coreboot-kgpe-d16/src/cpu/x86/mp_init.c

610 lines
15 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <stdint.h>
#include <rmodule.h>
#include <arch/cpu.h>
#include <cpu/cpu.h>
#include <cpu/intel/microcode.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/gdt.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/name.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <cpu/x86/mp.h>
#include <delay.h>
#include <device/device.h>
#include <device/path.h>
#include <lib.h>
#include <smp/atomic.h>
#include <smp/spinlock.h>
New mechanism to define SRAM/memory map with automatic bounds checking This patch creates a new mechanism to define the static memory layout (primarily in SRAM) for a given board, superseding the brittle mass of Kconfigs that we were using before. The core part is a memlayout.ld file in the mainboard directory (although boards are expected to just include the SoC default in most cases), which is the primary linker script for all stages (though not rmodules for now). It uses preprocessor macros from <memlayout.h> to form a different valid linker script for all stages while looking like a declarative, boilerplate-free map of memory addresses to the programmer. Linker asserts will automatically guarantee that the defined regions cannot overlap. Stages are defined with a maximum size that will be enforced by the linker. The file serves to both define and document the memory layout, so that the documentation cannot go missing or out of date. The mechanism is implemented for all boards in the ARM, ARM64 and MIPS architectures, and should be extended onto all systems using SRAM in the future. The CAR/XIP environment on x86 has very different requirements and the layout is generally not as static, so it will stay like it is and be unaffected by this patch (save for aligning some symbol names for consistency and sharing the new common ramstage linker script include). BUG=None TEST=Booted normally and in recovery mode, checked suspend/resume and the CBMEM console on Falco, Blaze (both normal and vboot2), Pinky and Pit. Compiled Ryu, Storm and Urara, manually compared the disassemblies with ToT and looked for red flags. Change-Id: Ifd2276417f2036cbe9c056f17e42f051bcd20e81 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: f1e2028e7ebceeb2d71ff366150a37564595e614 Original-Change-Id: I005506add4e8fcdb74db6d5e6cb2d4cb1bd3cda5 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/213370 Reviewed-on: http://review.coreboot.org/9283 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Tauner <stefan.tauner@gmx.at> Reviewed-by: Aaron Durbin <adurbin@google.com>
2014-08-21 00:29:56 +02:00
#include <symbols.h>
#include <thread.h>
#define MAX_APIC_IDS 256
/* This needs to match the layout in the .module_parametrs section. */
struct sipi_params {
uint16_t gdtlimit;
uint32_t gdt;
uint16_t unused;
uint32_t idt_ptr;
uint32_t stack_top;
uint32_t stack_size;
uint32_t microcode_lock; /* 0xffffffff means parallel loading. */
uint32_t microcode_ptr;
uint32_t msr_table_ptr;
uint32_t msr_count;
uint32_t c_handler;
atomic_t ap_count;
} __attribute__((packed));
/* This also needs to match the assembly code for saved MSR encoding. */
struct saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __attribute__((packed));
/* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */
extern char _binary_sipi_vector_start[];
/* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the
* memory range is already reserved so the OS cannot use it. That region is
* free to use for AP bringup before SMM is initialized. */
static const uint32_t sipi_vector_location = SMM_DEFAULT_BASE;
static const int sipi_vector_location_size = SMM_DEFAULT_SIZE;
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
static struct mp_flight_plan mp_info;
struct cpu_map {
struct device *dev;
int apic_id;
};
/* Keep track of apic and device structure for each cpu. */
static struct cpu_map cpus[CONFIG_MAX_CPUS];
static inline void barrier_wait(atomic_t *b)
{
while (atomic_read(b) == 0) {
asm ("pause");
}
mfence();
}
static inline void release_barrier(atomic_t *b)
{
mfence();
atomic_set(b, 1);
}
/* Returns 1 if timeout waiting for APs. 0 if target aps found. */
static int wait_for_aps(atomic_t *val, int target, int total_delay,
int delay_step)
{
int timeout = 0;
int delayed = 0;
while (atomic_read(val) != target) {
udelay(delay_step);
delayed += delay_step;
if (delayed >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static void ap_do_flight_plan(void)
{
int i;
for (i = 0; i < mp_info.num_records; i++) {
struct mp_flight_record *rec = &mp_info.records[i];
atomic_inc(&rec->cpus_entered);
barrier_wait(&rec->barrier);
if (rec->ap_call != NULL) {
rec->ap_call(rec->ap_arg);
}
}
}
/* By the time APs call ap_init() caching has been setup, and microcode has
* been loaded. */
static void asmlinkage ap_init(unsigned int cpu)
{
struct cpu_info *info;
int apic_id;
/* Ensure the local apic is enabled */
enable_lapic();
info = cpu_info();
