coreboot-kgpe-d16/payloads/libpayload/drivers/video/graphics.c

1093 lines
32 KiB
C
Raw Normal View History

/*
*
* Copyright (C) 2015 Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <libpayload.h>
#include <cbfs.h>
#include <fpmath.h>
#include <sysinfo.h>
#include "bitmap.h"
/*
* 'canvas' is the drawing area located in the center of the screen. It's a
* square area, stretching vertically to the edges of the screen, leaving
* non-drawing areas on the left and right. The screen is assumed to be
* landscape.
*/
static struct rect canvas;
static struct rect screen;
/*
* Framebuffer is assumed to assign a higher coordinate (larger x, y) to
* a higher address
*/
static struct cb_framebuffer *fbinfo;
static uint8_t *fbaddr;
#define LOG(x...) printf("CBGFX: " x)
#define PIVOT_H_MASK (PIVOT_H_LEFT|PIVOT_H_CENTER|PIVOT_H_RIGHT)
#define PIVOT_V_MASK (PIVOT_V_TOP|PIVOT_V_CENTER|PIVOT_V_BOTTOM)
#define ROUNDUP(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#define ABS(x) ((x) < 0 ? -(x) : (x))
static char initialized = 0;
static const struct vector vzero = {
.x = 0,
.y = 0,
};
static void add_vectors(struct vector *out,
const struct vector *v1, const struct vector *v2)
{
out->x = v1->x + v2->x;
out->y = v1->y + v2->y;
}
static int is_valid_fraction(const struct fraction *f)
{
return f->d != 0;
}
static int is_valid_scale(const struct scale *s)
{
return is_valid_fraction(&s->x) && is_valid_fraction(&s->y);
}
static void add_fractions(struct fraction *out,
const struct fraction *f1, const struct fraction *f2)
{
int64_t n, d;
int shift;
n = (int64_t)f1->n * f2->d + (int64_t)f2->n * f1->d;
d = (int64_t)f1->d * f2->d;
/* Simplest way to reduce the fraction until fitting in int32_t */
shift = log2(MAX(ABS(n), ABS(d)) >> 31) + 1;
out->n = n >> shift;
out->d = d >> shift;
}
static void add_scales(struct scale *out,
const struct scale *s1, const struct scale *s2)
{
add_fractions(&out->x, &s1->x, &s2->x);
add_fractions(&out->y, &s1->y, &s2->y);
}
/*
* Transform a vector:
* x' = x * a_x + offset_x
* y' = y * a_y + offset_y
*/
static int transform_vector(struct vector *out,
const struct vector *in,
const struct scale *a,
const struct vector *offset)
{
if (!is_valid_scale(a))
return CBGFX_ERROR_INVALID_PARAMETER;
out->x = (int64_t)a->x.n * in->x / a->x.d + offset->x;
out->y = (int64_t)a->y.n * in->y / a->y.d + offset->y;
return CBGFX_SUCCESS;
}
/*
* Returns 1 if v is exclusively within box, 0 if v is inclusively within box,
* or -1 otherwise.
*/
static int within_box(const struct vector *v, const struct rect *bound)
{
if (v->x > bound->offset.x &&
v->y > bound->offset.y &&
v->x < bound->offset.x + bound->size.width &&
v->y < bound->offset.y + bound->size.height)
return 1;
else if (v->x >= bound->offset.x &&
v->y >= bound->offset.y &&
v->x <= bound->offset.x + bound->size.width &&
v->y <= bound->offset.y + bound->size.height)
return 0;
else
return -1;
}
static inline uint32_t calculate_color(const struct rgb_color *rgb,
uint8_t invert)
{
uint32_t color = 0;
color |= (rgb->red >> (8 - fbinfo->red_mask_size))
<< fbinfo->red_mask_pos;
color |= (rgb->green >> (8 - fbinfo->green_mask_size))
<< fbinfo->green_mask_pos;
color |= (rgb->blue >> (8 - fbinfo->blue_mask_size))
<< fbinfo->blue_mask_pos;
if (invert)
color ^= 0xffffffff;
return color;
}
/*
* Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim
* and do the validation at callers' site.
