coreboot-kgpe-d16/src/lib/gpio.c

181 lines
4.9 KiB
C
Raw Normal View History

Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
arm, arm64, mips: Add rough static stack size checks with -Wstack-usage We've seen an increasing need to reduce stack sizes more and more for space reasons, and it's always guesswork because no one has a good idea how little is too litte. We now have boards with 3K and 2K stacks, and old pieces of common code often allocate large temporary buffers that would lead to very dangerous and hard to detect bugs when someone eventually tries to use them on one of those. This patch tries improve this situation at least a bit by declaring 2K as the minimum stack size all of coreboot code should work with. It checks all function frames with -Wstack-usage=1536 to make sure we don't allocate more than 1.5K in a single buffer. This is of course not a perfect test, but it should catch the most common situation of declaring a single, large buffer in some close-to-leaf function (with the assumption that 0.5K is hopefully enough for all the "normal" functions above that). Change one example where we were a bit overzealous and put a 1K buffer into BSS back to stack allocation, since it actually conforms to this new assumption and frees up another kilobyte of that highly sought-after verstage space. Not touching x86 with any of this since it's lack of __PRE_RAM__ BSS often requires it to allocate way more on the stack than would usually be considered sane. BRANCH=veyron BUG=None TEST=Compiled Cosmos, Daisy, Falco, Blaze, Pit, Storm, Urara and Pinky, made sure they still build as well as before and don't show any stack usage warnings. Change-Id: Idc53d33bd8487bbef49d3ecd751914b0308006ec Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 8e5931066575e256dfc2295c3dab7f0e1b65417f Original-Change-Id: I30bd9c2c77e0e0623df89b9e5bb43ed29506be98 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/236978 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9729 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-20 01:11:14 +01:00
#include <assert.h>
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
#include <base3.h>
#include <console/console.h>
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
#include <delay.h>
gpio: Extend common GPIO header, simplify function names We've had gpiolib.h which defines a few common GPIO access functions for a while, but it wasn't really complete. This patch adds the missing gpio_output() function, and also renames the unwieldy gpio_get_in_value() and gpio_set_out_value() to the much easier to handle gpio_get() and gpio_set(). The header is renamed to the simpler gpio.h while we're at it (there was never really anything "lib" about it, and it was presumably just chosen due to the IPQ806x include/ conflict problem that is now resolved). It also moves the definition of gpio_t into SoC-specific code, so that different implementations are free to encode their platform-specific GPIO parameters in those 4 bytes in the most convenient way (such as the rk3288 with a bitfield struct). Every SoC intending to use this common API should supply a <soc/gpio.h> that typedefs gpio_t to a type at most 4 bytes in length. Files accessing the API only need to include <gpio.h> which may pull in additional things (like a gpio_t creation macro) from <soc/gpio.h> on its own. For now the API is still only used on non-x86 SoCs. Whether it makes sense to expand it to x86 as well should be separately evaluated at a later point (by someone who understands those systems better). Also, Exynos retains its old, incompatible GPIO API even though it would be a prime candidate, because it's currently just not worth the effort. BUG=None TEST=Compiled on Daisy, Peach_Pit, Nyan_Blaze, Rush_Ryu, Storm and Veyron_Pinky. Change-Id: Ieee77373c2bd13d07ece26fa7f8b08be324842fe Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 9e04902ada56b929e3829f2c3b4aeb618682096e Original-Change-Id: I6c1e7d1e154d9b02288aabedb397e21e1aadfa15 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/220975 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9400 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
#include <gpio.h>
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
static int _gpio_base2_value(gpio_t gpio[], int num_gpio)
{
int i, result = 0;
/* Wait until signals become stable */
udelay(10);
for (i = 0; i < num_gpio; i++)
result |= gpio_get(gpio[i]) << i;
return result;
}
int gpio_base2_value(gpio_t gpio[], int num_gpio)
{
int i;
for (i = 0; i < num_gpio; i++)
gpio_input(gpio[i]);
return _gpio_base2_value(gpio, num_gpio);
}
int gpio_pulldown_base2_value(gpio_t gpio[], int num_gpio)
{
int i;
for (i = 0; i < num_gpio; i++)
gpio_input_pulldown(gpio[i]);
return _gpio_base2_value(gpio, num_gpio);
}
int gpio_pullup_base2_value(gpio_t gpio[], int num_gpio)
{
int i;
for (i = 0; i < num_gpio; i++)
gpio_input_pullup(gpio[i]);
return _gpio_base2_value(gpio, num_gpio);
}
int _gpio_base3_value(gpio_t gpio[], int num_gpio, int binary_first)
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
{
/*
* GPIOs which are tied to stronger external pull up or pull down
* will stay there regardless of the internal pull up or pull
* down setting.
