ printf " CC $ (subst $ (obj)/,, $ (@)) \n "
2014-11-06 23:50:22 +01:00
$ ( CC_bootblock ) - MMD $ ( CFLAGS_bootblock ) $ ( CPPFLAGS_bootblock ) $ ( bootblock - c - ccopts ) - c - o $ @ $ <
2013-01-31 18:09:24 +01:00
2011-02-22 15:35:05 +01:00
#######################################################################
# Clean up rules
clean - abuild :
rm - rf coreboot - builds
clean - for - update - target :
2014-04-22 19:41:05 +02:00
rm - f $ ( obj ) / ramstage * $ ( obj ) / coreboot . romstage $ ( obj ) / coreboot . pre * $ ( obj ) / coreboot . bootblock $ ( obj ) / coreboot . a
2011-02-22 15:35:05 +01:00
rm - rf $ ( obj ) / bootblock * $ ( obj ) / romstage * $ ( obj ) / location .*
rm - f $ ( obj ) / option_table .* $ ( obj ) / crt0 . S $ ( obj ) / ldscript
rm - f $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / static . c $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / config . py $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / static . dot
rm - f $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / crt0 . s $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / crt0 . disasm
rm - f $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / romstage . inc
rm - f $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / bootblock .* $ ( obj ) / mainboard / $ ( MAINBOARDDIR ) / dsdt .*
rm - f $ ( obj ) / cpu / x86 / smm / smm_bin . c $ ( obj ) / cpu / x86 / smm / smm .* $ ( obj ) / cpu / x86 / smm / smm
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$ ( MAKE ) - C payloads / external / SeaBIOS - f Makefile . inc clean OUT = $ ( abspath $ ( obj )) HOSTCC = " $ (HOSTCC) " CC = " $ (CC_x86_32) " LD = " $ (LD_x86_32) "
2011-02-22 15:35:05 +01:00
clean - target :
rm - f $ ( obj ) / coreboot *
#######################################################################
# Development utilities
printcrt0s :
@ echo crt0s = $ ( crt0s )
@ echo ldscripts = $ ( ldscripts )
update :
dongle . py - c / dev / term / 1 $ ( obj ) / coreboot . rom EOF
2012-02-25 19:42:59 +01:00
lint lint - stable :
2012-09-28 13:38:37 +02:00
FAILED = 0 ; LINTLOG = `mktemp .tmpconfig.lintXXXXX` ; \
2012-02-25 19:42:59 +01:00
for script in util / lint / $ @-* ; do \
2011-02-22 15:35:05 +01:00
echo ; echo `basename $$script` ; \
grep " ^# DESCR: " $$script | sed " s,.*DESCR: *,, " ; \
echo ======== ; \
$$script > $$LINTLOG ; \
2012-03-09 23:02:09 +01:00
if [ `cat $$LINTLOG | wc -l` - eq 0 ]; then \
2011-02-22 15:35:05 +01:00
printf " success \n \n " ; \
else \
echo test failed : ; \
cat $$LINTLOG ; \
rm - f $$LINTLOG ; \
FAILED = $ $ (( $$FAILED + 1 )); \
fi ; \
echo ======== ; \
done ; \
2014-08-10 19:15:04 +02:00
test $$FAILED - eq 0 || { echo " ERROR: $ $FAILED test(s) failed. " ; rm - f $$LINTLOG && exit 1 ; }; \
2011-02-22 15:35:05 +01:00
rm - f $$LINTLOG
2011-05-16 17:32:28 +02:00
2011-06-05 15:15:49 +02:00
gitconfig :
2012-10-22 10:29:37 +02:00
mkdir - p . git / hooks
2012-08-10 09:44:02 +02:00
for hook in commit - msg pre - commit ; do \
if [ util / gitconfig / $$hook - nt . git / hooks / $$hook - o \
! - x . git / hooks / $$hook ]; then \
cp util / gitconfig / $$hook . git / hooks / $$hook ; \
chmod + x . git / hooks / $$hook ; \
fi ; \
done
2013-01-03 17:26:09 +01:00
git config remote . origin . push HEAD : refs / for / master