*/
static inline void set_pixel(struct vector *coord, uint32_t color)
{
const int bpp = fbinfo->bits_per_pixel;
const int bpl = fbinfo->bytes_per_line;
struct vector rcoord;
int i;
switch (fbinfo->orientation) {
case CB_FB_ORIENTATION_NORMAL:
default:
rcoord.x = coord->x;
rcoord.y = coord->y;
break;
case CB_FB_ORIENTATION_BOTTOM_UP:
rcoord.x = screen.size.width - 1 - coord->x;
rcoord.y = screen.size.height - 1 - coord->y;
break;
case CB_FB_ORIENTATION_LEFT_UP:
rcoord.x = coord->y;
rcoord.y = screen.size.width - 1 - coord->x;
break;
case CB_FB_ORIENTATION_RIGHT_UP:
rcoord.x = screen.size.height - 1 - coord->y;
rcoord.y = coord->x;
break;
}
uint8_t * const pixel = fbaddr + rcoord.y * bpl + rcoord.x * bpp / 8;
for (i = 0; i < bpp / 8; i++)
pixel[i] = (color >> (i * 8));
}
/*
* Initializes the library. Automatically called by APIs. It sets up
* the canvas and the framebuffer.
*/
static int cbgfx_init(void)
{
if (initialized)
return 0;
fbinfo = lib_sysinfo.framebuffer;
if (!fbinfo)
return CBGFX_ERROR_FRAMEBUFFER_INFO;
fbaddr = phys_to_virt((uint8_t *)(uintptr_t)(fbinfo->physical_address));
if (!fbaddr)
return CBGFX_ERROR_FRAMEBUFFER_ADDR;
switch (fbinfo->orientation) {
default: /* Normal or rotated 180 degrees. */
screen.size.width = fbinfo->x_resolution;
screen.size.height = fbinfo->y_resolution;
break;
case CB_FB_ORIENTATION_LEFT_UP: /* 90 degree rotation. */
case CB_FB_ORIENTATION_RIGHT_UP:
screen.size.width = fbinfo->y_resolution;
screen.size.height = fbinfo->x_resolution;
break;
}
screen.offset.x = 0;
screen.offset.y = 0;
/* Calculate canvas size & offset. Canvas is always square. */
if (screen.size.height > screen.size.width) {
canvas.size.height = screen.size.width;
canvas.size.width = canvas.size.height;
canvas.offset.x = 0;
canvas.offset.y = (screen.size.height - canvas.size.height) / 2;
} else {
canvas.size.height = screen.size.height;
canvas.size.width = canvas.size.height;
canvas.offset.x = (screen.size.width - canvas.size.width) / 2;
canvas.offset.y = 0;
}
initialized = 1;
LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n",
screen.size.width, screen.size.height, screen.offset.x,
canvas.size.width, canvas.size.height, canvas.offset.x);
return 0;
}
int draw_box(const struct rect *box, const struct rgb_color *rgb)
{
struct vector top_left;
struct vector p, t;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
const uint32_t color = calculate_color(rgb, 0);
const struct scale top_left_s = {
.x = { .n = box->offset.x, .d = CANVAS_SCALE, },
.y = { .n = box->offset.y, .d = CANVAS_SCALE, }
};
const struct scale bottom_right_s = {
.x = { .n = box->offset.x + box->size.x, .d = CANVAS_SCALE, },
.y = { .n = box->offset.y + box->size.y, .d = CANVAS_SCALE, }
};
transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset);
transform_vector(&t, &canvas.size, &bottom_right_s, &canvas.offset);
if (within_box(&t, &canvas) < 0) {
LOG("Box exceeds canvas boundary\n");
return CBGFX_ERROR_BOUNDARY;
}
for (p.y = top_left.y; p.y < t.y; p.y++)
for (p.x = top_left.x; p.x < t.x; p.x++)
set_pixel(&p, color);
return CBGFX_SUCCESS;
}
int draw_rounded_box(const struct scale *pos_rel, const struct scale *dim_rel,
const struct rgb_color *rgb,
const struct fraction *thickness,
const struct fraction *radius)
{
struct scale pos_end_rel;
struct vector top_left;
struct vector p, t;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
const uint32_t color = calculate_color(rgb, 0);
