soc/intel/cannonlake: Support different SPD read type for each slot

Also clean up cannonlake_memcfg_init.

The major changes include:
(1) Add enum 'mem_info_read_type' to spd_info.
(2) Add per-dimm-slot spd_info to cnl_mb_cfg.
(3) Setup memory config for each slot independently.
(4) Squash meminit_memcfg_spd().

BUG=chromium:960581, b:124990009
BRANCH=none
TEST=boot hatch, hatch_whl, and kohaku

Change-Id: I686a85996858204c20fd05ef24787a0487817c34
Signed-off-by: Philip Chen <philipchen@google.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/32513
Reviewed-by: Paul Fagerburg <pfagerburg@chromium.org>
Reviewed-by: Furquan Shaikh <furquan@google.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
Philip Chen 2019-04-29 10:18:24 -07:00 committed by Patrick Georgi
parent 72f6fbb1bc
commit 0d4200fef3
10 changed files with 179 additions and 162 deletions

View File

@ -16,23 +16,63 @@
#include <baseboard/variants.h>
#include <console/console.h>
#include <ec/google/chromeec/ec.h>
#include <gpio.h>
#include <memory_info.h>
#include <soc/cnl_memcfg_init.h>
#include <soc/romstage.h>
#include <string.h>
/* Memory configuration board straps */
#define GPIO_MEM_CONFIG_0 GPP_F20
#define GPIO_MEM_CONFIG_1 GPP_F21
#define GPIO_MEM_CONFIG_2 GPP_F11
#define GPIO_MEM_CONFIG_3 GPP_F22
/*
* GPIO_MEM_CH_SEL is set to 1 for single channel skus
* and 0 for dual channel skus.
*/
#define GPIO_MEM_CH_SEL GPP_F2
static int memory_sku(void)
{
const gpio_t spd_gpios[] = {
GPIO_MEM_CONFIG_0,
GPIO_MEM_CONFIG_1,
GPIO_MEM_CONFIG_2,
GPIO_MEM_CONFIG_3,
};
return gpio_base2_value(spd_gpios, ARRAY_SIZE(spd_gpios));
}
void mainboard_memory_init_params(FSPM_UPD *memupd)
{
struct cnl_mb_cfg memcfg;
const struct spd_info spd = {
.spd_by_index = true,
.spd_spec.spd_index = variant_memory_sku(),
};
int mem_sku;
int is_single_ch_mem;
variant_memory_params(&memcfg);
cannonlake_memcfg_init(&memupd->FspmConfig,
&memcfg, &spd);
mem_sku = memory_sku();
/*
* GPP_F2 is the MEM_CH_SEL gpio, which is set to 1 for single
* channel skus and 0 for dual channel skus.
*/
is_single_ch_mem = gpio_get(GPIO_MEM_CH_SEL);
/*
* spd[0]-spd[3] map to CH0D0, CH0D1, CH1D0, CH1D1 respectively.
* Dual-DIMM memory is not used in hatch family, so we only
* fill in spd_info for CH0D0 and CH1D0 here.
*/
memcfg.spd[0].read_type = READ_SPD_CBFS;
memcfg.spd[0].spd_spec.spd_index = mem_sku;
if (!is_single_ch_mem) {
memcfg.spd[2].read_type = READ_SPD_CBFS;
memcfg.spd[2].spd_spec.spd_index = mem_sku;
}
cannonlake_memcfg_init(&memupd->FspmConfig, &memcfg);
}
void mainboard_get_dram_part_num(const char **part_num, size_t *len)

View File

@ -22,13 +22,6 @@
#define GPIO_PCH_WP GPP_C20
/* Memory configuration board straps */
#define GPIO_MEM_CONFIG_0 GPP_F20
#define GPIO_MEM_CONFIG_1 GPP_F21
#define GPIO_MEM_CONFIG_2 GPP_F11
#define GPIO_MEM_CONFIG_3 GPP_F22
/* EC wake pin is LAN_WAKE# */
#define GPE_EC_WAKE GPE0_LAN_WAK

View File

@ -31,9 +31,6 @@ const struct pad_config *base_early_gpio_table(size_t *num);
const struct pad_config *override_gpio_table(size_t *num);
const struct pad_config *override_early_gpio_table(size_t *num);
/* Return memory SKU for the board. */
int variant_memory_sku(void);
/* Return board specific memory configuration */
void variant_memory_params(struct cnl_mb_cfg *bcfg);