2011-06-05 15:15:49 +02:00
( git config -- global user . name >/ dev / null && git config -- global user . email >/ dev / null ) || ( printf 'Please configure your name and email in git:\n\n git config --global user.name "Your Name Comes Here"\n git config --global user.email your.email@example.com\n' ; exit 1 )
2013-11-01 17:40:39 +01:00
crossgcc : crossgcc - i386 crossgcc - arm
2011-06-09 05:06:25 +02:00
2013-11-01 17:40:39 +01:00
. PHONY : crossgcc - i386 crossgcc - arm
crossgcc - i386 : clean - for - update
$ ( MAKE ) - C util / crossgcc build - i386 - without - gdb
crossgcc - arm : clean - for - update
$ ( MAKE ) - C util / crossgcc build - armv7a - without - gdb
crosstools : crosstools - i386
. PHONY : crosstools - i386 crosstools - arm
crosstools - i386 : clean - for - update
$ ( MAKE ) - C util / crossgcc build - i386
crosstools - arm : clean - for - update
$ ( MAKE ) - C util / crossgcc build - armv7a
2011-05-16 17:32:28 +02:00
crossgcc - clean : clean - for - update
$ ( MAKE ) - C util / crossgcc clean
2014-09-08 23:28:17 +02:00
tools : $ ( objutil ) / kconfig / conf $ ( objutil ) / cbfstool / cbfstool $ ( objutil ) / cbfstool / rmodtool $ ( objutil ) / nvramtool / nvramtool $ ( ROMCC_BIN ) $ ( objutil ) / sconfig / sconfig $ ( IFDTOOL ) $ ( IFDFAKE ) $ ( CBOOTIMAGE )
2011-11-05 14:44:41 +01:00
2014-04-23 01:33:22 +02:00
###########################################################################
# Common recipes for all stages
###########################################################################
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
# find-substr is required for stages like romstage_null and romstage_xip to
# eliminate the _* part of the string
find - substr = $ ( word 1 , $ ( subst _ , , $ ( 1 )))
# find-class is used to identify the class from the name of the stage
# The input to this macro can be something like romstage.x or romstage.x.y
# find-class recursively strips off the suffixes to extract the exact class name
# e.g.: if romstage.x is provided to find-class, it will remove .x and return romstage
# if romstage.x.y is provided, it will first remove .y, call find-class with romstage.x
# and remove .x the next time and finally return romstage
find - class = $ ( if $ ( filter $ ( 1 ), $ ( basename $ ( 1 ))), $ ( if $ ( CC_ $ ( 1 )), $ ( 1 ), $ ( call find - substr , $ ( 1 ))), $ ( call find - class , $ ( basename $ ( 1 ))))
2014-04-23 01:33:22 +02:00
$ ( objcbfs ) /%. bin : $ ( objcbfs ) /%. elf
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$ ( eval class : = $ ( call find - class , $ ( @ F )))
2014-04-23 01:33:22 +02:00
@ printf " OBJCOPY $ (subst $ (obj)/,, $ (@)) \n "
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$ ( OBJCOPY_ $ ( class )) - O binary $ < $ @
2014-04-23 01:33:22 +02:00
$ ( objcbfs ) /%. elf : $ ( objcbfs ) /%. debug
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$ ( eval class : = $ ( call find - class , $ ( @ F )))
2014-04-23 01:33:22 +02:00
@ printf " OBJCOPY $ (subst $ (obj)/,, $ (@)) \n "
cp $ < $ @. tmp
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
$ ( NM_ $ ( class )) - n $ @. tmp | sort > $ ( basename $ @ ) . map
$ ( OBJCOPY_ $ ( class )) -- strip - debug $ @. tmp
$ ( OBJCOPY_ $ ( class )) -- add - gnu - debuglink = $ < $ @. tmp