info->index = cpu;
info->cpu = cpus[cpu].dev;
thread_init_cpu_info_non_bsp(info);
apic_id = lapicid();
info->cpu->path.apic.apic_id = apic_id;
cpus[cpu].apic_id = apic_id;
printk(BIOS_INFO, "AP: slot %d apic_id %x.\n", cpu, apic_id);
/* Walk the flight plan */
ap_do_flight_plan();
/* Park the AP. */
stop_this_cpu();
}
static void setup_default_sipi_vector_params(struct sipi_params *sp)
{
sp->gdt = (uint32_t)&gdt;
sp->gdtlimit = (uint32_t)&gdt_end - (u32)&gdt - 1;
sp->idt_ptr = (uint32_t)&idtarg;
sp->stack_size = CONFIG_STACK_SIZE;
sp->stack_top = (uint32_t)&_estack;
/* Adjust the stack top to take into account cpu_info. */
sp->stack_top -= sizeof(struct cpu_info);
}
#define NUM_FIXED_MTRRS 11
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
MTRR_FIX_64K_00000, MTRR_FIX_16K_80000, MTRR_FIX_16K_A0000,
MTRR_FIX_4K_C0000, MTRR_FIX_4K_C8000, MTRR_FIX_4K_D0000,
MTRR_FIX_4K_D8000, MTRR_FIX_4K_E0000, MTRR_FIX_4K_E8000,
MTRR_FIX_4K_F0000, MTRR_FIX_4K_F8000,
};
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
msr_t msr;
msr = rdmsr(index);
entry->index = index;
entry->lo = msr.lo;
entry->hi = msr.hi;
/* Return the next entry. */
entry++;
return entry;
}
static int save_bsp_msrs(char *start, int size)
{
int msr_count;
int num_var_mtrrs;
struct saved_msr *msr_entry;
int i;
msr_t msr;
/* Determine number of MTRRs need to be saved. */
msr = rdmsr(MTRR_CAP_MSR);
num_var_mtrrs = msr.lo & 0xff;
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
if ((msr_count * sizeof(struct saved_msr)) > size) {
printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count);
return -1;
}
msr_entry = (void *)start;
for (i = 0; i < NUM_FIXED_MTRRS; i++) {
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
}
for (i = 0; i < num_var_mtrrs; i++) {
msr_entry = save_msr(MTRR_PHYS_BASE(i), msr_entry);
msr_entry = save_msr(MTRR_PHYS_MASK(i), msr_entry);
}
msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
return msr_count;
}
static atomic_t *load_sipi_vector(struct mp_params *mp_params)
{
struct rmodule sipi_mod;
int module_size;
int num_msrs;
struct sipi_params *sp;
char *mod_loc = (void *)sipi_vector_location;
const int loc_size = sipi_vector_location_size;
atomic_t *ap_count = NULL;
if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to parse sipi module.\n");
return ap_count;
}
if (rmodule_entry_offset(&sipi_mod) != 0) {
printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n");
return ap_count;
}
if (rmodule_load_alignment(&sipi_mod) != 4096) {
printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n",
rmodule_load_alignment(&sipi_mod));
return ap_count;
}
module_size = rmodule_memory_size(&sipi_mod);
/* Align to 4 bytes. */
module_size = ALIGN(module_size, 4);
if (module_size > loc_size) {
printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n",
module_size, loc_size);
return ap_count;
}
num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size);
if (num_msrs < 0) {
printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n");
return ap_count;
}
if (rmodule_load(mod_loc, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to load SIPI module.\n");
return ap_count;
}
sp = rmodule_parameters(&sipi_mod);
if (sp == NULL) {
printk(BIOS_CRIT, "SIPI module has no parameters.\n");
return ap_count;
}
setup_default_sipi_vector_params(sp);
/* Setup MSR table. */
sp->msr_table_ptr = (uint32_t)&mod_loc[module_size];
sp->msr_count = num_msrs;
/* Provide pointer to microcode patch. */
sp->microcode_ptr = (uint32_t)mp_params->microcode_pointer;
/* Pass on abiility to load microcode in parallel. */
if (mp_params->parallel_microcode_load) {
sp->microcode_lock = 0;
} else {
sp->microcode_lock = ~0;
}
sp->c_handler = (uint32_t)&ap_init;
ap_count = &sp->ap_count;
atomic_set(ap_count, 0);
return ap_count;
}
static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p)
{
int i;
int max_cpus;
struct cpu_info *info;
max_cpus = p->num_cpus;
if (max_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n",
max_cpus, CONFIG_MAX_CPUS);
max_cpus = CONFIG_MAX_CPUS;
}
info = cpu_info();
for (i = 1; i < max_cpus; i++) {
struct device_path cpu_path;
struct device *new;
int apic_id;
/* Build the cpu device path */
cpu_path.type = DEVICE_PATH_APIC;
/* Assuming linear APIC space allocation. */
apic_id = info->cpu->path.apic.apic_id + i;
if (p->adjust_apic_id != NULL) {
apic_id = p->adjust_apic_id(i, apic_id);
}
cpu_path.apic.apic_id = apic_id;
/* Allocate the new cpu device structure */
new = alloc_find_dev(cpu_bus, &cpu_path);
if (new == NULL) {
printk(BIOS_CRIT, "Could not allocte cpu device\n");
max_cpus--;
}
cpus[i].dev = new;
}
return max_cpus;
}
/* Returns 1 for timeout. 0 on success. */
static int apic_wait_timeout(int total_delay, int delay_step)
{
int total = 0;
int timeout = 0;
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
udelay(delay_step);
total += delay_step;
if (total >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static int start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps)
