2147 lines
54 KiB
C
2147 lines
54 KiB
C
|
/*
|
||
|
* This file is part of the coreboot project.
|
||
|
*
|
||
|
* Copyright (C) 2013 The ChromiumOS Authors. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; version 2 of the License.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#define uchar unsigned char
|
||
|
#define uint unsigned int
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <types.h>
|
||
|
#include <arch/io.h>
|
||
|
#include "cpu/samsung/exynos5250/clk.h"
|
||
|
#include "cpu/samsung/exynos5250/cpu.h"
|
||
|
#include "cpu/samsung/exynos5250/dmc.h"
|
||
|
#include "cpu/samsung/exynos5250/gpio.h"
|
||
|
#include "cpu/samsung/exynos5250/periph.h"
|
||
|
#include "cpu/samsung/exynos5250/setup.h"
|
||
|
#include "cpu/samsung/exynos5250/clock_init.h"
|
||
|
#include "cpu/samsung/s5p-common/gpio.h"
|
||
|
#include "cpu/samsung/s5p-common/s3c24x0_i2c.h"
|
||
|
#include "cpu/samsung/exynos5-common/spi.h"
|
||
|
#include "cpu/samsung/exynos5-common/uart.h"
|
||
|
|
||
|
#include <device/i2c.h>
|
||
|
#include <drivers/maxim/max77686/max77686.h>
|
||
|
|
||
|
#include <console/console.h>
|
||
|
|
||
|
#define EXYNOS5_CLOCK_BASE 0x10010000
|
||
|
|
||
|
volatile unsigned long *pshold = (unsigned long *)0x1004330c;
|
||
|
|
||
|
/* FIXME(dhendrix): Can we move this SPI stuff elsewhere? */
|
||
|
static void spi_rx_tx(struct exynos_spi *regs, int todo,
|
||
|
void *dinp, void const *doutp, int i)
|
||
|
{
|
||
|
unsigned int *rxp = (unsigned int *)(dinp + (i * (32 * 1024)));
|
||
|
int rx_lvl, tx_lvl;
|
||
|
unsigned int out_bytes, in_bytes;
|
||
|
|
||
|
out_bytes = in_bytes = todo;
|
||
|
setbits_le32(®s->ch_cfg, SPI_CH_RST);
|
||
|
clrbits_le32(®s->ch_cfg, SPI_CH_RST);
|
||
|
writel(((todo * 8) / 32) | SPI_PACKET_CNT_EN, ®s->pkt_cnt);
|
||
|
|
||
|
while (in_bytes) {
|
||
|
uint32_t spi_sts;
|
||
|
int temp;
|
||
|
|
||
|
spi_sts = readl(®s->spi_sts);
|
||
|
rx_lvl = ((spi_sts >> 15) & 0x7f);
|
||
|
tx_lvl = ((spi_sts >> 6) & 0x7f);
|
||
|
while (tx_lvl < 32 && out_bytes) {
|
||
|
temp = 0xffffffff;
|
||
|
writel(temp, ®s->tx_data);
|
||
|
out_bytes -= 4;
|
||
|
tx_lvl += 4;
|
||
|
}
|
||
|
while (rx_lvl >= 4 && in_bytes) {
|
||
|
temp = readl(®s->rx_data);
|
||
|
if (rxp)
|
||
|
*rxp++ = temp;
|
||
|
in_bytes -= 4;
|
||
|
rx_lvl -= 4;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
void clock_ll_set_pre_ratio(enum periph_id periph_id, unsigned divisor)
|
||
|
{
|
||
|
struct exynos5_clock *clk =
|
||
|
(struct exynos5_clock *)samsung_get_base_clock();
|
||
|
unsigned shift;
|
||
|
unsigned mask = 0xff;
|
||
|
u32 *reg;
|
||
|
|
||
|
/*
|
||
|
* For now we only handle a very small subset of peipherals here.
|
||
|
* Others will need to (and do) mangle the clock registers
|
||
|
* themselves, At some point it is hoped that this function can work
|
||
|
* from a table or calculated register offset / mask. For now this
|
||
|
* is at least better than spreading clock control code around
|
||
|
* U-Boot.
|
||
|
*/
|
||
|
switch (periph_id) {
|
||
|
case PERIPH_ID_SPI0:
|
||
|
reg = &clk->div_peric1;
|
||
|
shift = 8;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI1:
|
||
|
reg = &clk->div_peric1;
|
||
|
shift = 24;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI2:
|
||
|
reg = &clk->div_peric2;
|
||
|
shift = 8;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI3:
|
||
|
reg = &clk->sclk_div_isp;
|
||
|
shift = 4;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI4:
|
||
|
reg = &clk->sclk_div_isp;
|
||
|
shift = 16;
|
||
|
break;
|
||
|
default:
|
||
|
debug("%s: Unsupported peripheral ID %d\n", __func__,
|
||
|
periph_id);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
void clock_ll_set_pre_ratio(enum periph_id periph_id, unsigned divisor)
|
||
|
{
|
||
|
struct exynos5_clock *clk =
|
||
|
(struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
|
||
|
unsigned shift;
|
||
|
unsigned mask = 0xff;
|
||
|
u32 *reg;
|
||
|
|
||
|
reg = &clk->div_peric1;
|
||
|
shift = 24;
|
||
|
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
void clock_ll_set_ratio(enum periph_id periph_id, unsigned divisor)
|
||
|
{
|
||
|
struct exynos5_clock *clk =
|
||
|
(struct exynos5_clock *)samsung_get_base_clock();
|
||
|
unsigned shift;
|
||
|
unsigned mask = 0xff;
|
||
|
u32 *reg;
|
||
|
|
||
|
switch (periph_id) {
|
||
|
case PERIPH_ID_SPI0:
|
||
|
reg = &clk->div_peric1;
|
||
|
shift = 0;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI1:
|
||
|
reg = &clk->div_peric1;
|
||
|
shift = 16;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI2:
|
||
|
reg = &clk->div_peric2;
|
||
|
shift = 0;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI3:
|
||
|
reg = &clk->sclk_div_isp;
|
||
|
shift = 0;
|
||
|
break;
|
||
|
case PERIPH_ID_SPI4:
|
||
|
reg = &clk->sclk_div_isp;
|
||
|
shift = 12;
|
||
|
break;
|
||
|
default:
|
||
|
debug("%s: Unsupported peripheral ID %d\n", __func__,
|
||
|
periph_id);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
void clock_ll_set_ratio(enum periph_id periph_id, unsigned divisor)
|
||
|
{
|
||
|
struct exynos5_clock *clk =
|
||
|
(struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
|
||
|
unsigned shift;
|
||
|
unsigned mask = 0xff;
|
||
|
u32 *reg;
|
||
|
|
||
|
reg = &clk->div_peric1;
|
||
|
shift = 16;
|
||
|
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Linearly searches for the most accurate main and fine stage clock scalars
|
||
|
* (divisors) for a specified target frequency and scalar bit sizes by checking
|
||
|
* all multiples of main_scalar_bits values. Will always return scalars up to or
|
||
|
* slower than target.
|
||
|
*
|
||
|
* @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
|
||
|
* @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
|
||
|
* @param input_freq Clock frequency to be scaled in Hz
|
||
|
* @param target_freq Desired clock frequency in Hz
|
||
|
* @param best_fine_scalar Pointer to store the fine stage divisor
|
||
|
*
|
||
|
* @return best_main_scalar Main scalar for desired frequency or -1 if none
|
||
|
* found
|
||
|
*/
|
||
|
static int clock_calc_best_scalar(unsigned int main_scaler_bits,
|
||
|
unsigned int fine_scalar_bits, unsigned int input_rate,
|
||
|
unsigned int target_rate, unsigned int *best_fine_scalar)
|
||
|
{
|
||
|
int i;
|
||
|
int best_main_scalar = -1;
|
||
|
unsigned int best_error = target_rate;
|
||
|
const unsigned int cap = (1 << fine_scalar_bits) - 1;
|
||
|
const unsigned int loops = 1 << main_scaler_bits;
|
||
|
|
||
|
#if 0
|
||
|
debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
|
||
|
target_rate, cap);
|
||
|
|
||
|
assert(best_fine_scalar != NULL);
|
||
|
assert(main_scaler_bits <= fine_scalar_bits);
|
||
|
#endif
|
||
|
|
||
|
*best_fine_scalar = 1;
|
||
|
|
||
|
if (input_rate == 0 || target_rate == 0)
|
||
|
return -1;
|
||
|
|
||
|
if (target_rate >= input_rate)
|
||
|
return 1;
|
||
|
|
||
|
for (i = 1; i <= loops; i++) {
|
||
|
const unsigned int effective_div = MAX(MIN(input_rate / i /
|
||
|
target_rate, cap), 1);
|
||
|
const unsigned int effective_rate = input_rate / i /
|
||
|
effective_div;
|
||
|
const int error = target_rate - effective_rate;
|
||
|
|
||
|
#if 0
|
||
|
debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
|
||
|
effective_rate, error);
|
||
|
#endif
|
||
|
|
||
|
if (error >= 0 && error <= best_error) {
|
||
|
best_error = error;
|
||
|
best_main_scalar = i;
|
||
|
*best_fine_scalar = effective_div;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return best_main_scalar;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
int clock_set_rate(enum periph_id periph_id, unsigned int rate)
|
||
|
{
|
||
|
int main;
|
||
|
unsigned int fine;
|
||
|
|
||
|
switch (periph_id) {
|
||
|
case PERIPH_ID_SPI0:
|
||
|
case PERIPH_ID_SPI1:
|
||
|
case PERIPH_ID_SPI2:
|
||
|
case PERIPH_ID_SPI3:
|
||
|
case PERIPH_ID_SPI4:
|
||
|
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
|
||
|
if (main < 0) {
|
||
|
debug("%s: Cannot set clock rate for periph %d",
|
||
|
__func__, periph_id);
|
||
|
return -1;
|
||
|
}
|
||
|
clock_ll_set_ratio(periph_id, main - 1);
|
||
|
clock_ll_set_pre_ratio(periph_id, fine - 1);
|
||
|
break;
|
||
|
default:
|
||
|
debug("%s: Unsupported peripheral ID %d\n", __func__,
|
||
|
periph_id);
|
||
|
return -1;
|
||
|
}
|
||
|
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
|
||
|
if (main < 0) {
|
||
|
debug("%s: Cannot set clock rate for periph %d",
|
||
|
__func__, periph_id);
|
||
|
return -1;
|
||
|
}
|
||
|
clock_ll_set_ratio(PERIPH_ID_SPI1, main - 1);
|
||
|