*
* GPIOs which are floating will go to whatever level they're
* internally pulled to.
*/
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
static const char tristate_char[] = {[0] = '0', [1] = '1', [Z] = 'Z'};
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
int temp;
int index;
int result = 0;
int has_z = 0;
int binary_below = 0;
arm, arm64, mips: Add rough static stack size checks with -Wstack-usage We've seen an increasing need to reduce stack sizes more and more for space reasons, and it's always guesswork because no one has a good idea how little is too litte. We now have boards with 3K and 2K stacks, and old pieces of common code often allocate large temporary buffers that would lead to very dangerous and hard to detect bugs when someone eventually tries to use them on one of those. This patch tries improve this situation at least a bit by declaring 2K as the minimum stack size all of coreboot code should work with. It checks all function frames with -Wstack-usage=1536 to make sure we don't allocate more than 1.5K in a single buffer. This is of course not a perfect test, but it should catch the most common situation of declaring a single, large buffer in some close-to-leaf function (with the assumption that 0.5K is hopefully enough for all the "normal" functions above that). Change one example where we were a bit overzealous and put a 1K buffer into BSS back to stack allocation, since it actually conforms to this new assumption and frees up another kilobyte of that highly sought-after verstage space. Not touching x86 with any of this since it's lack of __PRE_RAM__ BSS often requires it to allocate way more on the stack than would usually be considered sane. BRANCH=veyron BUG=None TEST=Compiled Cosmos, Daisy, Falco, Blaze, Pit, Storm, Urara and Pinky, made sure they still build as well as before and don't show any stack usage warnings. Change-Id: Idc53d33bd8487bbef49d3ecd751914b0308006ec Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 8e5931066575e256dfc2295c3dab7f0e1b65417f Original-Change-Id: I30bd9c2c77e0e0623df89b9e5bb43ed29506be98 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/236978 Original-Reviewed-by: David Hendricks <dhendrix@chromium.org> Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9729 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-12-20 01:11:14 +01:00
char value[32];
assert(num_gpio <= 32);
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/* Enable internal pull up */
for (index = 0; index < num_gpio; ++index)
gpio_input_pullup(gpio[index]);
/* Wait until signals become stable */
udelay(10);
/* Get gpio values at internal pull up */
for (index = 0; index < num_gpio; ++index)
gpio: Extend common GPIO header, simplify function names We've had gpiolib.h which defines a few common GPIO access functions for a while, but it wasn't really complete. This patch adds the missing gpio_output() function, and also renames the unwieldy gpio_get_in_value() and gpio_set_out_value() to the much easier to handle gpio_get() and gpio_set(). The header is renamed to the simpler gpio.h while we're at it (there was never really anything "lib" about it, and it was presumably just chosen due to the IPQ806x include/ conflict problem that is now resolved). It also moves the definition of gpio_t into SoC-specific code, so that different implementations are free to encode their platform-specific GPIO parameters in those 4 bytes in the most convenient way (such as the rk3288 with a bitfield struct). Every SoC intending to use this common API should supply a <soc/gpio.h> that typedefs gpio_t to a type at most 4 bytes in length. Files accessing the API only need to include <gpio.h> which may pull in additional things (like a gpio_t creation macro) from <soc/gpio.h> on its own. For now the API is still only used on non-x86 SoCs. Whether it makes sense to expand it to x86 as well should be separately evaluated at a later point (by someone who understands those systems better). Also, Exynos retains its old, incompatible GPIO API even though it would be a prime candidate, because it's currently just not worth the effort. BUG=None TEST=Compiled on Daisy, Peach_Pit, Nyan_Blaze, Rush_Ryu, Storm and Veyron_Pinky. Change-Id: Ieee77373c2bd13d07ece26fa7f8b08be324842fe Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 9e04902ada56b929e3829f2c3b4aeb618682096e Original-Change-Id: I6c1e7d1e154d9b02288aabedb397e21e1aadfa15 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/220975 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9400 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
value[index] = gpio_get(gpio[index]);
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/* Enable internal pull down */
for (index = 0; index < num_gpio; ++index)
gpio_input_pulldown(gpio[index]);
/* Wait until signals become stable */
udelay(10);
/*
* Get gpio values at internal pull down.