{
int sipi_vector;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
return 0;
/* The vector is sent as a 4k aligned address in one byte. */
sipi_vector = sipi_vector_location >> 12;
if (sipi_vector > max_vector_loc) {
printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n",
sipi_vector);
return -1;
}
printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count);
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
} else
printk(BIOS_DEBUG, "done.\n");
}
/* Send INIT IPI to all but self. */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_INIT);
printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n");
mdelay(10);
/* Send 1st SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
} else
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete...");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "timed out.\n");
return -1;
} else {
printk(BIOS_DEBUG, "done.\n");
}
/* Wait for CPUs to check in up to 200 us. */
wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */);
/* Send 2nd SIPI */
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return -1;
} else
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete...");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "timed out.\n");
return -1;
} else {
printk(BIOS_DEBUG, "done.\n");
}
/* Wait for CPUs to check in. */
if (wait_for_aps(num_aps, ap_count, 10000 /* 10 ms */, 50 /* us */)) {
printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n",
atomic_read(num_aps), ap_count);
return -1;
}
return 0;
}
static int bsp_do_flight_plan(struct mp_params *mp_params)
{
int i;
int ret = 0;
const int timeout_us = 100000;
const int step_us = 100;
int num_aps = mp_params->num_cpus - 1;
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
/* Wait for APs if the record is not released. */
if (atomic_read(&rec->barrier) == 0) {
/* Wait for the APs to check in. */
if (wait_for_aps(&rec->cpus_entered, num_aps,
timeout_us, step_us)) {
printk(BIOS_ERR, "MP record %d timeout.\n", i);
ret = -1;
}
}
if (rec->bsp_call != NULL) {
rec->bsp_call(rec->bsp_arg);
}
release_barrier(&rec->barrier);
}
return ret;
}
static void init_bsp(struct bus *cpu_bus)
{
struct device_path cpu_path;
struct cpu_info *info;
char processor_name[49];
/* Print processor name */
fill_processor_name(processor_name);
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
/* Ensure the local apic is enabled */
enable_lapic();
/* Set the device path of the boot cpu. */
cpu_path.type = DEVICE_PATH_APIC;
cpu_path.apic.apic_id = lapicid();
/* Find the device structure for the boot cpu. */
info = cpu_info();
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
if (info->index != 0)
printk(BIOS_CRIT, "BSP index(%d) != 0!\n", info->index);
/* Track BSP in cpu_map structures. */
cpus[info->index].dev = info->cpu;
cpus[info->index].apic_id = cpu_path.apic.apic_id;
}
int mp_init(struct bus *cpu_bus, struct mp_params *p)
{
int num_cpus;
int num_aps;
atomic_t *ap_count;
init_bsp(cpu_bus);
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printk(BIOS_CRIT, "Invalid MP parameters\n");
return -1;
}
/* Default to currently running CPU. */
num_cpus = allocate_cpu_devices(cpu_bus, p);
if (num_cpus < p->num_cpus) {
printk(BIOS_CRIT,
"ERROR: More cpus requested (%d) than supported (%d).\n",
p->num_cpus, num_cpus);
return -1;
}
/* Copy needed parameters so that APs have a reference to the plan. */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
/* Load the SIPI vector. */
ap_count = load_sipi_vector(p);
if (ap_count == NULL)
return -1;
/* Make sure SIPI data hits RAM so the APs that come up will see
* the startup code even if the caches are disabled. */
wbinvd();
/* Start the APs providing number of APs and the cpus_entered field. */
num_aps = p->num_cpus - 1;
if (start_aps(cpu_bus, num_aps, ap_count) < 0) {
mdelay(1000);
printk(BIOS_DEBUG, "%d/%d eventually checked in?\n",
atomic_read(ap_count), num_aps);
return -1;
}
/* Walk the flight plan for the BSP. */
return bsp_do_flight_plan(p);
}
void mp_initialize_cpu(void *unused)
{
/* Call back into driver infrastructure for the AP initialization. */
struct cpu_info *info = cpu_info();
cpu_initialize(info->index);
}
int mp_get_apic_id(int cpu_slot)
{
if (cpu_slot >= CONFIG_MAX_CPUS || cpu_slot < 0)
return -1;
return cpus[cpu_slot].apic_id;
}
void smm_initiate_relocation_parallel(void)
{
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return;
} else
printk(BIOS_DEBUG, "done.\n");
}
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid()));
lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI);
if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */)) {
printk(BIOS_DEBUG, "SMI Relocation timed out.\n");
} else
printk(BIOS_DEBUG, "Relocation complete.\n");
}
DECLARE_SPIN_LOCK(smm_relocation_lock);
/* Send SMI to self with single user serialization. */
void smm_initiate_relocation(void)
{
spin_lock(&smm_relocation_lock);
smm_initiate_relocation_parallel();
spin_unlock(&smm_relocation_lock);
}