clock_ll_set_pre_ratio(PERIPH_ID_SPI1, fine - 1);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
int clock_set_rate(enum periph_id periph_id, unsigned int rate)
|
||
|
{
|
||
|
int main;
|
||
|
unsigned int fine;
|
||
|
|
||
|
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
|
||
|
if (main < 0) {
|
||
|
// debug("%s: Cannot set clock rate for periph %d",
|
||
|
// __func__, periph_id);
|
||
|
return -1;
|
||
|
}
|
||
|
clock_ll_set_ratio(-1, main - 1);
|
||
|
clock_ll_set_pre_ratio(-1, fine - 1);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct gpio_info {
|
||
|
unsigned int reg_addr; /* Address of register for this part */
|
||
|
unsigned int max_gpio; /* Maximum GPIO in this part */
|
||
|
};
|
||
|
|
||
|
static const struct gpio_info gpio_data[EXYNOS_GPIO_NUM_PARTS] = {
|
||
|
{ EXYNOS5_GPIO_PART1_BASE, GPIO_MAX_PORT_PART_1 },
|
||
|
{ EXYNOS5_GPIO_PART2_BASE, GPIO_MAX_PORT_PART_2 },
|
||
|
{ EXYNOS5_GPIO_PART3_BASE, GPIO_MAX_PORT_PART_3 },
|
||
|
{ EXYNOS5_GPIO_PART4_BASE, GPIO_MAX_PORT_PART_4 },
|
||
|
{ EXYNOS5_GPIO_PART5_BASE, GPIO_MAX_PORT_PART_5 },
|
||
|
{ EXYNOS5_GPIO_PART6_BASE, GPIO_MAX_PORT },
|
||
|
};
|
||
|
|
||
|
static struct s5p_gpio_bank *gpio_get_bank(unsigned int gpio)
|
||
|
{
|
||
|
const struct gpio_info *data;
|
||
|
unsigned int upto;
|
||
|
int i;
|
||
|
|
||
|
for (i = upto = 0, data = gpio_data; i < EXYNOS_GPIO_NUM_PARTS;
|
||
|
i++, upto = data->max_gpio, data++) {
|
||
|
if (gpio < data->max_gpio) {
|
||
|
struct s5p_gpio_bank *bank;
|
||
|
|
||
|
bank = (struct s5p_gpio_bank *)data->reg_addr;
|
||
|
bank += (gpio - upto) / GPIO_PER_BANK;
|
||
|
return bank;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef CONFIG_SPL_BUILD
|
||
|
assert(gpio < GPIO_MAX_PORT); /* ...which it will not be */
|
||
|
#endif
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#define CON_MASK(x) (0xf << ((x) << 2))
|
||
|
#define CON_SFR(x, v) ((v) << ((x) << 2))
|
||
|
|
||
|
/* This macro gets gpio pin offset from 0..7 */
|
||
|
#define GPIO_BIT(x) ((x) & 0x7)
|
||
|
|
||
|
void gpio_cfg_pin(int gpio, int cfg)
|
||
|
{
|
||
|
unsigned int value;
|
||
|
struct s5p_gpio_bank *bank = gpio_get_bank(gpio);
|
||
|
|
||
|
value = readl(&bank->con);
|
||
|
value &= ~CON_MASK(GPIO_BIT(gpio));
|
||
|
value |= CON_SFR(GPIO_BIT(gpio), cfg);
|
||
|
writel(value, &bank->con);
|
||
|
}
|
||
|
|
||
|
//static void exynos_spi_copy(unsigned int uboot_size)
|
||
|
static void copy_romstage(uint32_t spi_addr, uint32_t sram_addr, unsigned int len)
|
||
|
{
|
||
|
int upto, todo;
|
||
|
int i;
|
||
|
// struct exynos_spi *regs = (struct exynos_spi *)samsung_get_base_spi1();
|
||
|
struct exynos_spi *regs = (struct exynos_spi *)0x12d30000;
|
||
|
|
||
|
clock_set_rate(PERIPH_ID_SPI1, 50000000); /* set spi clock to 50Mhz */
|
||
|
/* set the spi1 GPIO */
|
||
|
// exynos_pinmux_config(PERIPH_ID_SPI1, PINMUX_FLAG_NONE);
|
||
|
gpio_cfg_pin(GPIO_A24, 0x2);
|
||
|
gpio_cfg_pin(GPIO_A25, 0x2);
|
||
|
gpio_cfg_pin(GPIO_A26, 0x2);
|
||
|
gpio_cfg_pin(GPIO_A27, 0x2);
|
||
|
|
||
|
/* set pktcnt and enable it */
|
||
|
writel(4 | SPI_PACKET_CNT_EN, ®s->pkt_cnt);
|
||
|
/* set FB_CLK_SEL */
|
||
|
writel(SPI_FB_DELAY_180, ®s->fb_clk);
|
||
|
/* set CH_WIDTH and BUS_WIDTH as word */
|
||
|
setbits_le32(®s->mode_cfg, SPI_MODE_CH_WIDTH_WORD |
|
||
|
SPI_MODE_BUS_WIDTH_WORD);
|
||
|
clrbits_le32(®s->ch_cfg, SPI_CH_CPOL_L); /* CPOL: active high */
|
||
|
|
||
|
/* clear rx and tx channel if set priveously */
|
||
|
clrbits_le32(®s->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON);
|
||
|
|
||
|
setbits_le32(®s->swap_cfg, SPI_RX_SWAP_EN |
|
||
|
SPI_RX_BYTE_SWAP |
|
||
|
SPI_RX_HWORD_SWAP);
|
||
|
|
||
|
/* do a soft reset */
|
||
|
setbits_le32(®s->ch_cfg, SPI_CH_RST);
|
||
|
clrbits_le32(®s->ch_cfg, SPI_CH_RST);
|
||
|
|
||
|
/* now set rx and tx channel ON */
|
||
|
setbits_le32(®s->ch_cfg, SPI_RX_CH_ON | SPI_TX_CH_ON | SPI_CH_HS_EN);
|
||
|
clrbits_le32(®s->cs_reg, SPI_SLAVE_SIG_INACT); /* CS low */
|
||
|
|
||
|
/* Send read instruction (0x3h) followed by a 24 bit addr */
|
||
|
writel((SF_READ_DATA_CMD << 24) | spi_addr, ®s->tx_data);
|
||
|
|
||
|
/* waiting for TX done */
|
||
|
while (!(readl(®s->spi_sts) & SPI_ST_TX_DONE));
|
||
|
|
||
|
for (upto = 0, i = 0; upto < len; upto += todo, i++) {
|
||
|
todo = MIN(len - upto, (1 << 15));
|
||
|
spi_rx_tx(regs, todo, (void *)(sram_addr),
|
||
|
(void *)(spi_addr), i);
|
||
|
}
|
||
|
|
||
|
setbits_le32(®s->cs_reg, SPI_SLAVE_SIG_INACT);/* make the CS high */
|
||
|
|
||
|
/*
|
||
|
* Let put controller mode to BYTE as
|
||
|
* SPI driver does not support WORD mode yet
|
||
|
*/
|
||
|
clrbits_le32(®s->mode_cfg, SPI_MODE_CH_WIDTH_WORD |
|
||
|
SPI_MODE_BUS_WIDTH_WORD);
|
||
|
writel(0, ®s->swap_cfg);
|
||
|
|
||
|
/*
|
||
|
* Flush spi tx, rx fifos and reset the SPI controller
|
||
|
* and clear rx/tx channel
|
||
|
*/
|
||
|
clrsetbits_le32(®s->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST);
|
||
|
clrbits_le32(®s->ch_cfg, SPI_CH_RST);
|
||
|
clrbits_le32(®s->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON);
|
||
|
}
|
||
|
|
||
|
/* Pull mode */
|
||
|
#define EXYNOS_GPIO_PULL_NONE 0x0
|
||
|
#define EXYNOS_GPIO_PULL_DOWN 0x1
|
||
|
#define EXYNOS_GPIO_PULL_UP 0x3
|
||
|
|
||
|
#define PULL_MASK(x) (0x3 << ((x) << 1))
|
||
|
#define PULL_MODE(x, v) ((v) << ((x) << 1))
|
||
|
|
||
|
void gpio_set_pull(int gpio, int mode)
|
||
|
{
|
||
|
unsigned int value;
|
||
|
struct s5p_gpio_bank *bank = gpio_get_bank(gpio);
|
||
|
|
||
|
value = readl(&bank->pull);
|
||
|
value &= ~PULL_MASK(GPIO_BIT(gpio));
|
||
|
|
||
|
switch (mode) {
|
||
|
case EXYNOS_GPIO_PULL_DOWN:
|
||
|
case EXYNOS_GPIO_PULL_UP:
|
||
|
value |= PULL_MODE(GPIO_BIT(gpio), mode);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
writel(value, &bank->pull);
|
||
|
}
|
||
|
|
||
|
static uint32_t uart3_base = CONFIG_CONSOLE_SERIAL_UART_ADDRESS;
|
||
|
|
||
|
#define CONFIG_SYS_CLK_FREQ 24000000
|
||
|
|
||
|
/* exynos5: return pll clock frequency */
|
||
|
unsigned long get_pll_clk(int pllreg);
|
||
|
unsigned long get_pll_clk(int pllreg)
|
||
|
{
|
||
|
struct exynos5_clock *clk =
|
||
|
(struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
|
||
|
unsigned long r, m, p, s, k = 0, mask, fout;
|
||
|
unsigned int freq;
|
||
|
|
||
|
switch (pllreg) {
|
||
|
case APLL:
|
||
|
r = readl(&clk->apll_con0);
|
||
|
break;
|
||
|
case BPLL:
|
||
|
r = readl(&clk->bpll_con0);
|
||
|
break;
|
||
|
case MPLL:
|
||
|
r = readl(&clk->mpll_con0);
|
||
|
break;
|
||
|
case EPLL:
|
||
|
r = readl(&clk->epll_con0);
|
||
|
k = readl(&clk->epll_con1);
|
||
|
break;
|
||
|
case VPLL:
|
||
|
r = readl(&clk->vpll_con0);
|
||
|
k = readl(&clk->vpll_con1);
|
||
|
break;
|
||
|
default:
|
||
|
// printk(BIOS_DEBUG, "Unsupported PLL (%d)\n", pllreg);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* APLL_CON: MIDV [25:16]
|
||
|
* MPLL_CON: MIDV [25:16]
|
||
|
* EPLL_CON: MIDV [24:16]
|
||
|
* VPLL_CON: MIDV [24:16]
|
||
|
*/
|
||
|
if (pllreg == APLL || pllreg == BPLL || pllreg == MPLL)
|
||
|
mask = 0x3ff;
|
||
|
else
|
||
|
mask = 0x1ff;
|
||
|
|
||
|
m = (r >> 16) & mask;
|
||
|
|
||
|
/* PDIV [13:8] */
|
||
|
p = (r >> 8) & 0x3f;
|
||
|
/* SDIV [2:0] */
|
||
|
s = r & 0x7;
|
||
|
|
||
|
freq = CONFIG_SYS_CLK_FREQ;
|
||
|
|
||
|
if (pllreg == EPLL) {
|
||
|
k = k & 0xffff;
|
||
|
/* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
|
||
|
fout = (m + k / 65536) * (freq / (p * (1 << s)));
|
||
|
} else if (pllreg == VPLL) {
|
||
|
k = k & 0xfff;
|
||
|
/* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
|
||
|
fout = (m + k / 1024) * (freq / (p * (1 << s)));
|
||
|
} else {
|
||
|
/* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */
|
||
|
fout = m * (freq / (p * (1 << s)));
|
||
|
}
|
||
|
|
||
|
return fout;
|
||
|
}
|
||
|
|
||
|
/* src_bit div_bit prediv_bit */
|
||
|
static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
|
||
|
{0, 4, 0, -1},
|
||
|
{4, 4, 4, -1},
|
||
|
{8, 4, 8, -1},
|
||
|
{12, 4, 12, -1},
|
||
|
{0, 4, 0, 8},
|
||
|
{4, 4, 16, 24},
|
||
|
{8, 4, 0, 8},
|
||
|
{12, 4, 16, 24},
|
||
|
{-1, -1, -1, -1},
|
||
|
{16, 4, 0, 8}, /* PERIPH_ID_SROMC */
|
||
|
{20, 4, 16, 24},
|
||
|
{24, 4, 0, 8},
|
||
|
{0, 4, 0, 4},
|
||
|
{4, 4, 12, 16},
|
||
|
{-1, 4, -1, -1},
|
||
|
{-1, 4, -1, -1},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{-1, 4, 24, 0},
|
||
|
{24, 4, 0, -1},
|
||
|
{24, 4, 0, -1},
|
||
|
{24, 4, 0, -1},
|
||
|
{24, 4, 0, -1},
|
||
|
{24, 4, 0, -1},
|
||
|
{-1, -1, -1, -1},
|
||
|
{-1, -1, -1, -1},
|
||
|
{-1, -1, -1, -1}, /* PERIPH_ID_I2S1 */