if (!is_valid_scale(pos_rel) || !is_valid_scale(dim_rel))
return CBGFX_ERROR_INVALID_PARAMETER;
add_scales(&pos_end_rel, pos_rel, dim_rel);
transform_vector(&top_left, &canvas.size, pos_rel, &canvas.offset);
transform_vector(&t, &canvas.size, &pos_end_rel, &canvas.offset);
if (within_box(&t, &canvas) < 0) {
LOG("Box exceeds canvas boundary\n");
return CBGFX_ERROR_BOUNDARY;
}
if (!is_valid_fraction(thickness) || !is_valid_fraction(radius))
return CBGFX_ERROR_INVALID_PARAMETER;
struct scale thickness_scale = {
.x = { .n = thickness->n, .d = thickness->d },
.y = { .n = thickness->n, .d = thickness->d },
};
struct scale radius_scale = {
.x = { .n = radius->n, .d = radius->d },
.y = { .n = radius->n, .d = radius->d },
};
struct vector d, r, s;
transform_vector(&d, &canvas.size, &thickness_scale, &vzero);
transform_vector(&r, &canvas.size, &radius_scale, &vzero);
const uint8_t has_thickness = d.x > 0 && d.y > 0;
if (thickness->n != 0 && !has_thickness)
LOG("Thickness truncated to 0\n");
const uint8_t has_radius = r.x > 0 && r.y > 0;
if (radius->n != 0 && !has_radius)
LOG("Radius truncated to 0\n");
if (has_radius) {
if (d.x > r.x || d.y > r.y) {
LOG("Thickness cannot be greater than radius\n");
return CBGFX_ERROR_INVALID_PARAMETER;
}
if (r.x * 2 > t.x - top_left.x || r.y * 2 > t.y - top_left.y) {
LOG("Radius cannot be greater than half of the box\n");
return CBGFX_ERROR_INVALID_PARAMETER;
}
}
/* Step 1: Draw edges */
int32_t x_begin, x_end;
if (has_thickness) {
/* top */
for (p.y = top_left.y; p.y < top_left.y + d.y; p.y++)
for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
set_pixel(&p, color);
/* bottom */
for (p.y = t.y - d.y; p.y < t.y; p.y++)
for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
set_pixel(&p, color);
for (p.y = top_left.y + r.y; p.y < t.y - r.y; p.y++) {
/* left */
for (p.x = top_left.x; p.x < top_left.x + d.x; p.x++)
set_pixel(&p, color);
/* right */
for (p.x = t.x - d.x; p.x < t.x; p.x++)
set_pixel(&p, color);
}
} else {
/* Fill the regions except circular sectors */
for (p.y = top_left.y; p.y < t.y; p.y++) {
if (p.y >= top_left.y + r.y && p.y < t.y - r.y) {
x_begin = top_left.x;
x_end = t.x;
} else {
x_begin = top_left.x + r.x;
x_end = t.x - r.x;
}
for (p.x = x_begin; p.x < x_end; p.x++)
set_pixel(&p, color);
}
}
if (!has_radius)
return CBGFX_SUCCESS;
/*
* Step 2: Draw rounded corners
* When has_thickness, only the border is drawn. With fixed thickness,
* the time complexity is linear to the size of the box.
*/
if (has_thickness) {
s.x = r.x - d.x;
s.y = r.y - d.y;
} else {
s.x = 0;
s.y = 0;
}
/* Use 64 bits to avoid overflow */
int32_t x, y;
uint64_t yy;
const uint64_t rrx = (uint64_t)r.x * r.x, rry = (uint64_t)r.y * r.y;
const uint64_t ssx = (uint64_t)s.x * s.x, ssy = (uint64_t)s.y * s.y;
x_begin = 0;
x_end = 0;
for (y = r.y - 1; y >= 0; y--) {
/*
* The inequality is valid in the beginning of each iteration:
* y^2 + x_end^2 < r^2
*/
yy = (uint64_t)y * y;
/* Check yy/ssy + xx/ssx < 1 */
while (yy * ssx + x_begin * x_begin * ssy < ssx * ssy)
x_begin++;
/* The inequality must be valid now: y^2 + x_begin >= s^2 */
x = x_begin;
/* Check yy/rry + xx/rrx < 1 */
while (x < x_end || yy * rrx + x * x * rry < rrx * rry) {
/*
* Example sequence of (y, x) when s = (4, 4) and
* r = (5, 5):
* [(4, 0), (4, 1), (4, 2), (3, 3), (2, 4),
* (1, 4), (0, 4)].
* If s.x==s.y r.x==r.y, then the sequence will be
* symmetric, and x and y will range from 0 to (r-1).