2014-04-23 01:33:22 +02:00
mv $ @. tmp $ @
###########################################################################
# Build the final rom image
###########################################################################
COREBOOT_ROM_DEPENDENCIES :=
ifeq ( $ ( CONFIG_PAYLOAD_ELF ), y )
COREBOOT_ROM_DEPENDENCIES += $ ( CONFIG_PAYLOAD_FILE )
endif
ifeq ( $ ( CONFIG_PAYLOAD_SEABIOS ), y )
COREBOOT_ROM_DEPENDENCIES += seabios
endif
ifeq ( $ ( CONFIG_PAYLOAD_FILO ), y )
COREBOOT_ROM_DEPENDENCIES += filo
endif
ifeq ( $ ( CONFIG_PAYLOAD_GRUB2 ), y )
COREBOOT_ROM_DEPENDENCIES += grub2
endif
extract_nth = $ ( word $ ( 1 ), $ ( subst | , , $ ( 2 )))
ifneq ( $ ( CONFIG_UPDATE_IMAGE ), y )
prebuild - files = \
$ ( foreach file , $ ( cbfs - files ), \
$ ( CBFSTOOL ) $ @. tmp \
add $ ( if $ ( filter stage , $ ( call extract_nth , 3 , $ ( file ))), - stage ) $ ( if $ ( filter payload , $ ( call extract_nth , 3 , $ ( file ))), - payload ) \
- f $ ( call extract_nth , 1 , $ ( file )) \
- n $ ( call extract_nth , 2 , $ ( file )) $ ( if $ ( filter - out stage , $ ( call extract_nth , 3 , $ ( file ))), - t $ ( call extract_nth , 3 , $ ( file ))) \
$ ( if $ ( call extract_nth , 4 , $ ( file )), - b $ ( call extract_nth , 4 , $ ( file ))) && )
prebuilt - files = $ ( foreach file , $ ( cbfs - files ), $ ( call extract_nth , 1 , $ ( file )))
$ ( obj ) / coreboot . pre1 : $ ( objcbfs ) / bootblock . bin $ $ ( prebuilt - files ) $ ( CBFSTOOL ) $ $ ( cpu_ucode_cbfs_file )
$ ( CBFSTOOL ) $ @. tmp create - s $ ( CONFIG_COREBOOT_ROMSIZE_KB ) K \
- B $ ( objcbfs ) / bootblock . bin - a 64 \
$ ( CBFSTOOL_PRE1_OPTS )
$ ( prebuild - files ) true
$ ( call add - cpu - microcode - to - cbfs , $ @. tmp )
mv $ @. tmp $ @
else
. PHONY : $ ( obj ) / coreboot . pre1
$ ( obj ) / coreboot . pre1 : $ ( CBFSTOOL )
mv $ ( obj ) / coreboot . rom $ @
endif
ifeq ( $ ( CONFIG_PAYLOAD_LINUX ), y )
ifneq ( $ ( strip $ ( call strip_quotes , $ ( CONFIG_LINUX_COMMAND_LINE ))),)
2014-05-17 14:11:57 +02:00
ADDITIONAL_PAYLOAD_CONFIG +=- C $ ( CONFIG_LINUX_COMMAND_LINE )
2014-04-23 01:33:22 +02:00
endif
ifneq ( $ ( strip $ ( call strip_quotes , $ ( CONFIG_LINUX_INITRD ))),)
2014-05-17 14:11:57 +02:00
ADDITIONAL_PAYLOAD_CONFIG +=- I $ ( CONFIG_LINUX_INITRD )
2014-04-23 01:33:22 +02:00
endif
endif
ifeq ( $ ( CONFIG_HAVE_REFCODE_BLOB ), y )
REFCODE_BLOB = $ ( obj ) / refcode . rmod
$ ( REFCODE_BLOB ) : $ ( RMODTOOL )
$ ( RMODTOOL ) - i $ ( CONFIG_REFCODE_BLOB_FILE ) - o $ @
endif
$ ( obj ) / coreboot . rom : $ ( obj ) / coreboot . pre $ ( objcbfs ) / ramstage . elf $ ( CBFSTOOL ) $ ( call strip_quotes , $ ( COREBOOT_ROM_DEPENDENCIES )) $ $ ( INTERMEDIATE ) $ $ ( VBOOT_STUB ) $ ( REFCODE_BLOB )
@ printf " CBFS $ (subst $ (obj)/,, $ (@)) \n "
cp $ ( obj ) / coreboot . pre $ @. tmp
$ ( CBFSTOOL ) $ @. tmp add - stage - f $ ( objcbfs ) / ramstage . elf - n $ ( CONFIG_CBFS_PREFIX ) / ramstage - c $ ( CBFS_COMPRESS_FLAG )
ifeq ( $ ( CONFIG_PAYLOAD_NONE ), y )
@ printf " PAYLOAD none (as specified by user) \n "
endif
2014-05-17 14:11:57 +02:00
ifneq ( $ ( CONFIG_PAYLOAD_FILE ),)
2014-04-23 01:33:22 +02:00
@ printf " PAYLOAD $ (CONFIG_PAYLOAD_FILE) (compression: $ (CBFS_PAYLOAD_COMPRESS_FLAG)) \n "
2014-05-17 14:11:57 +02:00