|
||
|
{24, 1, 20, -1}, /* PERIPH_ID_SATA */
|
||
|
};
|
||
|
|
||
|
static unsigned long my_clock_get_periph_rate(enum periph_id peripheral)
|
||
|
{
|
||
|
// struct exynos5_clock *clk =
|
||
|
// (struct exynos5_clock *)samsung_get_base_clock();
|
||
|
struct exynos5_clock *clk =
|
||
|
(struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
|
||
|
struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
|
||
|
// struct clk_bit_info bit_info = { 12, 4, 12, -1 };
|
||
|
unsigned long sclk, sub_clk;
|
||
|
unsigned int src, div, sub_div;
|
||
|
|
||
|
switch (peripheral) {
|
||
|
case PERIPH_ID_UART0:
|
||
|
case PERIPH_ID_UART1:
|
||
|
case PERIPH_ID_UART2:
|
||
|
case PERIPH_ID_UART3:
|
||
|
src = readl(&clk->src_peric0);
|
||
|
div = readl(&clk->div_peric0);
|
||
|
break;
|
||
|
case PERIPH_ID_I2C0:
|
||
|
case PERIPH_ID_I2C1:
|
||
|
case PERIPH_ID_I2C2:
|
||
|
case PERIPH_ID_I2C3:
|
||
|
case PERIPH_ID_I2C4:
|
||
|
case PERIPH_ID_I2C5:
|
||
|
case PERIPH_ID_I2C6:
|
||
|
case PERIPH_ID_I2C7:
|
||
|
src = 0;
|
||
|
sclk = get_pll_clk(MPLL);
|
||
|
sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit) & 0x7) + 1;
|
||
|
div = ((readl(&clk->div_top0) >> bit_info->prediv_bit) & 0x7) + 1;
|
||
|
return (sclk / sub_div) / div;
|
||
|
default:
|
||
|
return -1;
|
||
|
};
|
||
|
|
||
|
src = (src >> bit_info->src_bit) & ((1 << bit_info->n_src_bits) - 1);
|
||
|
if (src == SRC_MPLL)
|
||
|
sclk = get_pll_clk(MPLL);
|
||
|
else if (src == SRC_EPLL)
|
||
|
sclk = get_pll_clk(EPLL);
|
||
|
else if (src == SRC_VPLL)
|
||
|
sclk = get_pll_clk(VPLL);
|
||
|
else
|
||
|
return 0;
|
||
|
|
||
|
sub_div = (div >> bit_info->div_bit) & 0xf;
|
||
|
sub_clk = sclk / (sub_div + 1);
|
||
|
|
||
|
return sub_clk;
|
||
|
}
|
||
|
|
||
|
static void serial_setbrg_dev(void)
|
||
|
{
|
||
|
// struct s5p_uart *const uart = s5p_get_base_uart(dev_index);
|
||
|
struct s5p_uart *uart = (struct s5p_uart *)uart3_base;
|
||
|
u32 uclk;
|
||
|
u32 baudrate = CONFIG_TTYS0_BAUD;
|
||
|
u32 val;
|
||
|
// enum periph_id periph;
|
||
|
|
||
|
// periph = exynos5_get_periph_id(base_port);
|
||
|
uclk = my_clock_get_periph_rate(PERIPH_ID_UART3);
|
||
|
val = uclk / baudrate;
|
||
|
|
||
|
writel(val / 16 - 1, &uart->ubrdiv);
|
||
|
|
||
|
/*
|
||
|
* FIXME(dhendrix): the original uart.h had a "br_rest" value which
|
||
|
* does not seem relevant to the exynos5250... not entirely sure
|
||
|
* where/if we need to worry about it here
|
||
|
*/
|
||
|
#if 0
|
||
|
if (s5p_uart_divslot())
|
||
|
writew(udivslot[val % 16], &uart->rest.slot);
|
||
|
else
|
||
|
writeb(val % 16, &uart->rest.value);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialise the serial port with the given baudrate. The settings
|
||
|
* are always 8 data bits, no parity, 1 stop bit, no start bits.
|
||
|
*/
|
||
|
static void exynos5_init_dev(void)
|
||
|
{
|
||
|
// struct s5p_uart *const uart = s5p_get_base_uart(dev_index);
|
||
|
struct s5p_uart *uart = (struct s5p_uart *)uart3_base;
|
||
|
|
||
|
/* enable FIFOs */
|
||
|
writel(0x1, &uart->ufcon);
|
||
|
writel(0, &uart->umcon);
|
||
|
/* 8N1 */
|
||
|
writel(0x3, &uart->ulcon);
|
||
|
/* No interrupts, no DMA, pure polling */
|
||
|
writel(0x245, &uart->ucon);
|
||
|
|
||
|
serial_setbrg_dev();
|
||
|
}
|
||
|
|
||
|
static int exynos5_uart_err_check(int op)
|
||
|
{
|
||
|
//struct s5p_uart *const uart = s5p_get_base_uart(dev_index);
|
||
|
struct s5p_uart *uart = (struct s5p_uart *)uart3_base;
|
||
|
unsigned int mask;
|
||
|
|
||
|
/*
|
||
|
* UERSTAT
|
||
|
* Break Detect [3]
|
||
|
* Frame Err [2] : receive operation
|
||
|
* Parity Err [1] : receive operation
|
||
|
* Overrun Err [0] : receive operation
|
||
|
*/
|
||
|
if (op)
|
||
|
mask = 0x8;
|
||
|
else
|
||
|
mask = 0xf;
|
||
|
|
||
|
return readl(&uart->uerstat) & mask;
|
||
|
}
|
||
|
|
||
|
#define RX_FIFO_COUNT_MASK 0xff
|
||
|
#define RX_FIFO_FULL_MASK (1 << 8)
|
||
|
#define TX_FIFO_FULL_MASK (1 << 24)
|
||
|
|
||
|
#if 0
|
||
|
/*
|
||
|
* Read a single byte from the serial port. Returns 1 on success, 0
|
||
|
* otherwise. When the function is succesfull, the character read is
|
||
|
* written into its argument c.
|
||
|
*/
|
||
|
static unsigned char exynos5_uart_rx_byte(void)
|
||
|
{
|
||
|
// struct s5p_uart *const uart = s5p_get_base_uart(dev_index);
|
||
|
struct s5p_uart *uart = (struct s5p_uart *)uart3_base;
|
||
|
|
||
|
/* wait for character to arrive */
|
||
|
while (!(readl(&uart->ufstat) & (RX_FIFO_COUNT_MASK |
|
||
|
RX_FIFO_FULL_MASK))) {
|
||
|
if (exynos5_uart_err_check(0))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return readb(&uart->urxh) & 0xff;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Output a single byte to the serial port.
|
||
|
*/
|
||
|
static void exynos5_uart_tx_byte(unsigned char data)
|
||
|
{
|
||
|
// struct s5p_uart *const uart = s5p_get_base_uart(dev_index);
|
||
|
struct s5p_uart *uart = (struct s5p_uart *)uart3_base;
|
||
|
|
||
|
/* wait for room in the tx FIFO */
|
||
|
while ((readl(uart->ufstat) & TX_FIFO_FULL_MASK)) {
|
||
|
if (exynos5_uart_err_check(1))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
writeb(data, &uart->utxh);
|
||
|
}
|
||
|
|
||
|
void puts(const char *s);
|
||
|
void puts(const char *s)
|
||
|
{
|
||
|
int n = 0;
|
||
|
|
||
|
while (*s) {
|
||
|
exynos5_uart_tx_byte(*s++);
|
||
|
n++;
|
||
|
}
|
||
|
|
||
|
exynos5_uart_tx_byte(0xd); /* CR */
|
||
|
exynos5_uart_tx_byte(0xa); /* LF */
|
||
|
}
|
||
|
|
||
|
static void do_serial(void)
|
||
|
{
|
||
|
//exynos_pinmux_config(PERIPH_ID_UART3, PINMUX_FLAG_NONE);
|
||
|
gpio_set_pull(GPIO_A14, EXYNOS_GPIO_PULL_NONE);
|
||
|
gpio_cfg_pin(GPIO_A15, EXYNOS_GPIO_FUNC(0x2));
|
||
|
|
||
|
exynos5_init_dev();
|
||
|
}
|
||
|
|
||
|
#define I2C_WRITE 0
|
||
|
#define I2C_READ 1
|
||
|
|
||
|
#define I2C_OK 0
|
||
|
#define I2C_NOK 1
|
||
|
#define I2C_NACK 2
|
||
|
#define I2C_NOK_LA 3 /* Lost arbitration */
|
||
|
#define I2C_NOK_TOUT 4 /* time out */
|
||
|
|
||
|
#define I2CSTAT_BSY 0x20 /* Busy bit */
|
||
|
#define I2CSTAT_NACK 0x01 /* Nack bit */
|
||
|
#define I2CCON_ACKGEN 0x80 /* Acknowledge generation */
|
||
|
#define I2CCON_IRPND 0x10 /* Interrupt pending bit */
|
||
|
#define I2C_MODE_MT 0xC0 /* Master Transmit Mode */
|
||
|
#define I2C_MODE_MR 0x80 /* Master Receive Mode */
|
||
|
#define I2C_START_STOP 0x20 /* START / STOP */
|
||
|
#define I2C_TXRX_ENA 0x10 /* I2C Tx/Rx enable */
|
||
|
|
||
|
|
||
|
/* The timeouts we live by */
|
||
|
enum {
|
||
|
I2C_XFER_TIMEOUT_MS = 35, /* xfer to complete */
|
||
|
I2C_INIT_TIMEOUT_MS = 1000, /* bus free on init */
|
||
|
I2C_IDLE_TIMEOUT_MS = 100, /* waiting for bus idle */
|
||
|
I2C_STOP_TIMEOUT_US = 200, /* waiting for stop events */
|
||
|
};
|
||
|
|
||
|
#define I2C0_BASE 0x12c60000
|
||
|
struct s3c24x0_i2c_bus i2c0 = {
|
||
|
.node = 0,
|
||
|
.bus_num = 0,
|
||
|
.regs = (struct s3c24x0_i2c *)I2C0_BASE,
|
||
|
.id = PERIPH_ID_I2C0,
|
||
|
};
|
||
|
|
||
|
static void i2c_ch_init(struct s3c24x0_i2c *i2c, int speed, int slaveadd)
|
||
|
{
|
||
|
unsigned long freq, pres = 16, div;
|
||
|
|
||
|
freq = my_clock_get_periph_rate(PERIPH_ID_I2C0);
|
||
|
/* calculate prescaler and divisor values */
|
||
|
if ((freq / pres / (16 + 1)) > speed)
|
||
|
/* set prescaler to 512 */
|
||
|
pres = 512;
|
||
|
|
||
|
div = 0;
|
||
|
|
||
|
while ((freq / pres / (div + 1)) > speed)
|
||
|
div++;
|
||
|
|
||
|
/* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
|
||
|
writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);
|
||
|
|
||
|
/* init to SLAVE REVEIVE and set slaveaddr */
|
||
|
writel(0, &i2c->iicstat);
|
||
|
writel(slaveadd, &i2c->iicadd);
|
||
|
/* program Master Transmit (and implicit STOP) */
|
||
|
writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
|
||
|
}
|
||
|
|
||
|
static void i2c_bus_init(struct s3c24x0_i2c_bus *i2c, unsigned int bus)
|
||
|
{
|
||
|
// exynos_pinmux_config(i2c->id, 0);
|
||
|
gpio_cfg_pin(GPIO_B30, EXYNOS_GPIO_FUNC(0x2));
|
||
|
gpio_cfg_pin(GPIO_B31, EXYNOS_GPIO_FUNC(0x2));
|
||
|
gpio_set_pull(GPIO_B30, EXYNOS_GPIO_PULL_NONE);
|
||
|
gpio_set_pull(GPIO_B31, EXYNOS_GPIO_PULL_NONE);
|
||
|
|
||
|
i2c_ch_init(i2c->regs, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
|
||
|
}
|
||
|
|
||
|
void do_barriers(void);
|
||
|
void do_barriers(void)
|
||
|
{
|
||
|
/*
|
||
|
* The reason we don't write out the instructions dsb/isb/sev:
|
||
|
* While ARM Cortex-A8 supports ARM v7 instruction set (-march=armv7a),
|
||
|
* we compile with -march=armv5 to allow more compilers to work.
