coreboot-kgpe-d16/src/lib/device_tree.c

955 lines
24 KiB
C
Raw Normal View History

/*
* Copyright 2013 Google Inc.
* Copyright 2018-present Facebook, Inc.
*
* Taken from depthcharge: src/base/device_tree.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <console/console.h>
#include <device_tree.h>
#include <endian.h>
#include <stdint.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
/*
* Functions for picking apart flattened trees.
*/
int fdt_next_property(void *blob, uint32_t offset, struct fdt_property *prop)
{
struct fdt_header *header = (struct fdt_header *)blob;
uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
int index = 0;
if (be32toh(ptr[index++]) != FDT_TOKEN_PROPERTY)
return 0;
uint32_t size = be32toh(ptr[index++]);
uint32_t name_offset = be32toh(ptr[index++]);
name_offset += be32toh(header->strings_offset);
if (prop) {
prop->name = (char *)((uint8_t *)blob + name_offset);
prop->data = &ptr[index];
prop->size = size;
}
index += DIV_ROUND_UP(size, sizeof(uint32_t));
return index * sizeof(uint32_t);
}
int fdt_node_name(void *blob, uint32_t offset, const char **name)
{
uint8_t *ptr = ((uint8_t *)blob) + offset;
if (be32toh(*(uint32_t *)ptr) != FDT_TOKEN_BEGIN_NODE)
return 0;
ptr += 4;
if (name)
*name = (char *)ptr;
return ALIGN_UP(strlen((char *)ptr) + 1, sizeof(uint32_t)) + 4;
}
/*
* Functions for printing flattened trees.
*/
static void print_indent(int depth)
{
while (depth--)
printk(BIOS_DEBUG, " ");
}
static void print_property(struct fdt_property *prop, int depth)
{
print_indent(depth);
printk(BIOS_DEBUG, "prop \"%s\" (%d bytes).\n", prop->name, prop->size);
print_indent(depth + 1);
for (int i = 0; i < MIN(25, prop->size); i++) {
printk(BIOS_DEBUG, "%02x ", ((uint8_t *)prop->data)[i]);
}
if (prop->size > 25)
printk(BIOS_DEBUG, "...");
printk(BIOS_DEBUG, "\n");
}
static int print_flat_node(void *blob, uint32_t start_offset, int depth)
{
int offset = start_offset;
const char *name;
int size;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
print_indent(depth);
printk(BIOS_DEBUG, "name = %s\n", name);
struct fdt_property prop;
while ((size = fdt_next_property(blob, offset, &prop))) {
print_property(&prop, depth + 1);
offset += size;
}
while ((size = print_flat_node(blob, offset, depth + 1)))
offset += size;
return offset - start_offset + sizeof(uint32_t);
}
void fdt_print_node(void *blob, uint32_t offset)
{
print_flat_node(blob, offset, 0);
}
/*
* A utility function to skip past nodes in flattened trees.
*/
int fdt_skip_node(void *blob, uint32_t start_offset)
{
int offset = start_offset;
int size;
const char *name;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
while ((size = fdt_next_property(blob, offset, NULL)))
offset += size;
while ((size = fdt_skip_node(blob, offset)))
offset += size;
return offset - start_offset + sizeof(uint32_t);
}
/*
* Functions to turn a flattened tree into an unflattened one.