$ ( CBFSTOOL ) $ @. tmp add - payload - f $ ( CONFIG_PAYLOAD_FILE ) - n $ ( CONFIG_CBFS_PREFIX ) / payload - c $ ( CBFS_PAYLOAD_COMPRESS_FLAG ) $ ( ADDITIONAL_PAYLOAD_CONFIG )
2014-04-23 01:33:22 +02:00
endif
ifneq ( $ ( CONFIG_SEABIOS_PS2_TIMEOUT ),)
ifneq ( $ ( CONFIG_SEABIOS_PS2_TIMEOUT ), 0 )
@ printf " SeaBIOS Wait up to $ (CONFIG_SEABIOS_PS2_TIMEOUT) ms for PS/2 keyboard controller initialization \n "
$ ( CBFSTOOL ) $ @. tmp add - int - i $ ( CONFIG_SEABIOS_PS2_TIMEOUT ) - n etc / ps2 - keyboard - spinup
endif
endif
2014-09-12 19:43:49 +02:00
ifeq ( $ ( CONFIG_SEABIOS_VGA_COREBOOT ), y )
@ printf " SeaBIOS Adding generated legacy VGA option rom. \n "
$ ( CBFSTOOL ) $ @. tmp add - f $ ( CONFIG_PAYLOAD_VGABIOS_FILE ) - n vgaroms / seavgabios . bin - t raw
endif
2014-04-23 01:33:22 +02:00
ifeq ( $ ( CONFIG_INCLUDE_CONFIG_FILE ), y )
@ printf " CONFIG $ (DOTCONFIG) \n "
if [ - f $ ( DOTCONFIG ) ]; then \
echo " # This image was built using git revision " `git rev-parse HEAD` > $ ( obj ) / config . tmp ; \
sed - e '/^#/d' - e '/^ *$$/d' $ ( DOTCONFIG ) >> $ ( obj ) / config . tmp ; \
$ ( CBFSTOOL ) $ @. tmp add - f $ ( obj ) / config . tmp - n config - t raw ; rm - f $ ( obj ) / config . tmp ; fi
endif
ifeq ( $ ( CONFIG_VBOOT_VERIFY_FIRMWARE ), y )
$ ( CBFSTOOL ) $ @. tmp add - stage - f $ ( VBOOT_STUB ) - n $ ( CONFIG_CBFS_PREFIX ) / vboot - c $ ( CBFS_COMPRESS_FLAG )
endif
ifeq ( $ ( CONFIG_HAVE_REFCODE_BLOB ), y )
$ ( CBFSTOOL ) $ @. tmp add - stage - f $ ( REFCODE_BLOB ) - n $ ( CONFIG_CBFS_PREFIX ) / refcode - c $ ( CBFS_COMPRESS_FLAG )
endif
ifeq ( $ ( CONFIG_PXE_ROM ), y )
$ ( CBFSTOOL ) $ @. tmp add - f $ ( CONFIG_PXE_ROM_FILE ) - n pci $ ( CONFIG_PXE_ROM_ID ) . rom - t raw
endif
ifeq ( $ ( CONFIG_CPU_INTEL_FIRMWARE_INTERFACE_TABLE ), y )
ifeq ( $ ( CONFIG_CPU_MICROCODE_IN_CBFS ), y )
@ printf " UPDATE-FIT \n "
$ ( CBFSTOOL ) $ @. tmp update - fit - n cpu_microcode_blob . bin - x $ ( CONFIG_CPU_INTEL_NUM_FIT_ENTRIES )
endif
endif
mv $ @. tmp $ @
@ printf " CBFSPRINT $ (subst $ (obj)/,, $ (@)) \n \n "
$ ( CBFSTOOL ) $ @ print
cbfs - files - $ ( CONFIG_BOOTSPLASH ) += bootsplash . jpg
bootsplash . jpg - file := $ ( call strip_quotes , $ ( CONFIG_BOOTSPLASH_FILE ))
bootsplash . jpg - type := bootsplash
ARM: Generalize armv7 as arm.
There are ARM systems which are essentially heterogeneous multicores where
some cores implement a different ARM architecture version than other cores. A
specific example is the tegra124 which boots on an ARMv4 coprocessor while
most code, including most of the firmware, runs on the main ARMv7 core. To
support SOCs like this, the plan is to generalize the ARM architecture so that
all versions are available, and an SOC/CPU can then select what architecture
variant should be used for each component of the firmware; bootblock,
romstage, and ramstage.
Old-Change-Id: I22e048c3bc72bd56371e14200942e436c1e312c2
Signed-off-by: Gabe Black <gabeblack@google.com>
Reviewed-on: https://chromium-review.googlesource.com/171338
Reviewed-by: Gabe Black <gabeblack@chromium.org>
Commit-Queue: Gabe Black <gabeblack@chromium.org>
Tested-by: Gabe Black <gabeblack@chromium.org>
(cherry picked from commit 8423a41529da0ff67fb9873be1e2beb30b09ae2d)
Signed-off-by: Isaac Christensen <isaac.christensen@se-eng.com>
ARM: Split out ARMv7 code and make it possible to have other arch versions.