|
||
|
* For U-Boot code this has no performance impact.
|
||
|
*/
|
||
|
__asm__ __volatile__(
|
||
|
#if defined(__thumb__)
|
||
|
".hword 0xF3BF, 0x8F4F\n" /* dsb; darn -march=armv5 */
|
||
|
".hword 0xF3BF, 0x8F6F\n" /* isb; darn -march=armv5 */
|
||
|
".hword 0xBF40\n" /* sev; darn -march=armv5 */
|
||
|
#else
|
||
|
".word 0xF57FF04F\n" /* dsb; darn -march=armv5 */
|
||
|
".word 0xF57FF06F\n" /* isb; darn -march=armv5 */
|
||
|
".word 0xE320F004\n" /* sev; darn -march=armv5 */
|
||
|
#endif
|
||
|
);
|
||
|
}
|
||
|
|
||
|
void sdelay(unsigned long loops);
|
||
|
void sdelay(unsigned long loops)
|
||
|
{
|
||
|
__asm__ volatile ("1:\n" "subs %0, %1, #1\n"
|
||
|
"bne 1b":"=r" (loops):"0"(loops));
|
||
|
}
|
||
|
|
||
|
/* is this right? meh, it seems to work well enough... */
|
||
|
void my_udelay(unsigned int n);
|
||
|
void my_udelay(unsigned int n)
|
||
|
{
|
||
|
sdelay(n * 1000);
|
||
|
}
|
||
|
|
||
|
|
||
|
void i2c_init(int speed, int slaveadd)
|
||
|
{
|
||
|
struct s3c24x0_i2c_bus *i2c = &i2c0;
|
||
|
struct exynos5_gpio_part1 *gpio;
|
||
|
int i;
|
||
|
uint32_t x;
|
||
|
|
||
|
#if 0
|
||
|
/* By default i2c channel 0 is the current bus */
|
||
|
g_current_bus = 0;
|
||
|
|
||
|
i2c = get_bus(g_current_bus);
|
||
|
if (!i2c)
|
||
|
return;
|
||
|
#endif
|
||
|
|
||
|
i2c_bus_init(i2c, 0);
|
||
|
|
||
|
/* wait for some time to give previous transfer a chance to finish */
|
||
|
i = I2C_INIT_TIMEOUT_MS * 20;
|
||
|
while ((readl(&i2c->regs->iicstat) & I2CSTAT_BSY) && (i > 0)) {
|
||
|
my_udelay(50);
|
||
|
i--;
|
||
|
}
|
||
|
|
||
|
gpio = (struct exynos5_gpio_part1 *)(EXYNOS5_GPIO_PART1_BASE);
|
||
|
/* FIXME(dhendrix): cannot use nested macro (compilation failure) */
|
||
|
// writel((readl(&gpio->b3.con) & ~0x00FF) | 0x0022, &gpio->b3.con);
|
||
|
x = readl(&gpio->b3.con);
|
||
|
writel((x & ~0x00FF) | 0x0022, &gpio->b3.con);
|
||
|
|
||
|
i2c_ch_init(i2c->regs, speed, slaveadd);
|
||
|
}
|
||
|
|
||
|
static int WaitForXfer(struct s3c24x0_i2c *i2c)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
i = I2C_XFER_TIMEOUT_MS * 20;
|
||
|
while (!(readl(&i2c->iiccon) & I2CCON_IRPND)) {
|
||
|
if (i == 0) {
|
||
|
//debug("%s: i2c xfer timeout\n", __func__);
|
||
|
return I2C_NOK_TOUT;
|
||
|
}
|
||
|
my_udelay(50);
|
||
|
i--;
|
||
|
}
|
||
|
|
||
|
return I2C_OK;
|
||
|
}
|
||
|
|
||
|
static int IsACK(struct s3c24x0_i2c *i2c)
|
||
|
{
|
||
|
return !(readl(&i2c->iicstat) & I2CSTAT_NACK);
|
||
|
}
|
||
|
|
||
|
static void ReadWriteByte(struct s3c24x0_i2c *i2c)
|
||
|
{
|
||
|
uint32_t x;
|
||
|
|
||
|
x = readl(&i2c->iiccon);
|
||
|
writel(x & ~I2CCON_IRPND, &i2c->iiccon);
|
||
|
/* FIXME(dhendrix): cannot use nested macro (compilation failure) */
|
||
|
// writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Verify the whether I2C ACK was received or not
|
||
|
*
|
||
|
* @param i2c pointer to I2C register base
|
||
|
* @param buf array of data
|
||
|
* @param len length of data
|
||
|
* return I2C_OK when transmission done
|
||
|
* I2C_NACK otherwise
|
||
|
*/
|
||
|
static int i2c_send_verify(struct s3c24x0_i2c *i2c, unsigned char buf[],
|
||
|
unsigned char len)
|
||
|
{
|
||
|
int i, result = I2C_OK;
|
||
|
|
||
|
if (IsACK(i2c)) {
|
||
|
for (i = 0; (i < len) && (result == I2C_OK); i++) {
|
||
|
writel(buf[i], &i2c->iicds);
|
||
|
ReadWriteByte(i2c);
|
||
|
result = WaitForXfer(i2c);
|
||
|
if (result == I2C_OK && !IsACK(i2c))
|
||
|
result = I2C_NACK;
|
||
|
}
|
||
|
} else {
|
||
|
result = I2C_NACK;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send a STOP event and wait for it to have completed
|
||
|
*
|
||
|
* @param mode If it is a master transmitter or receiver
|
||
|
* @return I2C_OK if the line became idle before timeout I2C_NOK_TOUT otherwise
|
||
|
*/
|
||
|
static int i2c_send_stop(struct s3c24x0_i2c *i2c, int mode)
|
||
|
{
|
||
|
int timeout;
|
||
|
|
||
|
/* Setting the STOP event to fire */
|
||
|
writel(mode | I2C_TXRX_ENA, &i2c->iicstat);
|
||
|
ReadWriteByte(i2c);
|
||
|
|
||
|
/* Wait for the STOP to send and the bus to go idle */
|
||
|
for (timeout = I2C_STOP_TIMEOUT_US; timeout > 0; timeout -= 5) {
|
||
|
if (!(readl(&i2c->iicstat) & I2CSTAT_BSY))
|
||
|
return I2C_OK;
|
||
|
my_udelay(5);
|
||
|
}
|
||
|
|
||
|
return I2C_NOK_TOUT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* cmd_type is 0 for write, 1 for read.
|
||
|
*
|
||
|
* addr_len can take any value from 0-255, it is only limited
|
||
|
* by the char, we could make it larger if needed. If it is
|
||
|
* 0 we skip the address write cycle.
|
||
|
*/
|
||
|
static int i2c_transfer(struct s3c24x0_i2c *i2c,
|
||
|
unsigned char cmd_type,
|
||
|
unsigned char chip,
|
||
|
unsigned char addr[],
|
||
|
unsigned char addr_len,
|
||
|
unsigned char data[],
|
||
|
unsigned short data_len)
|
||
|
{
|
||
|
int i, result, stop_bit_result;
|
||
|
uint32_t x;
|
||
|
|
||
|
if (data == 0 || data_len == 0) {
|
||
|
/* Don't support data transfer of no length or to address 0 */
|
||
|
//debug("i2c_transfer: bad call\n");
|
||
|
return I2C_NOK;
|
||
|
}
|
||
|
|
||
|
/* Check I2C bus idle */
|
||
|
i = I2C_IDLE_TIMEOUT_MS * 20;
|
||
|
while ((readl(&i2c->iicstat) & I2CSTAT_BSY) && (i > 0)) {
|
||
|
my_udelay(50);
|
||
|
i--;
|
||
|
}
|
||
|
|
||
|
if (readl(&i2c->iicstat) & I2CSTAT_BSY) {
|
||
|
//debug("%s: bus busy\n", __func__);
|
||
|
return I2C_NOK_TOUT;
|
||
|
}
|
||
|
|
||
|
/* FIXME(dhendrix): cannot use nested macro (compilation failure) */
|
||
|
//writel(readl(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
|
||
|
x = readl(&i2c->iiccon);
|
||
|
writel(x | I2CCON_ACKGEN, &i2c->iiccon);
|
||
|
|
||
|
if (addr && addr_len) {
|
||
|
writel(chip, &i2c->iicds);
|
||
|
/* send START */
|
||
|
writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
|
||
|
&i2c->iicstat);
|
||
|
if (WaitForXfer(i2c) == I2C_OK)
|
||
|
result = i2c_send_verify(i2c, addr, addr_len);
|
||
|
else
|
||
|
result = I2C_NACK;
|
||
|
} else
|
||
|
result = I2C_NACK;
|
||
|
|
||
|
switch (cmd_type) {
|
||
|
case I2C_WRITE:
|
||
|
if (result == I2C_OK)
|
||
|
result = i2c_send_verify(i2c, data, data_len);
|
||
|
else {
|
||
|
writel(chip, &i2c->iicds);
|
||
|
/* send START */
|
||
|
writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
|
||
|
&i2c->iicstat);
|
||
|
if (WaitForXfer(i2c) == I2C_OK)
|
||
|
result = i2c_send_verify(i2c, data, data_len);
|
||
|
}
|
||
|
|
||
|
if (result == I2C_OK)
|
||
|
result = WaitForXfer(i2c);
|
||
|
|
||
|
stop_bit_result = i2c_send_stop(i2c, I2C_MODE_MT);
|
||
|
break;
|
||
|
|
||
|
case I2C_READ:
|
||
|
{
|
||
|
int was_ok = (result == I2C_OK);
|
||
|
|
||
|
writel(chip, &i2c->iicds);
|
||
|
/* resend START */
|
||
|
writel(I2C_MODE_MR | I2C_TXRX_ENA |
|
||
|
I2C_START_STOP, &i2c->iicstat);
|
||
|
ReadWriteByte(i2c);
|
||
|
result = WaitForXfer(i2c);
|
||
|
|
||
|
if (was_ok || IsACK(i2c)) {
|
||
|
i = 0;
|
||
|
while ((i < data_len) && (result == I2C_OK)) {
|
||
|
/* disable ACK for final READ */
|
||
|
if (i == data_len - 1) {
|
||
|
/* FIXME(dhendrix): nested macro */
|
||
|
#if 0
|
||
|
writel(readl(&i2c->iiccon) &
|
||
|
~I2CCON_ACKGEN,
|
||
|
&i2c->iiccon);
|
||
|
#endif
|
||
|
x = readl(&i2c->iiccon) & ~I2CCON_ACKGEN;
|
||
|
writel(x, &i2c->iiccon);
|
||
|
}
|
||
|
ReadWriteByte(i2c);
|
||
|
result = WaitForXfer(i2c);
|
||
|
data[i] = readl(&i2c->iicds);
|
||
|
i++;
|
||
|
}
|
||
|
} else {
|
||
|
result = I2C_NACK;
|
||
|
}
|
||
|
|
||
|
stop_bit_result = i2c_send_stop(i2c, I2C_MODE_MR);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
//debug("i2c_transfer: bad call\n");
|
||
|
result = stop_bit_result = I2C_NOK;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the transmission went fine, then only the stop bit was left to
|
||
|
* fail. Otherwise, the real failure we're interested in came before
|
||
|
* that, during the actual transmission.