View File

@ -15,16 +15,15 @@
#include <baseboard/variants.h>
#include <baseboard/gpio.h>
#include <gpio.h>
#include <soc/cnl_memcfg_init.h>
#include <string.h>
static const struct cnl_mb_cfg baseboard_memcfg = {
/* Baseboard uses 121, 81 and 100 rcomp resistors */
.rcomp_resistor = { 121, 81, 100 },
.rcomp_resistor = {121, 81, 100},
/* Baseboard Rcomp target values */
.rcomp_targets = { 100, 40, 20, 20, 26 },
.rcomp_targets = {100, 40, 20, 20, 26},
/* Set CaVref config to 2 */
.vref_ca_config = 2,
@ -36,32 +35,4 @@ static const struct cnl_mb_cfg baseboard_memcfg = {
void __weak variant_memory_params(struct cnl_mb_cfg *bcfg)
{
memcpy(bcfg, &baseboard_memcfg, sizeof(baseboard_memcfg));
/*
* GPP_F2 is the MEM_CH_SEL gpio, which is set to 1 for single
* channel skus and 0 for dual channel skus.
*/
if (gpio_get(GPP_F2) == 1) {
/*
* Single channel config: for Hatch, Channel 0 is
* always populated.
*/
bcfg->channel_empty[0] = 0;
bcfg->channel_empty[1] = 1;
} else {
/* Dual channel config: both channels populated. */
bcfg->channel_empty[0] = 0;
bcfg->channel_empty[1] = 0;
}
}
int __weak variant_memory_sku(void)
{
const gpio_t spd_gpios[] = {
GPIO_MEM_CONFIG_0,
GPIO_MEM_CONFIG_1,
GPIO_MEM_CONFIG_2,
GPIO_MEM_CONFIG_3,
};
return gpio_base2_value(spd_gpios, ARRAY_SIZE(spd_gpios));
}

View File

@ -15,7 +15,6 @@
#include <baseboard/variants.h>
#include <baseboard/gpio.h>
#include <gpio.h>
#include <soc/cnl_memcfg_init.h>
#include <string.h>
@ -30,8 +29,8 @@ static const struct cnl_mb_cfg baseboard_memcfg = {
* the index = pin number on SoC
* the value = pin number on lpddr3 part
*/
.dqs_map[DDR_CH0] = { 0, 1, 3, 2, 5, 7, 6, 4 },
.dqs_map[DDR_CH1] = { 1, 3, 2, 0, 5, 7, 6, 4 },
.dqs_map[DDR_CH0] = {0, 1, 3, 2, 5, 7, 6, 4},
.dqs_map[DDR_CH1] = {1, 3, 2, 0, 5, 7, 6, 4},
.dq_map[DDR_CH0] = {
{0xf, 0xf0},
@ -51,10 +50,10 @@ static const struct cnl_mb_cfg baseboard_memcfg = {
},
/* Kohaku uses 200, 80.6 and 162 rcomp resistors */
.rcomp_resistor = { 200, 81, 162 },
.rcomp_resistor = {200, 81, 162},
/* Kohaku Rcomp target values */
.rcomp_targets = { 100, 40, 40, 23, 40 },
.rcomp_targets = {100, 40, 40, 23, 40},
/* Set CaVref config to 0 for LPDDR3 */
.vref_ca_config = 0,
@ -66,20 +65,4 @@ static const struct cnl_mb_cfg baseboard_memcfg = {
void variant_memory_params(struct cnl_mb_cfg *bcfg)
{
memcpy(bcfg, &baseboard_memcfg, sizeof(baseboard_memcfg));
/*
* GPP_F2 is the MEM_CH_SEL gpio, which is set to 1 for single
* channel skus and 0 for dual channel skus.
*/
if (gpio_get(GPP_F2) == 1) {
/*
* Single channel config: for kohaku, Channel 0 is
* always populated.
*/
bcfg->channel_empty[0] = 0;
bcfg->channel_empty[1] = 1;
} else {
/* Dual channel config: both channels populated. */
bcfg->channel_empty[0] = 0;
bcfg->channel_empty[1] = 0;
}
}