*/
/* top left */
p.y = top_left.y + r.y - 1 - y;
p.x = top_left.x + r.x - 1 - x;
set_pixel(&p, color);
/* top right */
p.y = top_left.y + r.y - 1 - y;
p.x = t.x - r.x + x;
set_pixel(&p, color);
/* bottom left */
p.y = t.y - r.y + y;
p.x = top_left.x + r.x - 1 - x;
set_pixel(&p, color);
/* bottom right */
p.y = t.y - r.y + y;
p.x = t.x - r.x + x;
set_pixel(&p, color);
x++;
}
x_end = x;
/* (x_begin <= x_end) must hold now */
}
return CBGFX_SUCCESS;
}
int clear_canvas(const struct rgb_color *rgb)
{
const struct rect box = {
vzero,
.size = {
.width = CANVAS_SCALE,
.height = CANVAS_SCALE,
},
};
if (cbgfx_init())
return CBGFX_ERROR_INIT;
return draw_box(&box, rgb);
}
int clear_screen(const struct rgb_color *rgb)
{
if (cbgfx_init())
return CBGFX_ERROR_INIT;
struct vector p;
uint32_t color = calculate_color(rgb, 0);
const int bpp = fbinfo->bits_per_pixel;
const int bpl = fbinfo->bytes_per_line;
/* If all significant bytes in color are equal, fastpath through memset.
* We assume that for 32bpp the high byte gets ignored anyway. */
if ((((color >> 8) & 0xff) == (color & 0xff)) && (bpp == 16 ||
(((color >> 16) & 0xff) == (color & 0xff)))) {
memset(fbaddr, color & 0xff, fbinfo->y_resolution * bpl);
} else {
for (p.y = 0; p.y < screen.size.height; p.y++)
for (p.x = 0; p.x < screen.size.width; p.x++)
set_pixel(&p, color);
}
return CBGFX_SUCCESS;
}
static int pal_to_rgb(uint8_t index, const struct bitmap_palette_element_v3 *pal,
size_t palcount, struct rgb_color *out)
{
if (index >= palcount) {
LOG("Color index %d exceeds palette boundary\n", index);
return CBGFX_ERROR_BITMAP_DATA;
}
out->red = pal[index].red;
out->green = pal[index].green;
out->blue = pal[index].blue;
return CBGFX_SUCCESS;
}
/*
* We're using the Lanczos resampling algorithm to rescale images to a new size.
* Since output size is often not cleanly divisible by input size, an output
* pixel (ox,oy) corresponds to a point that lies in the middle between several
* input pixels (ix,iy), meaning that if you transformed the coordinates of the
* output pixel into the input image space, they would be fractional. To sample
* the color of this "virtual" pixel with fractional coordinates, we gather the
* 6x6 grid of nearest real input pixels in a sample array. Then we multiply the
* color values for each of those pixels (separately for red, green and blue)
* with a "weight" value that was calculated from the distance between that
* input pixel and the fractional output pixel coordinates. This is done for
* both X and Y dimensions separately. The combined weights for all 36 sample
* pixels add up to 1.0, so by adding up the multiplied color values we get the
* interpolated color for the output pixel.
*
* The CONFIG_LP_CBGFX_FAST_RESAMPLE option let's the user change the 'a'
* parameter from the Lanczos weight formula from 3 to 2, which effectively
* reduces the size of the sample array from 6x6 to 4x4. This is a bit faster
* but doesn't look as good. Most use cases should be fine without it.
*/
#if CONFIG(LP_CBGFX_FAST_RESAMPLE)
#define LNCZ_A 2
#else
#define LNCZ_A 3
#endif
/*
* When walking the sample array we often need to start at a pixel close to our
* fractional output pixel (for convenience we choose the pixel on the top-left
* which corresponds to the integer parts of the output pixel coordinates) and
* then work our way outwards in both directions from there. Arrays in C must
* start at 0 but we'd really prefer indexes to go from -2 to 3 (for 6x6)
* instead, so that this "start pixel" could be 0. Since we cannot do that,
* define a constant for the index of that "0th" pixel instead.
*/
#define S0 (LNCZ_A - 1)
/* The size of the sample array, which we need a lot. */
#define SSZ (LNCZ_A * 2)
/*
* This is implementing the Lanczos kernel according to:
* https://en.wikipedia.org/wiki/Lanczos_resampling
*
* / 1 if x = 0
* L(x) = < a * sin(pi * x) * sin(pi * x / a) / (pi^2 * x^2) if -a < x <= a
* \ 0 otherwise
*/
static fpmath_t lanczos_weight(fpmath_t in, int off)
{
/*
* |in| is the output pixel coordinate scaled into the input pixel
* space. |off| is the offset in the sample array for the pixel whose
* weight we're calculating. (off - S0) is the distance from that
* sample pixel to the S0 pixel, and the fractional part of |in|
* (in - floor(in)) is by definition the distance between S0 and the
* output pixel.