|
||
|
*/
|
||
|
return (result == I2C_OK) ? stop_bit_result : result;
|
||
|
}
|
||
|
|
||
|
|
||
|
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
|
||
|
{
|
||
|
struct s3c24x0_i2c_bus *i2c = &i2c0;
|
||
|
uchar xaddr[4];
|
||
|
int ret;
|
||
|
|
||
|
if (alen > 4) {
|
||
|
//debug("I2C read: addr len %d not supported\n", alen);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (alen > 0) {
|
||
|
xaddr[0] = (addr >> 24) & 0xFF;
|
||
|
xaddr[1] = (addr >> 16) & 0xFF;
|
||
|
xaddr[2] = (addr >> 8) & 0xFF;
|
||
|
xaddr[3] = addr & 0xFF;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
|
||
|
/*
|
||
|
* EEPROM chips that implement "address overflow" are ones
|
||
|
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
||
|
* address and the extra bits end up in the "chip address"
|
||
|
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
|
||
|
* four 256 byte chips.
|
||
|
*
|
||
|
* Note that we consider the length of the address field to
|
||
|
* still be one byte because the extra address bits are
|
||
|
* hidden in the chip address.
|
||
|
*/
|
||
|
if (alen > 0)
|
||
|
chip |= ((addr >> (alen * 8)) &
|
||
|
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
|
||
|
#endif
|
||
|
if (!i2c)
|
||
|
return -1;
|
||
|
#if 0
|
||
|
if (board_i2c_claim_bus(i2c->node)) {
|
||
|
debug("I2C cannot claim bus %d\n", i2c->bus_num);
|
||
|
return -1;
|
||
|
}
|
||
|
#endif
|
||
|
ret = i2c_transfer(i2c->regs, I2C_READ, chip << 1, &xaddr[4 - alen],
|
||
|
alen, buffer, len);
|
||
|
//board_i2c_release_bus(i2c->node);
|
||
|
if (ret) {
|
||
|
//debug("I2c read: failed %d\n", ret);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
|
||
|
{
|
||
|
struct s3c24x0_i2c_bus *i2c;
|
||
|
uchar xaddr[4];
|
||
|
int ret;
|
||
|
|
||
|
if (alen > 4) {
|
||
|
//debug("I2C write: addr len %d not supported\n", alen);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (alen > 0) {
|
||
|
xaddr[0] = (addr >> 24) & 0xFF;
|
||
|
xaddr[1] = (addr >> 16) & 0xFF;
|
||
|
xaddr[2] = (addr >> 8) & 0xFF;
|
||
|
xaddr[3] = addr & 0xFF;
|
||
|
}
|
||
|
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
|
||
|
/*
|
||
|
* EEPROM chips that implement "address overflow" are ones
|
||
|
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
||
|
* address and the extra bits end up in the "chip address"
|
||
|
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
|
||
|
* four 256 byte chips.
|
||
|
*
|
||
|
* Note that we consider the length of the address field to
|
||
|
* still be one byte because the extra address bits are
|
||
|
* hidden in the chip address.
|
||
|
*/
|
||
|
if (alen > 0)
|
||
|
chip |= ((addr >> (alen * 8)) &
|
||
|
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
|
||
|
#endif
|
||
|
//i2c = get_bus(g_current_bus);
|
||
|
i2c = &i2c0;
|
||
|
if (!i2c)
|
||
|
return -1;
|
||
|
#if 0
|
||
|
if (board_i2c_claim_bus(i2c->node)) {
|
||
|
//debug("I2C cannot claim bus %d\n", i2c->bus_num);
|
||
|
return -1;
|
||
|
}
|
||
|
#endif
|
||
|
ret = i2c_transfer(i2c->regs, I2C_WRITE, chip << 1, &xaddr[4 - alen],
|
||
|
alen, buffer, len);
|
||
|
//board_i2c_release_bus(i2c->node);
|
||
|
|
||
|
return ret != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Max77686 parameters values
|
||
|
* see max77686.h for parameters details
|
||
|
*/
|
||
|
struct max77686_para max77686_param[] = {/*{vol_addr, vol_bitpos,
|
||
|
vol_bitmask, reg_enaddr, reg_enbitpos, reg_enbitmask, reg_enbiton,
|
||
|
reg_enbitoff, vol_min, vol_div}*/
|
||
|
{/* PMIC_BUCK1 */ 0x11, 0x0, 0x3F, 0x10, 0x0, 0x3, 0x3, 0x0, 750, 50000},
|
||
|
{/* PMIC_BUCK2 */ 0x14, 0x0, 0xFF, 0x12, 0x4, 0x3, 0x1, 0x0, 600, 12500},
|
||
|
{/* PMIC_BUCK3 */ 0x1E, 0x0, 0xFF, 0x1C, 0x4, 0x3, 0x1, 0x0, 600, 12500},
|
||
|
{/* PMIC_BUCK4 */ 0x28, 0x0, 0xFF, 0x26, 0x4, 0x3, 0x1, 0x0, 600, 12500},
|
||
|
{/* PMIC_BUCK5 */ 0x31, 0x0, 0x3F, 0x30, 0x0, 0x3, 0x3, 0x0, 750, 50000},
|
||
|
{/* PMIC_BUCK6 */ 0x33, 0x0, 0x3F, 0x32, 0x0, 0x3, 0x3, 0x0, 750, 50000},
|
||
|
{/* PMIC_BUCK7 */ 0x35, 0x0, 0x3F, 0x34, 0x0, 0x3, 0x3, 0x0, 750, 50000},
|
||
|
{/* PMIC_BUCK8 */ 0x37, 0x0, 0x3F, 0x36, 0x0, 0x3, 0x3, 0x0, 750, 50000},
|
||
|
{/* PMIC_BUCK9 */ 0x39, 0x0, 0x3F, 0x38, 0x0, 0x3, 0x3, 0x0, 750, 50000},
|
||
|
{/* PMIC_LDO1 */ 0x40, 0x0, 0x3F, 0x40, 0x6, 0x3, 0x3, 0x0, 800, 25000},
|
||
|
{/* PMIC_LDO2 */ 0x41, 0x0, 0x3F, 0x41, 0x6, 0x3, 0x1, 0x0, 800, 25000},
|
||
|
{/* PMIC_LDO3 */ 0x42, 0x0, 0x3F, 0x42, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO4 */ 0x43, 0x0, 0x3F, 0x43, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO5 */ 0x44, 0x0, 0x3F, 0x44, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO6 */ 0x45, 0x0, 0x3F, 0x45, 0x6, 0x3, 0x1, 0x0, 800, 25000},
|
||
|
{/* PMIC_LDO7 */ 0x46, 0x0, 0x3F, 0x46, 0x6, 0x3, 0x1, 0x0, 800, 25000},
|
||
|
{/* PMIC_LDO8 */ 0x47, 0x0, 0x3F, 0x47, 0x6, 0x3, 0x1, 0x0, 800, 25000},
|
||
|
{/* PMIC_LDO9 */ 0x48, 0x0, 0x3F, 0x48, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO10 */ 0x49, 0x0, 0x3F, 0x49, 0x6, 0x3, 0x1, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO11 */ 0x4A, 0x0, 0x3F, 0x4A, 0x6, 0x3, 0x1, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO12 */ 0x4B, 0x0, 0x3F, 0x4B, 0x6, 0x3, 0x1, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO13 */ 0x4C, 0x0, 0x3F, 0x4C, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO14 */ 0x4D, 0x0, 0x3F, 0x4D, 0x6, 0x3, 0x1, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO15 */ 0x4E, 0x0, 0x3F, 0x4E, 0x6, 0x3, 0x1, 0x0, 800, 25000},
|
||
|
{/* PMIC_LDO16 */ 0x4F, 0x0, 0x3F, 0x4F, 0x6, 0x3, 0x1, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO17 */ 0x50, 0x0, 0x3F, 0x50, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO18 */ 0x51, 0x0, 0x3F, 0x51, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO19 */ 0x52, 0x0, 0x3F, 0x52, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO20 */ 0x53, 0x0, 0x3F, 0x53, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO21 */ 0x54, 0x0, 0x3F, 0x54, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO22 */ 0x55, 0x0, 0x3F, 0x55, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO23 */ 0x56, 0x0, 0x3F, 0x56, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO24 */ 0x57, 0x0, 0x3F, 0x57, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO25 */ 0x58, 0x0, 0x3F, 0x58, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_LDO26 */ 0x59, 0x0, 0x3F, 0x59, 0x6, 0x3, 0x3, 0x0, 800, 50000},
|
||
|
{/* PMIC_EN32KHZ_CP */ 0x0, 0x0, 0x0, 0x7F, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0},
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Write a value to a register
|
||
|
*
|
||
|
* @param chip_addr i2c addr for max77686
|
||
|
* @param reg reg number to write
|
||
|
* @param val value to be written
|
||
|
*
|
||
|
*/
|
||
|
static inline int max77686_i2c_write(unsigned char chip_addr,
|
||
|
unsigned int reg, unsigned char val)
|
||
|
{
|
||
|
return i2c_write(chip_addr, reg, 1, &val, 1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read a value from a register
|
||
|
*
|
||
|
* @param chip_addr i2c addr for max77686
|
||
|
* @param reg reg number to write
|
||
|
* @param val value to be written
|
||
|
*
|
||
|
*/
|
||
|
static inline int max77686_i2c_read(unsigned char chip_addr,
|
||
|
unsigned int reg, unsigned char *val)
|
||
|
{
|
||
|
return i2c_read(chip_addr, reg, 1, val, 1);
|
||
|
}
|
||
|
|
||
|
/* Chip register numbers (not exported from this module) */
|
||
|
enum {
|
||
|
REG_BBAT = 0x7e,
|
||
|
|
||
|
/* Bits for BBAT */
|
||
|
BBAT_BBCHOSTEN_MASK = 1 << 0,
|
||
|
BBAT_BBCVS_SHIFT = 3,
|
||
|
BBAT_BBCVS_MASK = 3 << BBAT_BBCVS_SHIFT,
|
||
|
};
|
||
|
|
||
|
int max77686_disable_backup_batt(void)
|
||
|
{
|
||
|
unsigned char val;
|
||
|
int ret;
|
||
|
|
||
|
//i2c_set_bus_num(0);
|
||
|
ret = max77686_i2c_read(MAX77686_I2C_ADDR, REG_BBAT, &val);
|
||
|
if (ret) {
|
||
|
// debug("max77686 i2c read failed\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* If we already have the correct values, exit */
|
||
|
if ((val & (BBAT_BBCVS_MASK | BBAT_BBCHOSTEN_MASK)) ==
|
||
|
BBAT_BBCVS_MASK)
|
||
|
return 0;
|
||
|
|
||
|
/* First disable charging */
|
||
|
val &= ~BBAT_BBCHOSTEN_MASK;
|
||
|
ret = max77686_i2c_write(MAX77686_I2C_ADDR, REG_BBAT, val);
|
||
|
if (ret) {
|
||
|