*/
static struct device_tree_node *alloc_node(void)
{
struct device_tree_node *buf = malloc(sizeof(struct device_tree_node));
if (!buf)
return NULL;
memset(buf, 0, sizeof(*buf));
return buf;
}
static struct device_tree_property *alloc_prop(void)
{
struct device_tree_property *buf =
malloc(sizeof(struct device_tree_property));
if (!buf)
return NULL;
memset(buf, 0, sizeof(*buf));
return buf;
}
static int fdt_unflatten_node(void *blob, uint32_t start_offset,
struct device_tree_node **new_node)
{
struct list_node *last;
int offset = start_offset;
const char *name;
int size;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
struct device_tree_node *node = alloc_node();
*new_node = node;
if (!node)
return 0;
node->name = name;
struct fdt_property fprop;
last = &node->properties;
while ((size = fdt_next_property(blob, offset, &fprop))) {
struct device_tree_property *prop = alloc_prop();
if (!prop)
return 0;
prop->prop = fprop;
list_insert_after(&prop->list_node, last);
last = &prop->list_node;
offset += size;
}
struct device_tree_node *child;
last = &node->children;
while ((size = fdt_unflatten_node(blob, offset, &child))) {
list_insert_after(&child->list_node, last);
last = &child->list_node;
offset += size;
}
return offset - start_offset + sizeof(uint32_t);
}
static int fdt_unflatten_map_entry(void *blob, uint32_t offset,
struct device_tree_reserve_map_entry **new)
{
uint64_t *ptr = (uint64_t *)(((uint8_t *)blob) + offset);
uint64_t start = be64toh(ptr[0]);
uint64_t size = be64toh(ptr[1]);
if (!size)
return 0;
struct device_tree_reserve_map_entry *entry = malloc(sizeof(*entry));
if (!entry)
return 0;
memset(entry, 0, sizeof(*entry));
*new = entry;
entry->start = start;
entry->size = size;
return sizeof(uint64_t) * 2;
}
struct device_tree *fdt_unflatten(void *blob)
{
struct device_tree *tree = malloc(sizeof(*tree));
struct fdt_header *header = (struct fdt_header *)blob;
if (!tree)
return NULL;
memset(tree, 0, sizeof(*tree));
tree->header = header;
uint32_t struct_offset = be32toh(header->structure_offset);
uint32_t strings_offset = be32toh(header->strings_offset);
uint32_t reserve_offset = be32toh(header->reserve_map_offset);
uint32_t min_offset = 0;
min_offset = MIN(struct_offset, strings_offset);
min_offset = MIN(min_offset, reserve_offset);
// Assume everything up to the first non-header component is part of
// the header and needs to be preserved. This will protect us against
// new elements being added in the future.
tree->header_size = min_offset;
struct device_tree_reserve_map_entry *entry;
uint32_t offset = reserve_offset;
int size;
struct list_node *last = &tree->reserve_map;
while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) {
list_insert_after(&entry->list_node, last);
last = &entry->list_node;
offset += size;
}
fdt_unflatten_node(blob, struct_offset, &tree->root);
return tree;
}
/*
* Functions to find the size of the device tree if it was flattened.
*/
static void dt_flat_prop_size(struct device_tree_property *prop,
uint32_t *struct_size, uint32_t *strings_size)
{
// Starting token.
*struct_size += sizeof(uint32_t);
// Size.
*struct_size += sizeof(uint32_t);
// Name offset.
*struct_size += sizeof(uint32_t);
// Property value.
*struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
// Property name.
*strings_size += strlen(prop->prop.name) + 1;
}
static void dt_flat_node_size(struct device_tree_node *node,
uint32_t *struct_size, uint32_t *strings_size)
{
// Starting token.
*struct_size += sizeof(uint32_t);
// Node name.
*struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node)
dt_flat_prop_size(prop, struct_size, strings_size);
struct device_tree_node *child;
list_for_each(child, node->children, list_node)
dt_flat_node_size(child, struct_size, strings_size);
// End token.
*struct_size += sizeof(uint32_t);
}
uint32_t dt_flat_size(struct device_tree *tree)
{
uint32_t size = tree->header_size;
struct device_tree_reserve_map_entry *entry;
list_for_each(entry, tree->reserve_map, list_node)
size += sizeof(uint64_t) * 2;
size += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
size += struct_size;
// End token.
size += sizeof(uint32_t);
size += strings_size;
return size;
}
/*
* Functions to flatten a device tree.