We don't always want to use ARMv7 code when building for ARM, so we should
separate out the ARMv7 code so it can be excluded, and also make it possible
to include code for some other version of the architecture instead, all per
build component for cases where we need more than one architecture version
at a time.
The tegra124 bootblock will ultimately need to be ARMv4, but until we have
some ARMv4 code to switch over to we can leave it set to ARMv7.
Old-Change-Id: Ia982c91057fac9c252397b7c866224f103761cc7
Reviewed-on: https://chromium-review.googlesource.com/171400
Reviewed-by: Gabe Black <gabeblack@chromium.org>
Tested-by: Gabe Black <gabeblack@chromium.org>
Commit-Queue: Gabe Black <gabeblack@chromium.org>
(cherry picked from commit 799514e6060aa97acdcf081b5c48f965be134483)
Squashed two related patches for splitting ARM support into general
ARM support and ARMv7 specific pieces.
Change-Id: Ic6511507953a2223c87c55f90252c4a4e1dd6010
Signed-off-by: Isaac Christensen <isaac.christensen@se-eng.com>
Reviewed-on: http://review.coreboot.org/6782
Tested-by: build bot (Jenkins)
2013-10-01 08:00:33 +02:00
ifeq ( $ ( CONFIG_ARCH_ROMSTAGE_ARM ), y )
2014-04-23 01:33:22 +02:00
ROMSTAGE_ELF := romstage . elf
endif
2014-04-29 01:39:40 +02:00
ifeq ( $ ( CONFIG_ARCH_ROMSTAGE_ARM64 ), y )
ROMSTAGE_ELF := romstage . elf
endif
Introduce stage-specific architecture for coreboot
Make all three coreboot stages (bootblock, romstage and ramstage) aware of the
architecture specific to that stage i.e. we will have CONFIG_ARCH variables for
each of the three stages. This allows us to have an SOC with any combination of
architectures and thus every stage can be made to run on a completely different
architecture independent of others. Thus, bootblock can have an x86 arch whereas
romstage and ramstage can have arm32 and arm64 arch respectively. These stage
specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain
and compiler flags for every stage.
These options can be considered as either arch or modes eg: x86 running in
different modes or ARM having different arch types (v4, v7, v8). We have got rid
of the original CONFIG_ARCH option completely as every stage can have any
architecture of its own. Thus, almost all the components of coreboot are
identified as being part of one of the three stages (bootblock, romstage or
ramstage). The components which cannot be classified as such e.g. smm, rmodules
can have their own compiler toolset which is for now set to *_i386. Hence, all
special classes are treated in a similar way and the compiler toolset is defined
using create_class_compiler defined in Makefile.
In order to meet these requirements, changes have been made to CC, LD, OBJCOPY
and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others.
Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the
toolsets are defined using create_class_compiler.
Few additional macros have been introduced to identify the class to be used at
various points, e.g.: CC_$(class) derives the $(class) part from the name of
the stage being compiled.
We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER
as they do not make any sense for coreboot as a whole. All these attributes are
associated with each of the stages.
Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/5577
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
ifeq ( $ ( CONFIG_ARCH_ROMSTAGE_X86_32 ), y )
2014-04-23 01:33:22 +02:00
ROMSTAGE_ELF := romstage_xip . elf
endif
$ ( obj ) / coreboot . pre : $ ( objcbfs ) / $ ( ROMSTAGE_ELF ) $ ( obj ) / coreboot . pre1 $ ( CBFSTOOL )
@ printf " CBFS $ (subst $ (obj)/,, $ (@)) \n "
cp $ ( obj ) / coreboot . pre1 $ @. tmp
$ ( CBFSTOOL ) $ @. tmp add - stage \
- f $ ( objcbfs ) / $ ( ROMSTAGE_ELF ) \
- n $ ( CONFIG_CBFS_PREFIX ) / romstage - c none \
$ ( CBFSTOOL_PRE_OPTS )
mv $ @. tmp $ @
2014-08-29 20:10:38 +02:00
JENKINS_PAYLOAD = none
what - jenkins - does :
2014-09-04 18:32:52 +02:00
util / abuild / abuild - B - J - y - c 4 - z - p $ ( JENKINS_PAYLOAD )
2014-08-29 20:10:38 +02:00
( cd payloads / libpayload ; $ ( MAKE ) CONFIG_CCACHE = y V = $ ( V ) Q = $ ( Q ) junit . xml )
$ ( MAKE ) V = $ ( V ) Q = $ ( Q ) - C util / cbmem junit . xml