*
* So (off - S0) - (in - floor(in)) is the distance from the sample
* pixel to S0 minus the distance from S0 to the output pixel, aka
* the distance from the sample pixel to the output pixel.
*/
fpmath_t x = fpisub(off - S0, fpsubi(in, fpfloor(in)));
if (fpequals(x, fp(0)))
return fp(1);
/* x * 2 / a can save some instructions if a == 2 */
fpmath_t x2a = x;
if (LNCZ_A != 2)
x2a = fpmul(x, fpfrac(2, LNCZ_A));
fpmath_t x_times_pi = fpmul(x, fppi());
/*
* Rather than using sinr(pi*x), we leverage the "one-based" sine
* function (see <fpmath.h>) with sin1(2*x) so that the pi is eliminated
* since multiplication by an integer is a slightly faster operation.
*/
fpmath_t tmp = fpmuli(fpdiv(fpsin1(fpmuli(x, 2)), x_times_pi), LNCZ_A);
return fpdiv(fpmul(tmp, fpsin1(x2a)), x_times_pi);
}
static int draw_bitmap_v3(const struct vector *top_left,
const struct vector *dim,
const struct vector *dim_org,
const struct bitmap_header_v3 *header,
const struct bitmap_palette_element_v3 *pal,
const uint8_t *pixel_array, uint8_t invert)
{
const int bpp = header->bits_per_pixel;
int32_t dir;
struct vector p;
int32_t ox, oy; /* output (resampled) pixel coordinates */
int32_t ix, iy; /* input (source image) pixel coordinates */
int sx, sy; /* index into |sample| (not ringbuffer adjusted) */
if (header->compression) {
LOG("Compressed bitmaps are not supported\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (bpp >= 16) {
LOG("Non-palette bitmaps are not supported\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
if (bpp != 8) {
LOG("Unsupported bits per pixel: %d\n", bpp);
return CBGFX_ERROR_BITMAP_FORMAT;
}
const int32_t y_stride = ROUNDUP(dim_org->width * bpp / 8, 4);
/*
* header->height can be positive or negative.
*
* If it's negative, pixel data is stored from top to bottom. We render
* image from the lowest row to the highest row.
*
* If it's positive, pixel data is stored from bottom to top. We render
* image from the highest row to the lowest row.
*/
p.y = top_left->y;
if (header->height < 0) {
dir = 1;
} else {
p.y += dim->height - 1;
dir = -1;
}
/* Don't waste time resampling when the scale is 1:1. */
if (dim_org->width == dim->width && dim_org->height == dim->height) {
for (oy = 0; oy < dim->height; oy++, p.y += dir) {
p.x = top_left->x;
for (ox = 0; ox < dim->width; ox++, p.x++) {
struct rgb_color rgb;
if (pal_to_rgb(pixel_array[oy * y_stride + ox],
pal, header->colors_used, &rgb))
return CBGFX_ERROR_BITMAP_DATA;
set_pixel(&p, calculate_color(&rgb, invert));
}
}
return CBGFX_SUCCESS;
}
/* Precalculate the X-weights for every possible ox so that we only have
to multiply weights together in the end. */
fpmath_t (*weight_x)[SSZ] = malloc(sizeof(fpmath_t) * SSZ * dim->width);
if (!weight_x)
return CBGFX_ERROR_UNKNOWN;
for (ox = 0; ox < dim->width; ox++) {
for (sx = 0; sx < SSZ; sx++) {
fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
weight_x[ox][sx] = lanczos_weight(ixfp, sx);
}
}
/*
* For every sy in the sample array, we directly cache a pointer into
* the .BMP pixel array for the start of the corresponding line. On the
* edges of the image (where we don't have any real pixels to fill all
* lines in the sample array), we just reuse the last valid lines inside
* the image for all lines that would lie outside.