* Compare with gpio pull up value and then
* determine a gpio final value/state:
* 0: pull down
* 1: pull up
* 2: floating
*/
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
printk(BIOS_DEBUG, "Reading tristate GPIOs: ");
for (index = num_gpio - 1; index >= 0; --index) {
gpio: Extend common GPIO header, simplify function names We've had gpiolib.h which defines a few common GPIO access functions for a while, but it wasn't really complete. This patch adds the missing gpio_output() function, and also renames the unwieldy gpio_get_in_value() and gpio_set_out_value() to the much easier to handle gpio_get() and gpio_set(). The header is renamed to the simpler gpio.h while we're at it (there was never really anything "lib" about it, and it was presumably just chosen due to the IPQ806x include/ conflict problem that is now resolved). It also moves the definition of gpio_t into SoC-specific code, so that different implementations are free to encode their platform-specific GPIO parameters in those 4 bytes in the most convenient way (such as the rk3288 with a bitfield struct). Every SoC intending to use this common API should supply a <soc/gpio.h> that typedefs gpio_t to a type at most 4 bytes in length. Files accessing the API only need to include <gpio.h> which may pull in additional things (like a gpio_t creation macro) from <soc/gpio.h> on its own. For now the API is still only used on non-x86 SoCs. Whether it makes sense to expand it to x86 as well should be separately evaluated at a later point (by someone who understands those systems better). Also, Exynos retains its old, incompatible GPIO API even though it would be a prime candidate, because it's currently just not worth the effort. BUG=None TEST=Compiled on Daisy, Peach_Pit, Nyan_Blaze, Rush_Ryu, Storm and Veyron_Pinky. Change-Id: Ieee77373c2bd13d07ece26fa7f8b08be324842fe Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 9e04902ada56b929e3829f2c3b4aeb618682096e Original-Change-Id: I6c1e7d1e154d9b02288aabedb397e21e1aadfa15 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/220975 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9400 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
temp = gpio_get(gpio[index]);
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
temp |= ((value[index] ^ temp) << 1);
printk(BIOS_DEBUG, "%c ", tristate_char[temp]);
result = (result * 3) + temp;
/*
* For binary_first we keep track of the normal ternary result
* and whether we found any pin that was a Z. We also determine
* the amount of numbers that can be represented with only
* binary digits (no Z) whose value in the normal ternary system
* is lower than the one we are parsing. Counting from the left,
* we add 2^i for any '1' digit to account for the binary
* numbers whose values would be below it if all following
* digits we parsed would be '0'. As soon as we find a '2' digit
* we can total the remaining binary numbers below as 2^(i+1)
* because we know that all binary representations counting only
* this and following digits must have values below our number
* (since 1xxx is always smaller than 2xxx).
*
* Example: 1 0 2 1 (counting from the left / most significant)
* '1' at 3^3: Add 2^3 = 8 to account for binaries 0000-0111
* '0' at 3^2: Ignore (not all binaries 1000-1100 are below us)
* '2' at 3^1: Add 2^(1+1) = 4 to account for binaries 1000-1011
* Stop adding for lower digits (3^0), all already accounted
* now. We know that there can be no binary numbers 1020-102X.
*/
if (binary_first && !has_z) {
switch (temp) {
case 0: /* Ignore '0' digits. */
break;
case 1: /* Account for binaries 0 to 2^index - 1. */
binary_below += 1 << index;
break;
case 2: /* Account for binaries 0 to 2^(index+1) - 1. */
binary_below += 1 << (index + 1);
has_z = 1;
}
}
}
if (binary_first) {
if (has_z)
result = result + (1 << num_gpio) - binary_below;
else /* binary_below is normal binary system value if !has_z. */
result = binary_below;
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
}
printk(BIOS_DEBUG, "= %d (%s base3 number system)\n", result,
binary_first ? "binary_first" : "standard");
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/* Disable pull up / pull down to conserve power */
for (index = 0; index < num_gpio; ++index)
gpio_input(gpio[index]);
return result;
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
}
/* Default handler for ACPI path is to return NULL */
__attribute__((weak)) const char *gpio_acpi_path(gpio_t gpio)
{
return NULL;
}
/* Default handler returns 0 because type of gpio_t is unknown */
__attribute__((weak)) uint16_t gpio_acpi_pin(gpio_t gpio)
{
return 0;
}