//debug("max77686 i2c write failed\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Finally select 3.5V to minimize power consumption */
|
||
|
val |= BBAT_BBCVS_MASK;
|
||
|
ret = max77686_i2c_write(MAX77686_I2C_ADDR, REG_BBAT, val);
|
||
|
if (ret) {
|
||
|
//debug("max77686 i2c write failed\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int max77686_enablereg(enum max77686_regnum reg, int enable)
|
||
|
{
|
||
|
struct max77686_para *pmic;
|
||
|
unsigned char read_data;
|
||
|
int ret;
|
||
|
|
||
|
pmic = &max77686_param[reg];
|
||
|
|
||
|
ret = max77686_i2c_read(MAX77686_I2C_ADDR, pmic->reg_enaddr,
|
||
|
&read_data);
|
||
|
if (ret != 0) {
|
||
|
//debug("max77686 i2c read failed.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (enable == REG_DISABLE) {
|
||
|
clrbits_8(&read_data,
|
||
|
pmic->reg_enbitmask << pmic->reg_enbitpos);
|
||
|
} else {
|
||
|
clrsetbits_8(&read_data,
|
||
|
pmic->reg_enbitmask << pmic->reg_enbitpos,
|
||
|
pmic->reg_enbiton << pmic->reg_enbitpos);
|
||
|
}
|
||
|
|
||
|
ret = max77686_i2c_write(MAX77686_I2C_ADDR,
|
||
|
pmic->reg_enaddr, read_data);
|
||
|
if (ret != 0) {
|
||
|
//debug("max77686 i2c write failed.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int max77686_do_volsetting(enum max77686_regnum reg, unsigned int volt,
|
||
|
int enable, int volt_units)
|
||
|
{
|
||
|
struct max77686_para *pmic;
|
||
|
unsigned char read_data;
|
||
|
int vol_level = 0;
|
||
|
int ret;
|
||
|
|
||
|
pmic = &max77686_param[reg];
|
||
|
|
||
|
if (pmic->vol_addr == 0) {
|
||
|
//debug("not a voltage register.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
ret = max77686_i2c_read(MAX77686_I2C_ADDR, pmic->vol_addr, &read_data);
|
||
|
if (ret != 0) {
|
||
|
//debug("max77686 i2c read failed.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (volt_units == MAX77686_UV)
|
||
|
vol_level = volt - (u32)pmic->vol_min * 1000;
|
||
|
else
|
||
|
vol_level = (volt - (u32)pmic->vol_min) * 1000;
|
||
|
|
||
|
if (vol_level < 0) {
|
||
|
//debug("Not a valid voltage level to set\n");
|
||
|
return -1;
|
||
|
}
|
||
|
vol_level /= (u32)pmic->vol_div;
|
||
|
|
||
|
clrsetbits_8(&read_data, pmic->vol_bitmask << pmic->vol_bitpos,
|
||
|
vol_level << pmic->vol_bitpos);
|
||
|
|
||
|
ret = max77686_i2c_write(MAX77686_I2C_ADDR, pmic->vol_addr, read_data);
|
||
|
if (ret != 0) {
|
||
|
//debug("max77686 i2c write failed.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
ret = max77686_enablereg(reg, enable);
|
||
|
if (ret != 0) {
|
||
|
//debug("Failed to enable buck/ldo.\n");
|
||
|
return -1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int max77686_volsetting(enum max77686_regnum reg, unsigned int volt,
|
||
|
int enable, int volt_units)
|
||
|
{
|
||
|
// int old_bus = i2c_get_bus_num();
|
||
|
int ret;
|
||
|
|
||
|
// i2c_set_bus_num(0);
|
||
|
ret = max77686_do_volsetting(reg, volt, enable, volt_units);
|
||
|
// i2c_set_bus_num(old_bus);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* power_init() stuff */
|
||
|
static void power_init(void)
|
||
|
{
|
||
|
max77686_disable_backup_batt();
|
||
|
|
||
|
#if 0
|
||
|
/* FIXME: for debugging... */
|
||
|
volatile unsigned long *addr = (unsigned long *)0x1004330c;
|
||
|
*addr |= 0x100;
|
||
|
while (1);
|
||
|
#endif
|
||
|
|
||
|
max77686_volsetting(PMIC_BUCK2, CONFIG_VDD_ARM_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
max77686_volsetting(PMIC_BUCK3, CONFIG_VDD_INT_UV,
|
||
|
REG_ENABLE, MAX77686_UV);
|
||
|
max77686_volsetting(PMIC_BUCK1, CONFIG_VDD_MIF_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
max77686_volsetting(PMIC_BUCK4, CONFIG_VDD_G3D_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
max77686_volsetting(PMIC_LDO2, CONFIG_VDD_LDO2_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
max77686_volsetting(PMIC_LDO3, CONFIG_VDD_LDO3_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
max77686_volsetting(PMIC_LDO5, CONFIG_VDD_LDO5_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
max77686_volsetting(PMIC_LDO10, CONFIG_VDD_LDO10_MV,
|
||
|
REG_ENABLE, MAX77686_MV);
|
||
|
}
|
||
|
|
||
|
struct mem_timings mem_timings[] = {
|
||
|
{
|
||
|
.mem_manuf = MEM_MANUF_ELPIDA,
|
||
|
.mem_type = DDR_MODE_DDR3,
|
||
|
.frequency_mhz = 800,
|
||
|
.mpll_mdiv = 0x64,
|
||
|
.mpll_pdiv = 0x3,
|
||
|
.mpll_sdiv = 0x0,
|
||
|
.cpll_mdiv = 0xde,
|
||
|
.cpll_pdiv = 0x4,
|
||
|
.cpll_sdiv = 0x2,
|
||
|
.gpll_mdiv = 0x215,
|
||
|
.gpll_pdiv = 0xc,
|
||
|
.gpll_sdiv = 0x1,
|
||
|
.epll_mdiv = 0x60,
|
||
|
.epll_pdiv = 0x3,
|
||
|
.epll_sdiv = 0x3,
|
||
|
.vpll_mdiv = 0x96,
|
||
|
.vpll_pdiv = 0x3,
|
||
|
.vpll_sdiv = 0x2,
|
||
|
|
||
|
.bpll_mdiv = 0x64,
|
||
|
.bpll_pdiv = 0x3,
|
||
|
.bpll_sdiv = 0x0,
|
||
|
.use_bpll = 0,
|
||
|
.pclk_cdrex_ratio = 0x5,
|
||
|
.direct_cmd_msr = {
|
||
|
0x00020018, 0x00030000, 0x00010042, 0x00000d70
|
||
|
},
|
||
|
.timing_ref = 0x000000bb,
|
||
|
.timing_row = 0x8c36660f,
|
||
|
.timing_data = 0x3630580b,
|
||
|
.timing_power = 0x41000a44,
|
||
|
.phy0_dqs = 0x08080808,
|
||
|
.phy1_dqs = 0x08080808,
|
||
|
.phy0_dq = 0x08080808,
|
||
|
.phy1_dq = 0x08080808,
|
||
|
.phy0_tFS = 0x4,
|
||
|
.phy1_tFS = 0x4,
|
||
|
.phy0_pulld_dqs = 0xf,
|
||
|
.phy1_pulld_dqs = 0xf,
|
||
|
|
||
|
.lpddr3_ctrl_phy_reset = 0x1,
|
||
|
.ctrl_start_point = 0x10,
|
||
|
.ctrl_inc = 0x10,
|
||
|
.ctrl_start = 0x1,
|
||
|
.ctrl_dll_on = 0x1,
|
||
|
.ctrl_ref = 0x8,
|
||
|
|
||
|
.ctrl_force = 0x1a,
|
||
|
.ctrl_rdlat = 0x0b,
|
||
|
.ctrl_bstlen = 0x08,
|
||
|
|
||
|
.fp_resync = 0x8,
|
||
|
.iv_size = 0x7,
|
||
|
.dfi_init_start = 1,
|
||
|
.aref_en = 1,
|
||
|
|
||
|
.rd_fetch = 0x3,
|
||
|
|
||
|
.zq_mode_dds = 0x7,
|
||
|
.zq_mode_term = 0x1,
|
||
|
.zq_mode_noterm = 0,
|
||
|
|
||
|
/*
|
||
|
* Dynamic Clock: Always Running
|
||
|
* Memory Burst length: 8
|
||
|
* Number of chips: 1
|
||
|
* Memory Bus width: 32 bit
|
||
|
* Memory Type: DDR3
|
||
|
* Additional Latancy for PLL: 0 Cycle
|
||
|
*/
|
||
|
.memcontrol = DMC_MEMCONTROL_CLK_STOP_DISABLE |
|
||
|
DMC_MEMCONTROL_DPWRDN_DISABLE |
|
||
|
DMC_MEMCONTROL_DPWRDN_ACTIVE_PRECHARGE |
|
||
|
DMC_MEMCONTROL_TP_DISABLE |
|
||
|
DMC_MEMCONTROL_DSREF_ENABLE |
|
||
|
DMC_MEMCONTROL_ADD_LAT_PALL_CYCLE(0) |
|
||
|
DMC_MEMCONTROL_MEM_TYPE_DDR3 |
|
||
|
DMC_MEMCONTROL_MEM_WIDTH_32BIT |
|
||
|
DMC_MEMCONTROL_NUM_CHIP_1 |
|
||
|
DMC_MEMCONTROL_BL_8 |
|
||
|
DMC_MEMCONTROL_PZQ_DISABLE |
|
||
|
DMC_MEMCONTROL_MRR_BYTE_7_0,
|
||
|
.memconfig = DMC_MEMCONFIGx_CHIP_MAP_INTERLEAVED |
|
||
|
DMC_MEMCONFIGx_CHIP_COL_10 |
|
||
|
DMC_MEMCONFIGx_CHIP_ROW_15 |
|
||
|
DMC_MEMCONFIGx_CHIP_BANK_8,
|
||
|
.membaseconfig0 = DMC_MEMBASECONFIG_VAL(0x40),
|
||
|
.membaseconfig1 = DMC_MEMBASECONFIG_VAL(0x80),
|
||
|
.prechconfig_tp_cnt = 0xff,
|
||
|
.dpwrdn_cyc = 0xff,
|
||
|
.dsref_cyc = 0xffff,
|
||
|
.concontrol = DMC_CONCONTROL_DFI_INIT_START_DISABLE |
|
||
|
DMC_CONCONTROL_TIMEOUT_LEVEL0 |
|
||
|
DMC_CONCONTROL_RD_FETCH_DISABLE |
|
||
|
DMC_CONCONTROL_EMPTY_DISABLE |
|
||
|
DMC_CONCONTROL_AREF_EN_DISABLE |
|
||
|
DMC_CONCONTROL_IO_PD_CON_DISABLE,
|
||
|
.dmc_channels = 2,
|
||
|
.chips_per_channel = 2,
|
||
|
.chips_to_configure = 1,
|
||
|
.send_zq_init = 1,
|
||
|
.impedance = IMP_OUTPUT_DRV_30_OHM,
|
||
|
.gate_leveling_enable = 0,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
struct arm_clk_ratios arm_clk_ratios[] = {
|
||
|
{
|
||
|
.arm_freq_mhz = 1700,
|
||
|
|
||
|
.apll_mdiv = 0x1a9,
|
||
|
.apll_pdiv = 0x6,
|
||
|
.apll_sdiv = 0x0,
|
||
|
|
||
|
.arm2_ratio = 0x0,
|
||
|
.apll_ratio = 0x3,
|
||
|
.pclk_dbg_ratio = 0x1,
|
||
|
.atb_ratio = 0x6,
|
||
|
.periph_ratio = 0x7,
|
||
|
.acp_ratio = 0x7,
|
||
|
.cpud_ratio = 0x3,
|
||
|
.arm_ratio = 0x0,
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static void clock_init(void)
|
||
|
{
|
||
|
struct exynos5_clock *clk = (struct exynos5_clock *)EXYNOS5_CLOCK_BASE;
|
||
|
struct exynos5_mct_regs *mct_regs =
|
||
|
(struct exynos5_mct_regs *)EXYNOS5_MULTI_CORE_TIMER_BASE;
|
||
|
struct mem_timings *mem = &mem_timings[0];
|
||
|
struct arm_clk_ratios *arm_clk_ratio = &arm_clk_ratios[0];
|
||
|
u32 val, tmp;
|
||
|
|
||
|
/* Turn on the MCT as early as possible. */
|
||
|
mct_regs->g_tcon |= (1 << 8);
|
||
|
|
||
|
// mem = clock_get_mem_timings();
|
||
|
// arm_clk_ratio = get_arm_ratios();
|
||
|
|
||