*/
const uint8_t *ypix[SSZ];
for (sy = 0; sy < SSZ; sy++) {
if (sy <= S0)
ypix[sy] = pixel_array;
else if (sy - S0 >= dim_org->height)
ypix[sy] = ypix[sy - 1];
else
ypix[sy] = &pixel_array[y_stride * (sy - S0)];
}
/* iy and ix track the input pixel corresponding to sample[S0][S0]. */
iy = 0;
for (oy = 0; oy < dim->height; oy++, p.y += dir) {
struct rgb_color sample[SSZ][SSZ];
/* Like with X weights, we also cache all Y weights. */
fpmath_t iyfp = fpfrac(oy * dim_org->height, dim->height);
fpmath_t weight_y[SSZ];
for (sy = 0; sy < SSZ; sy++)
weight_y[sy] = lanczos_weight(iyfp, sy);
/*
* If we have a new input pixel line between the last oy and
* this one, we have to adjust iy forward. When upscaling, this
* is not always the case for each new output line. When
* downscaling, we may even cross more than one line per output
* pixel.
*/
while (fpfloor(iyfp) > iy) {
iy++;
/* Shift ypix array up to center around next iy line. */
for (sy = 0; sy < SSZ - 1; sy++)
ypix[sy] = ypix[sy + 1];
/* Calculate the last ypix that is being shifted in,
but beware of reaching the end of the input image. */
if (iy + LNCZ_A < dim_org->height)
ypix[SSZ - 1] = &pixel_array[y_stride *
(iy + LNCZ_A)];
}
/*
* Initialize the sample array for this line. For pixels to the
* left of S0 there are no corresponding input pixels so just
* copy the S0 values over.
*
* Also initialize the equals counter, which counts how many of
* the latest pixels were exactly equal. We know the columns
* left of S0 must be equal to S0, so start with that number.
*/
int equals = S0 * SSZ;
uint8_t last_equal = ypix[0][0];
for (sy = 0; sy < SSZ; sy++) {
for (sx = S0; sx < SSZ; sx++) {
if (sx >= dim_org->width) {
sample[sx][sy] = sample[sx - 1][sy];
equals++;
continue;
}
uint8_t i = ypix[sy][sx - S0];
if (pal_to_rgb(i, pal, header->colors_used,
&sample[sx][sy]))
goto bitmap_error;
if (i == last_equal) {
equals++;
} else {
last_equal = i;
equals = 1;
}
}
for (sx = S0 - 1; sx >= 0; sx--)
sample[sx][sy] = sample[S0][sy];
}
ix = 0;
p.x = top_left->x;
for (ox = 0; ox < dim->width; ox++, p.x++) {
/* Adjust ix forward, same as iy above. */
fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
while (fpfloor(ixfp) > ix) {
ix++;
/*
* We want to reuse the sample columns we
* already have, but we don't want to copy them
* all around for every new column either.
* Instead, treat the X dimension of the sample
* array like a ring buffer indexed by ix. rx is
* the ringbuffer-adjusted offset of the new
* column in sample (the rightmost one) we're
* trying to fill.
*/
int rx = (SSZ - 1 + ix) % SSZ;
for (sy = 0; sy < SSZ; sy++) {
if (ix + LNCZ_A >= dim_org->width) {
sample[rx][sy] = sample[(SSZ - 2
+ ix) % SSZ][sy];
equals++;
continue;
}
uint8_t i = ypix[sy][ix + LNCZ_A];
if (i == last_equal) {
if (equals++ >= (SSZ * SSZ))
continue;
} else {
last_equal = i;
equals = 1;
}
if (pal_to_rgb(i, pal,
header->colors_used,
&sample[rx][sy]))
goto bitmap_error;
}
}
/* If all pixels in sample are equal, fast path. */
if (equals >= (SSZ * SSZ)) {
set_pixel(&p, calculate_color(&sample[0][0],
invert));
continue;
}
fpmath_t red = fp(0);
fpmath_t green = fp(0);
fpmath_t blue = fp(0);
for (sy = 0; sy < SSZ; sy++) {
for (sx = 0; sx < SSZ; sx++) {
int rx = (sx + ix) % SSZ;
fpmath_t weight = fpmul(weight_x[ox][sx],
weight_y[sy]);
red = fpadd(red, fpmuli(weight,
sample[rx][sy].red));
green = fpadd(green, fpmuli(weight,
sample[rx][sy].green));
blue = fpadd(blue, fpmuli(weight,
sample[rx][sy].blue));
}
}
/*
* Weights *should* sum up to 1.0 (making this not
* necessary) but just to hedge against rounding errors
* we should clamp color values to their legal limits.