View File

@ -18,6 +18,18 @@
#include <soc/romstage.h>
static const struct cnl_mb_cfg memcfg = {
/* Access memory info through SMBUS. */
.spd[0] = {
.read_type = READ_SMBUS,
.spd_spec = {.spd_smbus_address = 0xa0},
},
.spd[1] = {.read_type = NOT_EXISTING},
.spd[2] = {
.read_type = READ_SMBUS,
.spd_spec = {.spd_smbus_address = 0xa4},
},
.spd[3] = {.read_type = NOT_EXISTING},
/*
* The dqs_map arrays map the ddr4 pins to the SoC pins
* for both channels.
@ -25,16 +37,16 @@ static const struct cnl_mb_cfg memcfg = {
* the index = pin number on ddr4 part
* the value = pin number on SoC
*/
.dqs_map[DDR_CH0] = { 0, 1, 4, 5, 2, 3, 6, 7 },
.dqs_map[DDR_CH1] = { 0, 1, 4, 5, 2, 3, 6, 7 },
.dqs_map[DDR_CH0] = {0, 1, 4, 5, 2, 3, 6, 7},
.dqs_map[DDR_CH1] = {0, 1, 4, 5, 2, 3, 6, 7},
/* Baseboard uses 121, 81 and 100 rcomp resistors */
.rcomp_resistor = { 121, 81, 100 },
.rcomp_resistor = {121, 81, 100},
/*
* Baseboard Rcomp target values.
*/
.rcomp_targets = { 100, 40, 20, 20, 26 },
.rcomp_targets = {100, 40, 20, 20, 26},
/* Disable Early Command Training */
.ect = 0,
@ -45,12 +57,7 @@ static const struct cnl_mb_cfg memcfg = {
void mainboard_memory_init_params(FSPM_UPD *memupd)
{
const struct spd_info spd = {
.spd_smbus_address[0] = 0xa0,
.spd_smbus_address[2] = 0xa4
};
wilco_ec_romstage_init();
cannonlake_memcfg_init(&memupd->FspmConfig, &memcfg, &spd);
cannonlake_memcfg_init(&memupd->FspmConfig, &memcfg);
}

View File

@ -20,6 +20,23 @@
#include <soc/cnl_memcfg_init.h>
static const struct cnl_mb_cfg baseboard_memcfg_cfg = {
/* Access memory info through SMBUS. */
.spd[0] = {
.read_type = READ_SMBUS,
.spd_spec = {.spd_smbus_address = 0xA0}
},
.spd[1] = {
.read_type = READ_SMBUS,
.spd_spec = {.spd_smbus_address = 0xA2}
},
.spd[2] = {
.read_type = READ_SMBUS,
.spd_spec = {.spd_smbus_address = 0xA4}
},
.spd[3] = {
.read_type = READ_SMBUS,
.spd_spec = {.spd_smbus_address = 0xA6}
},
/*
* The dqs_map arrays map the ddr4 pins to the SoC pins
* for both channels.
@ -27,16 +44,16 @@ static const struct cnl_mb_cfg baseboard_memcfg_cfg = {
* the index = pin number on ddr4 part
* the value = pin number on SoC
*/
.dqs_map[DDR_CH0] = { 0, 1, 3, 2, 4, 5, 6, 7 },
.dqs_map[DDR_CH1] = { 1, 0, 4, 5, 2, 3, 6, 7 },
.dqs_map[DDR_CH0] = {0, 1, 3, 2, 4, 5, 6, 7},
.dqs_map[DDR_CH1] = {1, 0, 4, 5, 2, 3, 6, 7},
/* Baseboard uses 121, 81 and 100 rcomp resistors */
.rcomp_resistor = { 121, 81, 100 },
.rcomp_resistor = {121, 81, 100},
/*
* Baseboard Rcomp target values.
*/
.rcomp_targets = { 100, 40, 20, 20, 26 },
.rcomp_targets = {100, 40, 20, 20, 26},
/* Baseboard is an interleaved design */
.dq_pins_interleaved = 1,