*/
static void dt_flatten_map_entry(struct device_tree_reserve_map_entry *entry,
void **map_start)
{
((uint64_t *)*map_start)[0] = htobe64(entry->start);
((uint64_t *)*map_start)[1] = htobe64(entry->size);
*map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2;
}
static void dt_flatten_prop(struct device_tree_property *prop,
void **struct_start, void *strings_base,
void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
*((uint32_t *)dstruct) = htobe32(FDT_TOKEN_PROPERTY);
dstruct += sizeof(uint32_t);
*((uint32_t *)dstruct) = htobe32(prop->prop.size);
dstruct += sizeof(uint32_t);
uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base;
*((uint32_t *)dstruct) = htobe32(name_offset);
dstruct += sizeof(uint32_t);
strcpy((char *)dstrings, prop->prop.name);
dstrings += strlen(prop->prop.name) + 1;
memcpy(dstruct, prop->prop.data, prop->prop.size);
dstruct += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
*struct_start = dstruct;
*strings_start = dstrings;
}
static void dt_flatten_node(struct device_tree_node *node, void **struct_start,
void *strings_base, void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
*((uint32_t *)dstruct) = htobe32(FDT_TOKEN_BEGIN_NODE);
dstruct += sizeof(uint32_t);
strcpy((char *)dstruct, node->name);
dstruct += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node)
dt_flatten_prop(prop, (void **)&dstruct, strings_base,
(void **)&dstrings);
struct device_tree_node *child;
list_for_each(child, node->children, list_node)
dt_flatten_node(child, (void **)&dstruct, strings_base,
(void **)&dstrings);
*((uint32_t *)dstruct) = htobe32(FDT_TOKEN_END_NODE);
dstruct += sizeof(uint32_t);
*struct_start = dstruct;
*strings_start = dstrings;
}
void dt_flatten(struct device_tree *tree, void *start_dest)
{
uint8_t *dest = (uint8_t *)start_dest;
memcpy(dest, tree->header, tree->header_size);
struct fdt_header *header = (struct fdt_header *)dest;
dest += tree->header_size;
struct device_tree_reserve_map_entry *entry;
list_for_each(entry, tree->reserve_map, list_node)
dt_flatten_map_entry(entry, (void **)&dest);
((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0;
dest += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
uint8_t *struct_start = dest;
header->structure_offset = htobe32(dest - (uint8_t *)start_dest);
header->structure_size = htobe32(struct_size);
dest += struct_size;
*((uint32_t *)dest) = htobe32(FDT_TOKEN_END);
dest += sizeof(uint32_t);
uint8_t *strings_start = dest;
header->strings_offset = htobe32(dest - (uint8_t *)start_dest);
header->strings_size = htobe32(strings_size);
dest += strings_size;
dt_flatten_node(tree->root, (void **)&struct_start, strings_start,
(void **)&strings_start);
header->totalsize = htobe32(dest - (uint8_t *)start_dest);
}
/*
* Functions for printing a non-flattened device tree.
*/
static void print_node(struct device_tree_node *node, int depth)
{
print_indent(depth);
printk(BIOS_DEBUG, "name = %s\n", node->name);
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node)
print_property(&prop->prop, depth + 1);
struct device_tree_node *child;
list_for_each(child, node->children, list_node)
print_node(child, depth + 1);
}
void dt_print_node(struct device_tree_node *node)
{
print_node(node, 0);
}
/*
* Functions for reading and manipulating an unflattened device tree.
*/
/*
* Read #address-cells and #size-cells properties from a node.
*
* @param node The device tree node to read from.
* @param addrcp Pointer to store #address-cells in, skipped if NULL.
* @param sizecp Pointer to store #size-cells in, skipped if NULL.
*/
void dt_read_cell_props(struct device_tree_node *node, u32 *addrcp, u32 *sizecp)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (addrcp && !strcmp("#address-cells", prop->prop.name))
*addrcp = be32toh(*(u32 *)prop->prop.data);
if (sizecp && !strcmp("#size-cells", prop->prop.name))
*sizecp = be32toh(*(u32 *)prop->prop.data);
}
}
/*
* Find a node from a device tree path, relative to a parent node.
*
* @param parent The node from which to start the relative path lookup.
* @param path An array of path component strings that will be looked
* up in order to find the node. Must be terminated with
* a NULL pointer. Example: {'firmware', 'coreboot', NULL}
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*/
struct device_tree_node *dt_find_node(struct device_tree_node *parent,
const char **path, u32 *addrcp,
u32 *sizecp, int create)
{
struct device_tree_node *node, *found = NULL;
// Update #address-cells and #size-cells for this level.
dt_read_cell_props(parent, addrcp, sizecp);
if (!*path)
return parent;
// Find the next node in the path, if it exists.
list_for_each(node, parent->children, list_node) {
if (!strcmp(node->name, *path)) {
found = node;
break;
}
}
// Otherwise create it or return NULL.
if (!found) {
if (!create)
return NULL;
found = alloc_node();
if (!found)
return NULL;
found->name = strdup(*path);
if (!found->name)
return NULL;
list_insert_after(&found->list_node, &parent->children);
}
return dt_find_node(found, path + 1, addrcp, sizecp, create);
}
/*
* Find a node from a string device tree path, relative to a parent node.
*
* @param parent The node from which to start the relative path lookup.
* @param path A string representing a path in the device tree, with
* nodes separated by '/'. Example: "soc/firmware/coreboot"
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*
* It is the caller responsibility to provide the correct path string, namely
* not starting or ending with a '/', and not having "//" anywhere in it.