|
clrbits_le32(&clk->src_cpu, MUX_APLL_SEL_MASK);
|
||
|
do {
|
||
|
val = readl(&clk->mux_stat_cpu);
|
||
|
} while ((val | MUX_APLL_SEL_MASK) != val);
|
||
|
|
||
|
clrbits_le32(&clk->src_core1, MUX_MPLL_SEL_MASK);
|
||
|
do {
|
||
|
val = readl(&clk->mux_stat_core1);
|
||
|
} while ((val | MUX_MPLL_SEL_MASK) != val);
|
||
|
|
||
|
clrbits_le32(&clk->src_top2, MUX_CPLL_SEL_MASK);
|
||
|
clrbits_le32(&clk->src_top2, MUX_EPLL_SEL_MASK);
|
||
|
clrbits_le32(&clk->src_top2, MUX_VPLL_SEL_MASK);
|
||
|
clrbits_le32(&clk->src_top2, MUX_GPLL_SEL_MASK);
|
||
|
tmp = MUX_CPLL_SEL_MASK | MUX_EPLL_SEL_MASK | MUX_VPLL_SEL_MASK
|
||
|
| MUX_GPLL_SEL_MASK;
|
||
|
do {
|
||
|
val = readl(&clk->mux_stat_top2);
|
||
|
} while ((val | tmp) != val);
|
||
|
|
||
|
clrbits_le32(&clk->src_cdrex, MUX_BPLL_SEL_MASK);
|
||
|
do {
|
||
|
val = readl(&clk->mux_stat_cdrex);
|
||
|
} while ((val | MUX_BPLL_SEL_MASK) != val);
|
||
|
|
||
|
/* PLL locktime */
|
||
|
writel(APLL_LOCK_VAL, &clk->apll_lock);
|
||
|
|
||
|
writel(MPLL_LOCK_VAL, &clk->mpll_lock);
|
||
|
|
||
|
writel(BPLL_LOCK_VAL, &clk->bpll_lock);
|
||
|
|
||
|
writel(CPLL_LOCK_VAL, &clk->cpll_lock);
|
||
|
|
||
|
writel(GPLL_LOCK_VAL, &clk->gpll_lock);
|
||
|
|
||
|
writel(EPLL_LOCK_VAL, &clk->epll_lock);
|
||
|
|
||
|
writel(VPLL_LOCK_VAL, &clk->vpll_lock);
|
||
|
|
||
|
writel(CLK_REG_DISABLE, &clk->pll_div2_sel);
|
||
|
|
||
|
writel(MUX_HPM_SEL_MASK, &clk->src_cpu);
|
||
|
do {
|
||
|
val = readl(&clk->mux_stat_cpu);
|
||
|
} while ((val | HPM_SEL_SCLK_MPLL) != val);
|
||
|
|
||
|
val = arm_clk_ratio->arm2_ratio << 28
|
||
|
| arm_clk_ratio->apll_ratio << 24
|
||
|
| arm_clk_ratio->pclk_dbg_ratio << 20
|
||
|
| arm_clk_ratio->atb_ratio << 16
|
||
|
| arm_clk_ratio->periph_ratio << 12
|
||
|
| arm_clk_ratio->acp_ratio << 8
|
||
|
| arm_clk_ratio->cpud_ratio << 4
|
||
|
| arm_clk_ratio->arm_ratio;
|
||
|
writel(val, &clk->div_cpu0);
|
||
|
do {
|
||
|
val = readl(&clk->div_stat_cpu0);
|
||
|
} while (0 != val);
|
||
|
|
||
|
writel(CLK_DIV_CPU1_VAL, &clk->div_cpu1);
|
||
|
do {
|
||
|
val = readl(&clk->div_stat_cpu1);
|
||
|
} while (0 != val);
|
||
|
|
||
|
/* Set APLL */
|
||
|
writel(APLL_CON1_VAL, &clk->apll_con1);
|
||
|
val = set_pll(arm_clk_ratio->apll_mdiv, arm_clk_ratio->apll_pdiv,
|
||
|
arm_clk_ratio->apll_sdiv);
|
||
|
writel(val, &clk->apll_con0);
|
||
|
while ((readl(&clk->apll_con0) & APLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
/* Set MPLL */
|
||
|
writel(MPLL_CON1_VAL, &clk->mpll_con1);
|
||
|
val = set_pll(mem->mpll_mdiv, mem->mpll_pdiv, mem->mpll_sdiv);
|
||
|
writel(val, &clk->mpll_con0);
|
||
|
while ((readl(&clk->mpll_con0) & MPLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
/*
|
||
|
* Configure MUX_MPLL_FOUT to choose the direct clock source
|
||
|
* path and avoid the fixed DIV/2 block to save power
|
||
|
*/
|
||
|
setbits_le32(&clk->pll_div2_sel, MUX_MPLL_FOUT_SEL);
|
||
|
|
||
|
/* Set BPLL */
|
||
|
if (mem->use_bpll) {
|
||
|
writel(BPLL_CON1_VAL, &clk->bpll_con1);
|
||
|
val = set_pll(mem->bpll_mdiv, mem->bpll_pdiv, mem->bpll_sdiv);
|
||
|
writel(val, &clk->bpll_con0);
|
||
|
while ((readl(&clk->bpll_con0) & BPLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
setbits_le32(&clk->pll_div2_sel, MUX_BPLL_FOUT_SEL);
|
||
|
}
|
||
|
|
||
|
/* Set CPLL */
|
||
|
writel(CPLL_CON1_VAL, &clk->cpll_con1);
|
||
|
val = set_pll(mem->cpll_mdiv, mem->cpll_pdiv, mem->cpll_sdiv);
|
||
|
writel(val, &clk->cpll_con0);
|
||
|
while ((readl(&clk->cpll_con0) & CPLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
/* Set GPLL */
|
||
|
writel(GPLL_CON1_VAL, &clk->gpll_con1);
|
||
|
val = set_pll(mem->gpll_mdiv, mem->gpll_pdiv, mem->gpll_sdiv);
|
||
|
writel(val, &clk->gpll_con0);
|
||
|
while ((readl(&clk->gpll_con0) & GPLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
/* Set EPLL */
|
||
|
writel(EPLL_CON2_VAL, &clk->epll_con2);
|
||
|
writel(EPLL_CON1_VAL, &clk->epll_con1);
|
||
|
val = set_pll(mem->epll_mdiv, mem->epll_pdiv, mem->epll_sdiv);
|
||
|
writel(val, &clk->epll_con0);
|
||
|
while ((readl(&clk->epll_con0) & EPLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
/* Set VPLL */
|
||
|
writel(VPLL_CON2_VAL, &clk->vpll_con2);
|
||
|
writel(VPLL_CON1_VAL, &clk->vpll_con1);
|
||
|
val = set_pll(mem->vpll_mdiv, mem->vpll_pdiv, mem->vpll_sdiv);
|
||
|
writel(val, &clk->vpll_con0);
|
||
|
while ((readl(&clk->vpll_con0) & VPLL_CON0_LOCKED) == 0)
|
||
|
;
|
||
|
|
||
|
writel(CLK_SRC_CORE0_VAL, &clk->src_core0);
|
||
|
writel(CLK_DIV_CORE0_VAL, &clk->div_core0);
|
||
|
while (readl(&clk->div_stat_core0) != 0)
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_CORE1_VAL, &clk->div_core1);
|
||
|
while (readl(&clk->div_stat_core1) != 0)
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_SYSRGT_VAL, &clk->div_sysrgt);
|
||
|
while (readl(&clk->div_stat_sysrgt) != 0)
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_ACP_VAL, &clk->div_acp);
|
||
|
while (readl(&clk->div_stat_acp) != 0)
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_SYSLFT_VAL, &clk->div_syslft);
|
||
|
while (readl(&clk->div_stat_syslft) != 0)
|
||
|
;
|
||
|
|
||
|
writel(CLK_SRC_TOP0_VAL, &clk->src_top0);
|
||
|
writel(CLK_SRC_TOP1_VAL, &clk->src_top1);
|
||
|
writel(TOP2_VAL, &clk->src_top2);
|
||
|
writel(CLK_SRC_TOP3_VAL, &clk->src_top3);
|
||
|
|
||
|
writel(CLK_DIV_TOP0_VAL, &clk->div_top0);
|
||
|
while (readl(&clk->div_stat_top0))
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_TOP1_VAL, &clk->div_top1);
|
||
|
while (readl(&clk->div_stat_top1))
|
||
|
;
|
||
|
|
||
|
writel(CLK_SRC_LEX_VAL, &clk->src_lex);
|
||
|
while (1) {
|
||
|
val = readl(&clk->mux_stat_lex);
|
||
|
if (val == (val | 1))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
writel(CLK_DIV_LEX_VAL, &clk->div_lex);
|
||
|
while (readl(&clk->div_stat_lex))
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_R0X_VAL, &clk->div_r0x);
|
||
|
while (readl(&clk->div_stat_r0x))
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_R0X_VAL, &clk->div_r0x);
|
||
|
while (readl(&clk->div_stat_r0x))
|
||
|
;
|
||
|
|
||
|
writel(CLK_DIV_R1X_VAL, &clk->div_r1x);
|
||
|
while (readl(&clk->div_stat_r1x))
|
||
|
;
|
||
|
|
||
|
if (mem->use_bpll) {
|
||
|
writel(MUX_BPLL_SEL_MASK | MUX_MCLK_CDREX_SEL |
|
||
|
MUX_MCLK_DPHY_SEL, &clk->src_cdrex);
|
||
|
} else {
|
||
|
writel(CLK_REG_DISABLE, &clk->src_cdrex);
|
||
|
}
|
||
|
|
||
|
writel(CLK_DIV_CDREX_VAL, &clk->div_cdrex);
|
||
|
while (readl(&clk->div_stat_cdrex))
|
||
|
;
|
||
|
|
||
|
val = readl(&clk->src_cpu);
|
||
|
val |= CLK_SRC_CPU_VAL;
|
||
|
writel(val, &clk->src_cpu);
|
||
|
|
||
|
val = readl(&clk->src_top2);
|
||
|
val |= CLK_SRC_TOP2_VAL;
|
||
|
writel(val, &clk->src_top2);
|
||
|
|
||
|
val = readl(&clk->src_core1);
|
||
|
val |= CLK_SRC_CORE1_VAL;
|
||
|
writel(val, &clk->src_core1);
|
||
|
|
||
|
writel(CLK_SRC_FSYS0_VAL, &clk->src_fsys);
|
||
|
writel(CLK_DIV_FSYS0_VAL, &clk->div_fsys0);
|
||
|
while (readl(&clk->div_stat_fsys0))
|
||
|
;
|
||
|
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_cpu);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_core);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_acp);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_top);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_lex);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_r0x);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_r1x);
|
||
|
writel(CLK_REG_DISABLE, &clk->clkout_cmu_cdrex);
|
||
|
|
||
|
writel(CLK_SRC_PERIC0_VAL, &clk->src_peric0);
|
||
|
writel(CLK_DIV_PERIC0_VAL, &clk->div_peric0);
|
||
|
|
||
|
writel(CLK_SRC_PERIC1_VAL, &clk->src_peric1);
|
||
|
writel(CLK_DIV_PERIC1_VAL, &clk->div_peric1);
|
||
|
writel(CLK_DIV_PERIC2_VAL, &clk->div_peric2);
|
||
|
writel(SCLK_SRC_ISP_VAL, &clk->sclk_src_isp);
|
||
|
writel(SCLK_DIV_ISP_VAL, &clk->sclk_div_isp);
|
||
|
writel(CLK_DIV_ISP0_VAL, &clk->div_isp0);
|
||
|
writel(CLK_DIV_ISP1_VAL, &clk->div_isp1);
|
||
|
writel(CLK_DIV_ISP2_VAL, &clk->div_isp2);
|
||
|
|
||
|
/* FIMD1 SRC CLK SELECTION */
|
||
|
writel(CLK_SRC_DISP1_0_VAL, &clk->src_disp1_0);
|
||
|
|
||
|
val = MMC2_PRE_RATIO_VAL << MMC2_PRE_RATIO_OFFSET
|
||
|
| MMC2_RATIO_VAL << MMC2_RATIO_OFFSET
|
||
|
| MMC3_PRE_RATIO_VAL << MMC3_PRE_RATIO_OFFSET
|
||
|
| MMC3_RATIO_VAL << MMC3_RATIO_OFFSET;