View File

@ -20,13 +20,5 @@
void mainboard_memory_init_params(FSPM_UPD *memupd)
{
const struct spd_info spd = {
.spd_smbus_address[0] = 0xA0,
.spd_smbus_address[1] = 0xA2,
.spd_smbus_address[2] = 0xA4,
.spd_smbus_address[3] = 0xA6,
};
cannonlake_memcfg_init(&memupd->FspmConfig,
variant_memcfg_config(), &spd);
cannonlake_memcfg_init(&memupd->FspmConfig, variant_memcfg_config());
}

View File

@ -48,28 +48,39 @@ static void meminit_memcfg(FSP_M_CONFIG *mem_cfg,
sizeof(mem_cfg->RcompTarget));
}
static void meminit_memcfg_spd(FSP_M_CONFIG *mem_cfg,
const struct cnl_mb_cfg *cnl_cfg,
size_t spd_data_len, uintptr_t spd_data_ptr)
{
mem_cfg->MemorySpdDataLen = spd_data_len;
if (cnl_cfg->channel_empty[0] == 0)
mem_cfg->MemorySpdPtr00 = spd_data_ptr;
if (cnl_cfg->channel_empty[1] == 0)
mem_cfg->MemorySpdPtr10 = spd_data_ptr;
}
/*
* Initialize default memory settings using spd data contained in a buffer.
*/
static void meminit_spd_data(FSP_M_CONFIG *mem_cfg,
const struct cnl_mb_cfg *cnl_cfg,
static void meminit_spd_data(FSP_M_CONFIG *mem_cfg, uint8_t mem_slot,
size_t spd_data_len, uintptr_t spd_data_ptr)
{
assert(spd_data_ptr && spd_data_len);
meminit_memcfg_spd(mem_cfg, cnl_cfg, spd_data_len, spd_data_ptr);
static size_t last_set_spd_data_len = 0;
assert(spd_data_ptr != 0 && spd_data_len != 0);
if (last_set_spd_data_len != 0 &&
last_set_spd_data_len != spd_data_len)
die("spd data length disparity among slots");
mem_cfg->MemorySpdDataLen = spd_data_len;
last_set_spd_data_len = spd_data_len;
switch (mem_slot) {
case 0:
mem_cfg->MemorySpdPtr00 = spd_data_ptr;
break;
case 1:
mem_cfg->MemorySpdPtr01 = spd_data_ptr;
break;
case 2:
mem_cfg->MemorySpdPtr10 = spd_data_ptr;
break;
case 3:
mem_cfg->MemorySpdPtr11 = spd_data_ptr;
break;
default:
die("nonexistent memory slot");
}
}
/*
@ -78,13 +89,13 @@ static void meminit_spd_data(FSP_M_CONFIG *mem_cfg,
* in spd/Makefile.inc.
*/
static void meminit_cbfs_spd_index(FSP_M_CONFIG *mem_cfg,
const struct cnl_mb_cfg *cnl_cfg,
int spd_index)
int spd_index, uint8_t mem_slot)
{
size_t spd_data_len;
uintptr_t spd_data_ptr;
struct region_device spd_rdev;
assert(mem_slot < NUM_DIMM_SLOT);
printk(BIOS_DEBUG, "SPD INDEX = %d\n", spd_index);
if (get_spd_cbfs_rdev(&spd_rdev, spd_index) < 0)
die("spd.bin not found or incorrect index\n");
@ -92,40 +103,42 @@ static void meminit_cbfs_spd_index(FSP_M_CONFIG *mem_cfg,
/* Memory leak is ok since we have memory mapped boot media */
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
spd_data_ptr = (uintptr_t)rdev_mmap_full(&spd_rdev);
meminit_spd_data(mem_cfg, cnl_cfg, spd_data_len, spd_data_ptr);
meminit_spd_data(mem_cfg, mem_slot, spd_data_len, spd_data_ptr);
}
/* Initialize onboard memory configurations for CannonLake */
void cannonlake_memcfg_init(FSP_M_CONFIG *mem_cfg,
const struct cnl_mb_cfg *cnl_cfg,
const struct spd_info *spd)
const struct cnl_mb_cfg *cnl_cfg)
{
bool OnModuleSpd = false;
const struct spd_info *spdi;
/* Early Command Training Enabled */
mem_cfg->ECT = cnl_cfg->ect;
mem_cfg->DqPinsInterleaved = cnl_cfg->dq_pins_interleaved;
mem_cfg->CaVrefConfig = cnl_cfg->vref_ca_config;
/* Spd pointer will only be used if all smbus slave address of memory
* sockets on the platform is empty */
for (int i = 0; i < ARRAY_SIZE(mem_cfg->SpdAddressTable); i++) {
if (spd->spd_smbus_address[i] != 0) {
mem_cfg->SpdAddressTable[i] = spd->spd_smbus_address[i];
OnModuleSpd = true;
}
}
if (!OnModuleSpd) {
if (spd->spd_by_index) {
meminit_cbfs_spd_index(mem_cfg, cnl_cfg,
spd->spd_spec.spd_index);
} else {
meminit_spd_data(mem_cfg, cnl_cfg,
spd->spd_spec.spd_data_ptr_info.spd_data_len,
spd->spd_spec.spd_data_ptr_info.spd_data_ptr);
}
for (int i = 0; i < NUM_DIMM_SLOT; i++) {
spdi = &(cnl_cfg->spd[i]);
switch (spdi->read_type) {
case NOT_EXISTING:
break;
case READ_SMBUS:
mem_cfg->SpdAddressTable[i] =
spdi->spd_spec.spd_smbus_address;
break;
case READ_SPD_CBFS:
meminit_cbfs_spd_index(mem_cfg,
spdi->spd_spec.spd_index, i);
break;
case READ_SPD_MEMPTR:
meminit_spd_data(mem_cfg, i,
spdi->spd_spec.spd_data_ptr_info.spd_data_len,
spdi->spd_spec.spd_data_ptr_info.spd_data_ptr);
break;
default:
die("no valid way to read mem info");
}
meminit_memcfg(mem_cfg, cnl_cfg);
}
}