*/
struct rgb_color rgb = {
.red = MAX(0, MIN(UINT8_MAX, fpround(red))),
.green = MAX(0, MIN(UINT8_MAX, fpround(green))),
.blue = MAX(0, MIN(UINT8_MAX, fpround(blue))),
};
set_pixel(&p, calculate_color(&rgb, invert));
}
}
free(weight_x);
return CBGFX_SUCCESS;
bitmap_error:
free(weight_x);
return CBGFX_ERROR_BITMAP_DATA;
}
static int get_bitmap_file_header(const void *bitmap, size_t size,
struct bitmap_file_header *file_header)
{
const struct bitmap_file_header *fh;
if (sizeof(*file_header) > size) {
LOG("Invalid bitmap data\n");
return CBGFX_ERROR_BITMAP_DATA;
}
fh = (struct bitmap_file_header *)bitmap;
if (fh->signature[0] != 'B' || fh->signature[1] != 'M') {
LOG("Bitmap signature mismatch\n");
return CBGFX_ERROR_BITMAP_SIGNATURE;
}
file_header->file_size = le32toh(fh->file_size);
if (file_header->file_size != size) {
LOG("Bitmap file size does not match cbfs file size\n");
return CBGFX_ERROR_BITMAP_DATA;
}
file_header->bitmap_offset = le32toh(fh->bitmap_offset);
return CBGFX_SUCCESS;
}
static int parse_bitmap_header_v3(
const uint8_t *bitmap,
size_t size,
/* ^--- IN / OUT ---v */
struct bitmap_header_v3 *header,
const struct bitmap_palette_element_v3 **palette,
const uint8_t **pixel_array,
struct vector *dim_org)
{
struct bitmap_file_header file_header;
struct bitmap_header_v3 *h;
int rv;
rv = get_bitmap_file_header(bitmap, size, &file_header);
if (rv)
return rv;
size_t header_offset = sizeof(struct bitmap_file_header);
size_t header_size = sizeof(struct bitmap_header_v3);
size_t palette_offset = header_offset + header_size;
size_t file_size = file_header.file_size;
h = (struct bitmap_header_v3 *)(bitmap + header_offset);
header->header_size = le32toh(h->header_size);
if (header->header_size != header_size) {
LOG("Unsupported bitmap format\n");
return CBGFX_ERROR_BITMAP_FORMAT;
}
header->width = le32toh(h->width);
header->height = le32toh(h->height);
if (header->width == 0 || header->height == 0) {
LOG("Invalid image width or height\n");
return CBGFX_ERROR_BITMAP_DATA;
}
dim_org->width = header->width;
dim_org->height = ABS(header->height);
header->bits_per_pixel = le16toh(h->bits_per_pixel);
header->compression = le32toh(h->compression);
header->size = le32toh(h->size);
header->colors_used = le32toh(h->colors_used);
size_t palette_size = header->colors_used
* sizeof(struct bitmap_palette_element_v3);
size_t pixel_offset = file_header.bitmap_offset;
if (pixel_offset > file_size) {
LOG("Bitmap pixel data exceeds buffer boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
if (palette_offset + palette_size > pixel_offset) {
LOG("Bitmap palette data exceeds palette boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
*palette = (struct bitmap_palette_element_v3 *)(bitmap +
palette_offset);
size_t pixel_size = header->size;
if (pixel_size != dim_org->height *
ROUNDUP(dim_org->width * header->bits_per_pixel / 8, 4)) {
LOG("Bitmap pixel array size does not match expected size\n");
return CBGFX_ERROR_BITMAP_DATA;
}
if (pixel_offset + pixel_size > file_size) {
LOG("Bitmap pixel array exceeds buffer boundary\n");
return CBGFX_ERROR_BITMAP_DATA;
}
*pixel_array = bitmap + pixel_offset;
return CBGFX_SUCCESS;
}
/*
* This calculates the dimension of the image projected on the canvas from the
* dimension relative to the canvas size. If either width or height is zero, it
* is derived from the other (non-zero) value to keep the aspect ratio.