|
||
|
writel(val, &clk->div_fsys2);
|
||
|
}
|
||
|
|
||
|
#include <console/vtxprintf.h>
|
||
|
#include <string.h>
|
||
|
#define ZEROPAD 1 /* pad with zero */
|
||
|
#define SIGN 2 /* unsigned/signed long */
|
||
|
#define PLUS 4 /* show plus */
|
||
|
#define SPACE 8 /* space if plus */
|
||
|
#define LEFT 16 /* left justified */
|
||
|
#define SPECIAL 32 /* 0x */
|
||
|
#define LARGE 64 /* use 'ABCDEF' instead of 'abcdef' */
|
||
|
/* haha, don't need ctype.c */
|
||
|
#define isdigit(c) ((c) >= '0' && (c) <= '9')
|
||
|
#define is_digit isdigit
|
||
|
#define isxdigit(c) (((c) >= '0' && (c) <= '9') || ((c) >= 'a' && (c) <= 'f') || ((c) >= 'A' && (c) <= 'F'))
|
||
|
|
||
|
void __div0 (void);
|
||
|
void __div0 (void)
|
||
|
{
|
||
|
puts("divide by zero detected");
|
||
|
while(1) ;
|
||
|
}
|
||
|
|
||
|
static int skip_atoi(const char **s)
|
||
|
{
|
||
|
int i=0;
|
||
|
|
||
|
while (is_digit(**s))
|
||
|
i = i*10 + *((*s)++) - '0';
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
#include <div64.h>
|
||
|
static int number(void (*tx_byte)(unsigned char byte),
|
||
|
unsigned long long num, int base, int size, int precision, int type)
|
||
|
{
|
||
|
char c,sign,tmp[66];
|
||
|
const char *digits="0123456789abcdefghijklmnopqrstuvwxyz";
|
||
|
int i;
|
||
|
int count = 0;
|
||
|
|
||
|
if (type & LARGE)
|
||
|
digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||
|
if (type & LEFT)
|
||
|
type &= ~ZEROPAD;
|
||
|
if (base < 2 || base > 36)
|
||
|
return 0;
|
||
|
c = (type & ZEROPAD) ? '0' : ' ';
|
||
|
sign = 0;
|
||
|
if (type & SIGN) {
|
||
|
if ((signed long long)num < 0) {
|
||
|
sign = '-';
|
||
|
num = -num;
|
||
|
size--;
|
||
|
} else if (type & PLUS) {
|
||
|
sign = '+';
|
||
|
size--;
|
||
|
} else if (type & SPACE) {
|
||
|
sign = ' ';
|
||
|
size--;
|
||
|
}
|
||
|
}
|
||
|
if (type & SPECIAL) {
|
||
|
if (base == 16)
|
||
|
size -= 2;
|
||
|
else if (base == 8)
|
||
|
size--;
|
||
|
}
|
||
|
i = 0;
|
||
|
if (num == 0) {
|
||
|
tmp[i++]='0';
|
||
|
} else while (num != 0) {
|
||
|
/* FIXME: do_div was broken */
|
||
|
// tmp[i++] = digits[do_div(num,base)];
|
||
|
tmp[i++] = digits[num & 0xf];
|
||
|
num = num >> 4;
|
||
|
}
|
||
|
if (i > precision)
|
||
|
precision = i;
|
||
|
size -= precision;
|
||
|
if (!(type&(ZEROPAD+LEFT)))
|
||
|
while(size-->0)
|
||
|
tx_byte(' '), count++;
|
||
|
if (sign)
|
||
|
tx_byte(sign), count++;
|
||
|
if (type & SPECIAL) {
|
||
|
if (base==8)
|
||
|
tx_byte('0'), count++;
|
||
|
else if (base==16) {
|
||
|
tx_byte('0'), count++;
|
||
|
tx_byte(digits[33]), count++;
|
||
|
}
|
||
|
}
|
||
|
if (!(type & LEFT))
|
||
|
while (size-- > 0)
|
||
|
tx_byte(c), count++;
|
||
|
while (i < precision--)
|
||
|
tx_byte('0'), count++;
|
||
|
while (i-- > 0)
|
||
|
tx_byte(tmp[i]), count++;
|
||
|
while (size-- > 0)
|
||
|
tx_byte(' '), count++;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
int vtxprintf(void (*tx_byte)(unsigned char byte), const char *fmt, va_list args)
|
||
|
{
|
||
|
int len;
|
||
|
unsigned long long num;
|
||
|
int i, base;
|
||
|
const char *s;
|
||
|
|
||
|
int flags; /* flags to number() */
|
||
|
|
||
|
int field_width; /* width of output field */
|
||
|
int precision; /* min. # of digits for integers; max
|
||
|
number of chars for from string */
|
||
|
int qualifier; /* 'h', 'l', or 'L' for integer fields */
|
||
|
|
||
|
int count;
|
||
|
|
||
|
for (count=0; *fmt ; ++fmt) {
|
||
|
if (*fmt != '%') {
|
||
|
tx_byte(*fmt), count++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* process flags */
|
||
|
flags = 0;
|
||
|
repeat:
|
||
|
++fmt; /* this also skips first '%' */
|
||
|
switch (*fmt) {
|
||
|
case '-': flags |= LEFT; goto repeat;
|
||
|
case '+': flags |= PLUS; goto repeat;
|
||
|
case ' ': flags |= SPACE; goto repeat;
|
||
|
case '#': flags |= SPECIAL; goto repeat;
|
||
|
case '0': flags |= ZEROPAD; goto repeat;
|
||
|
}
|
||
|
|
||
|
/* get field width */
|
||
|
field_width = -1;
|
||
|
if (is_digit(*fmt))
|
||
|
field_width = skip_atoi(&fmt);
|
||
|
else if (*fmt == '*') {
|
||
|
++fmt;
|
||
|
/* it's the next argument */
|
||
|
field_width = va_arg(args, int);
|
||
|
if (field_width < 0) {
|
||
|
field_width = -field_width;
|
||
|
flags |= LEFT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* get the precision */
|
||
|
precision = -1;
|
||
|
if (*fmt == '.') {
|
||
|
++fmt;
|
||
|
if (is_digit(*fmt))
|
||
|
precision = skip_atoi(&fmt);
|
||
|
else if (*fmt == '*') {
|
||
|
++fmt;
|
||
|
/* it's the next argument */
|
||
|
precision = va_arg(args, int);
|
||
|
}
|
||
|
if (precision < 0)
|
||
|
precision = 0;
|
||
|
}
|
||
|
|
||
|
/* get the conversion qualifier */
|
||
|
qualifier = -1;
|
||
|
if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L' || *fmt == 'z') {
|
||
|
qualifier = *fmt;
|
||
|
++fmt;
|
||
|
if (*fmt == 'l') {
|
||
|
qualifier = 'L';
|
||
|
++fmt;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* default base */
|
||
|
base = 10;
|
||
|
|
||
|
switch (*fmt) {
|
||
|
case 'c':
|
||
|
if (!(flags & LEFT))
|
||
|
while (--field_width > 0)
|
||
|
tx_byte(' '), count++;
|
||
|
tx_byte((unsigned char) va_arg(args, int)), count++;
|
||
|
while (--field_width > 0)
|
||
|
tx_byte(' '), count++;
|
||
|
continue;
|
||
|
|
||
|
case 's':
|
||
|
s = va_arg(args, char *);
|
||
|
if (!s)
|
||
|
s = "<NULL>";
|
||
|
|
||
|
len = strnlen(s, precision);
|
||
|
|
||
|
if (!(flags & LEFT))
|
||
|
while (len < field_width--)
|
||
|
tx_byte(' '), count++;
|
||
|
for (i = 0; i < len; ++i)
|
||
|
tx_byte(*s++), count++;
|
||
|
while (len < field_width--)
|
||
|
tx_byte(' '), count++;
|
||
|
continue;
|
||
|
|
||
|
case 'p':
|
||
|
if (field_width == -1) {
|
||
|
field_width = 2*sizeof(void *);
|
||
|
flags |= ZEROPAD;
|
||
|
}
|
||
|
count += number(tx_byte,
|
||
|
(unsigned long) va_arg(args, void *), 16,
|
||
|
field_width, precision, flags);
|
||
|
continue;
|
||
|
|
||
|
case 'n':
|
||
|
if (qualifier == 'L') {
|
||
|
long long *ip = va_arg(args, long long *);
|
||
|
*ip = count;
|
||
|
} else if (qualifier == 'l') {
|
||
|
long * ip = va_arg(args, long *);
|
||
|
*ip = count;
|
||
|
} else {
|
||
|
int * ip = va_arg(args, int *);
|
||
|
*ip = count;
|
||
|
}
|
||
|
continue;
|
||
|
|
||
|
case '%':
|
||
|
tx_byte('%'), count++;
|
||
|
continue;
|
||
|
|
||
|
/* integer number formats - set up the flags and "break" */
|
||
|
case 'o':
|
||
|
base = 8;
|
||
|
break;
|
||
|
|
||
|
case 'X':
|
||
|
flags |= LARGE;
|
||
|
case 'x':
|
||
|
base = 16;
|
||
|
break;
|
||
|
|
||
|
case 'd':
|
||
|
case 'i':
|
||
|
flags |= SIGN;
|
||
|
case 'u':
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
tx_byte('%'), count++;
|
||
|
if (*fmt)
|
||
|
tx_byte(*fmt), count++;
|
||
|
else
|
||
|
--fmt;
|
||
|
continue;
|
||
|
}
|
||
|
if (qualifier == 'L') {
|
||
|
num = va_arg(args, unsigned long long);
|
||
|
} else if (qualifier == 'l') {
|
||
|
num = va_arg(args, unsigned long);
|
||
|
} else if (qualifier == 'z') {
|
||
|
num = va_arg(args, size_t);
|
||
|
} else if (qualifier == 'h') {
|
||
|
num = (unsigned short) va_arg(args, int);
|
||
|
if (flags & SIGN)
|
||
|
num = (short) num;
|
||
|
} else if (flags & SIGN) {
|
||
|
num = va_arg(args, int);
|
||
|
} else {
|
||
|
num = va_arg(args, unsigned int);
|
||
|
}
|
||
|
count += number(tx_byte, num, base, field_width, precision, flags);
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
int do_printk(int msg_level, const char *fmt, ...)
|
||
|
{
|
||
|
va_list args;
|
||
|
int i;
|
||
|
|
||
|
va_start(args, fmt);
|
||
|
i = vtxprintf(exynos5_uart_tx_byte, fmt, args);
|
||
|
va_end(args);
|
||
|
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
void bootblock_mainboard_init(void);
|
||
|
void bootblock_mainboard_init(void)
|
||
|
{
|
||
|
/* FIXME: we should not need UART in bootblock, this is only
|
||
|
done for testing purposes */
|
||
|
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
|
||
|
power_init();
|
||
|
clock_init();
|
||
|
do_serial();
|
||
|
printk(BIOS_INFO, "%s: hello world\n", __func__);
|
||
|
|
||
|
/* Copy romstage data from SPI ROM to SRAM */
|
||
|
/* FIXME: test with something benign, then fix the offsets once
|
||
|
we're more confident in this */
|
||
|
copy_romstage(0x2000, 0x2060000, 0x800);
|
||
|
}
|