View File

@ -23,6 +23,9 @@
/* Number of dq bits controlled per dqs */
#define DQ_BITS_PER_DQS 8
/* Number of memory DIMM slots available on Cannonlake board */
#define NUM_DIMM_SLOT 4
/*
* Number of memory packages, where a "package" represents a 64-bit solution.
*/
@ -40,17 +43,32 @@ struct spd_by_pointer {
uintptr_t spd_data_ptr;
};
enum mem_info_read_type {
NOT_EXISTING, /* No memory in this slot */
READ_SMBUS, /* Read on-module spd by SMBUS. */
READ_SPD_CBFS, /* Find spd file in CBFS. */
READ_SPD_MEMPTR /* Find spd data from pointer. */
};
struct spd_info {
bool spd_by_index;
enum mem_info_read_type read_type;
union spd_data_by {
/* To read on-module spd when read_type is READ_SMBUS. */
uint8_t spd_smbus_address;
/* To identify spd file when read_type is READ_SPD_CBFS. */
int spd_index;
/* To find spd data when read_type is READ_SPD_MEMPTR. */
struct spd_by_pointer spd_data_ptr_info;
} spd_spec;
uint8_t spd_smbus_address[4];
};
/* Board-specific memory dq mapping information */
struct cnl_mb_cfg {
/* Parameters required to access SPD for CH0D0/CH0D1/CH1D0/CH1D1. */
struct spd_info spd[NUM_DIMM_SLOT];
/*
* For each channel, there are 6 sets of DQ byte mappings,
* where each set has a package 0 and a package 1 value (package 0
@ -107,26 +125,12 @@ struct cnl_mb_cfg {
/* Early Command Training Enabled */
uint8_t ect;
/*
* Flags to indicate which channels are populated. We
* currently support single or dual channel configurations.
* Set 1 to indicate that the channel is not populated Set 0
* to indicate that the channel is populated. For example,
* dual channel memory configuration would have both
* channel_empty[0] = 0 and channel_empty[1] = 0. Note that
* this flag is only used for soldered down DRAM where we get
* SPD data from CBFS. We need the value 0 to default to
* populated in order to support existing boards.
*/
uint8_t channel_empty[2];
};
/*
* Initialize default memory configurations for CannonLake.
*/
void cannonlake_memcfg_init(FSP_M_CONFIG *mem_cfg,
const struct cnl_mb_cfg *cnl_cfg,
const struct spd_info *spd);
const struct cnl_mb_cfg *cnl_cfg);
#endif /* _SOC_CANNONLAKE_MEMCFG_INIT_H_ */