*/
static int calculate_dimension(const struct vector *dim_org,
const struct scale *dim_rel,
struct vector *dim)
{
if (dim_rel->x.n == 0 && dim_rel->y.n == 0)
return CBGFX_ERROR_INVALID_PARAMETER;
if (dim_rel->x.n > dim_rel->x.d || dim_rel->y.n > dim_rel->y.d)
return CBGFX_ERROR_INVALID_PARAMETER;
if (dim_rel->x.n > 0) {
if (!is_valid_fraction(&dim_rel->x))
return CBGFX_ERROR_INVALID_PARAMETER;
dim->width = canvas.size.width * dim_rel->x.n / dim_rel->x.d;
}
if (dim_rel->y.n > 0) {
if (!is_valid_fraction(&dim_rel->y))
return CBGFX_ERROR_INVALID_PARAMETER;
dim->height = canvas.size.height * dim_rel->y.n / dim_rel->y.d;
}
/* Derive height from width using aspect ratio */
if (dim_rel->y.n == 0)
dim->height = dim->width * dim_org->height / dim_org->width;
/* Derive width from height using aspect ratio */
if (dim_rel->x.n == 0)
dim->width = dim->height * dim_org->width / dim_org->height;
return CBGFX_SUCCESS;
}
static int calculate_position(const struct vector *dim,
const struct scale *pos_rel, uint8_t pivot,
struct vector *top_left)
{
int rv;
rv = transform_vector(top_left, &canvas.size, pos_rel, &canvas.offset);
if (rv)
return rv;
switch (pivot & PIVOT_H_MASK) {
case PIVOT_H_LEFT:
break;
case PIVOT_H_CENTER:
top_left->x -= dim->width / 2;
break;
case PIVOT_H_RIGHT:
top_left->x -= dim->width;
break;
default:
return CBGFX_ERROR_INVALID_PARAMETER;
}
switch (pivot & PIVOT_V_MASK) {
case PIVOT_V_TOP:
break;
case PIVOT_V_CENTER:
top_left->y -= dim->height / 2;
break;
case PIVOT_V_BOTTOM:
top_left->y -= dim->height;
break;
default:
return CBGFX_ERROR_INVALID_PARAMETER;
}
return CBGFX_SUCCESS;
}
static int check_boundary(const struct vector *top_left,
const struct vector *dim,
const struct rect *bound)
{
struct vector v;
add_vectors(&v, dim, top_left);
if (top_left->x < bound->offset.x
|| top_left->y < bound->offset.y
|| within_box(&v, bound) < 0)
return CBGFX_ERROR_BOUNDARY;
return CBGFX_SUCCESS;
}
int draw_bitmap(const void *bitmap, size_t size,
const struct scale *pos_rel, const struct scale *dim_rel,
uint32_t flags)
{
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector top_left, dim, dim_org;
int rv;
const uint8_t pivot = flags & PIVOT_MASK;
const uint8_t invert = (flags & INVERT_COLORS) >> INVERT_SHIFT;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
/* only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, size,
&header, &palette, &pixel_array, &dim_org);
if (rv)
return rv;
/* Calculate height and width of the image */
rv = calculate_dimension(&dim_org, dim_rel, &dim);
if (rv)
return rv;
/* Calculate coordinate */
rv = calculate_position(&dim, pos_rel, pivot, &top_left);
if (rv)
return rv;
rv = check_boundary(&top_left, &dim, &canvas);
if (rv) {
LOG("Bitmap image exceeds canvas boundary\n");
return rv;
}
return draw_bitmap_v3(&top_left, &dim, &dim_org,
&header, palette, pixel_array, invert);
}
int draw_bitmap_direct(const void *bitmap, size_t size,
const struct vector *top_left)
{
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector dim;
int rv;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
/* only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, size,
&header, &palette, &pixel_array, &dim);
if (rv)
return rv;
rv = check_boundary(top_left, &dim, &screen);
if (rv) {
LOG("Bitmap image exceeds screen boundary\n");
return rv;
}
return draw_bitmap_v3(top_left, &dim, &dim,
&header, palette, pixel_array, 0);
}
int get_bitmap_dimension(const void *bitmap, size_t sz, struct scale *dim_rel)
{
struct bitmap_header_v3 header;
const struct bitmap_palette_element_v3 *palette;
const uint8_t *pixel_array;
struct vector dim, dim_org;
int rv;
if (cbgfx_init())
return CBGFX_ERROR_INIT;
/* Only v3 is supported now */
rv = parse_bitmap_header_v3(bitmap, sz,
&header, &palette, &pixel_array, &dim_org);
if (rv)
return rv;
/* Calculate height and width of the image */
rv = calculate_dimension(&dim_org, dim_rel, &dim);
if (rv)
return rv;
/* Calculate size relative to the canvas */
dim_rel->x.n = dim.width;
dim_rel->x.d = canvas.size.width;
dim_rel->y.n = dim.height;
dim_rel->y.d = canvas.size.height;
return CBGFX_SUCCESS;
}