*/
struct device_tree_node *dt_find_node_by_path(struct device_tree_node *parent,
const char *path, u32 *addrcp,
u32 *sizecp, int create)
{
char *dup_path = strdup(path);
/* Hopefully enough depth for any node. */
const char *path_array[15];
int i;
char *next_slash;
struct device_tree_node *node = NULL;
if (!dup_path)
return NULL;
next_slash = dup_path;
path_array[0] = dup_path;
for (i = 1; i < (ARRAY_SIZE(path_array) - 1); i++) {
next_slash = strchr(next_slash, '/');
if (!next_slash)
break;
*next_slash++ = '\0';
path_array[i] = next_slash;
}
if (!next_slash) {
path_array[i] = NULL;
node = dt_find_node(parent, path_array,
addrcp, sizecp, create);
}
free(dup_path);
return node;
}
/*
* Check if given node is compatible.
*
* @param node The node which is to be checked for compatible property.
* @param compat The compatible string to match.
* @return 1 = compatible, 0 = not compatible.
*/
static int dt_check_compat_match(struct device_tree_node *node,
const char *compat)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("compatible", prop->prop.name)) {
size_t bytes = prop->prop.size;
const char *str = prop->prop.data;
while (bytes > 0) {
if (!strncmp(compat, str, bytes))
return 1;
size_t len = strnlen(str, bytes) + 1;
if (bytes <= len)
break;
str += len;
bytes -= len;
}
break;
}
}
return 0;
}
/*
* Find a node from a compatible string, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
struct device_tree_node *dt_find_compat(struct device_tree_node *parent,
const char *compat)
{
// Check if the parent node itself is compatible.
if (dt_check_compat_match(parent, compat))
return parent;
struct device_tree_node *child;
list_for_each(child, parent->children, list_node) {
struct device_tree_node *found = dt_find_compat(child, compat);
if (found)
return found;
}
return NULL;
}
/*
* Find the next compatible child of a given parent. All children upto the
* child passed in by caller are ignored. If child is NULL, it considers all the
* children to find the first child which is compatible.
*
* @param parent The parent node under which to look.
* @param child The child node to start search from (exclusive). If NULL
* consider all children.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
struct device_tree_node *
dt_find_next_compat_child(struct device_tree_node *parent,
struct device_tree_node *child,
const char *compat)
{
struct device_tree_node *next;
int ignore = 0;
if (child)
ignore = 1;
list_for_each(next, parent->children, list_node) {
if (ignore) {
if (child == next)
ignore = 0;
continue;
}
if (dt_check_compat_match(next, compat))
return next;
}
return NULL;
}
/*
* Find a node with matching property value, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param name The property name to look for.
* @param data The property value to look for.
* @param size The property size.
*/
struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent,
const char *name, void *data,
size_t size)
{
struct device_tree_property *prop;
/* Check if parent itself has the required property value. */
list_for_each(prop, parent->properties, list_node) {
if (!strcmp(name, prop->prop.name)) {
size_t bytes = prop->prop.size;
void *prop_data = prop->prop.data;
if (size != bytes)
break;
if (!memcmp(data, prop_data, size))
return parent;
break;
}
}
struct device_tree_node *child;
list_for_each(child, parent->children, list_node) {
struct device_tree_node *found = dt_find_prop_value(child, name,
data, size);
if (found)
return found;
}
return NULL;
}
/*
* Write an arbitrary sized big-endian integer into a pointer.
*
* @param dest Pointer to the DT property data buffer to write.
* @param src The integer to write (in CPU endianess).
* @param length the length of the destination integer in bytes.
*/
void dt_write_int(u8 *dest, u64 src, size_t length)
{
while (length--) {
dest[length] = (u8)src;
src >>= 8;
}
}
/*
* Add an arbitrary property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param data The raw data blob to be stored in the property.
* @param size The size of data in bytes.
*/
void dt_add_bin_prop(struct device_tree_node *node, const char *name,
void *data, size_t size)
{
struct device_tree_property *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
prop->prop.data = data;
prop->prop.size = size;
return;
}
}
prop = alloc_prop();
if (!prop)
return;
list_insert_after(&prop->list_node, &node->properties);
prop->prop.name = name;
prop->prop.data = data;
prop->prop.size = size;
}
/*
* Find given string property in a node and return its content.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @return The found string, or NULL.
*/
const char *dt_find_string_prop(struct device_tree_node *node, const char *name)
{
void *content;
size_t size;
dt_find_bin_prop(node, name, &content, &size);
return content;
}
/*
* Find given property in a node.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @param data Pointer to return raw data blob in the property.
* @param size Pointer to return the size of data in bytes.
*/
void dt_find_bin_prop(struct device_tree_node *node, const char *name,
void **data, size_t *size)
{
struct device_tree_property *prop;
*data = NULL;
*size = 0;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
*data = prop->prop.data;
*size = prop->prop.size;
return;
}
}
}
/*
* Add a string property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param str The zero-terminated string to be stored in the property.
*/
void dt_add_string_prop(struct device_tree_node *node, const char *name,
char *str)
{
dt_add_bin_prop(node, name, str, strlen(str) + 1);
}
/*
* Add a 32-bit integer property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param val The integer to be stored in the property.
*/
void dt_add_u32_prop(struct device_tree_node *node, const char *name, u32 val)
{
u32 *val_ptr = malloc(sizeof(val));
if (!val_ptr)
return;
*val_ptr = htobe32(val);
dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}
/*
* Add a 'reg' address list property to a node, or update it if it exists.
*
* @param node The device tree node to add to.
* @param addrs Array of address values to be stored in the property.
* @param sizes Array of corresponding size values to 'addrs'.
* @param count Number of values in 'addrs' and 'sizes' (must be equal).
* @param addr_cells Value of #address-cells property valid for this node.
* @param size_cells Value of #size-cells property valid for this node.
*/
void dt_add_reg_prop(struct device_tree_node *node, u64 *addrs, u64 *sizes,
int count, u32 addr_cells, u32 size_cells)
{
int i;
size_t length = (addr_cells + size_cells) * sizeof(u32) * count;
u8 *data = malloc(length);
if (!data)
return;
u8 *cur = data;
for (i = 0; i < count; i++) {
dt_write_int(cur, addrs[i], addr_cells * sizeof(u32));
cur += addr_cells * sizeof(u32);
dt_write_int(cur, sizes[i], size_cells * sizeof(u32));
cur += size_cells * sizeof(u32);
}
dt_add_bin_prop(node, "reg", data, length);
}
/*
* Fixups to apply to a kernel's device tree before booting it.
*/
struct list_node device_tree_fixups;
int dt_apply_fixups(struct device_tree *tree)
{
struct device_tree_fixup *fixup;
list_for_each(fixup, device_tree_fixups, list_node) {
assert(fixup->fixup);
if (fixup->fixup(fixup, tree))
return 1;
}
return 0;
}
int dt_set_bin_prop_by_path(struct device_tree *tree, const char *path,
void *data, size_t data_size, int create)
{
char *path_copy, *prop_name;
struct device_tree_node *dt_node;
path_copy = strdup(path);
if (!path_copy) {
printk(BIOS_ERR, "Failed to allocate a copy of path %s\n",
path);
return 1;
}
prop_name = strrchr(path_copy, '/');
if (!prop_name) {
printk(BIOS_ERR, "Path %s does not include '/'\n", path);
return 1;
}
*prop_name++ = '\0'; /* Separate path from the property name. */
dt_node = dt_find_node_by_path(tree->root, path_copy, NULL,
NULL, create);
if (!dt_node) {
printk(BIOS_ERR, "Failed to %s %s in the device tree\n",
create ? "create" : "find", path_copy);
return 1;
}
dt_add_bin_prop(dt_node, prop_name, data, data_size);
return 0;
}
/*
* Prepare the /reserved-memory/ node.
*
* Technically, this can be called more than one time, to init and/or retrieve
* the node. But dt_add_u32_prop() may leak a bit of memory if you do.
*
* @tree: Device tree to add/retrieve from.
* @return: The /reserved-memory/ node (or NULL, if error).
*/
struct device_tree_node *dt_init_reserved_memory_node(struct device_tree *tree)
{
struct device_tree_node *reserved;
u32 addr = 0, size = 0;
reserved = dt_find_node_by_path(tree->root, "reserved-memory", &addr,
&size, 1);
if (!reserved)
return NULL;
// Binding doc says this should have the same #{address,size}-cells as
// the root.
dt_add_u32_prop(reserved, "#address-cells", addr);
dt_add_u32_prop(reserved, "#size-cells", size);
// Binding doc says this should be empty (i.e., 1:1 mapping from root).
dt_add_bin_prop(reserved, "ranges", NULL, 0);
return reserved;
}