sb/intel/bd82x6x: Factor out common ME functions

We can now factor out the essentially duplicated ME functions.

We include a .c file to preserve reproducibility. This is needed because
there are two different `mei_base_address` global variables, and we have
to access the same variables in order for builds to be reproducible.

The duplicate global in `me.c` and `me_8.x.c` will be completely gone
once this new `me_common.c` file becomes a standalone compilation unit.
We are wrapping some things in static inline functions, as they won't be
directly accessible anymore after moving to a separate compilation unit.

Tested with BUILD_TIMELESS=1, Asus P8Z77-V LX2 remains identical.

Change-Id: I057809aa039d70c4b5fa9c24fbd26c8f52aca736
Signed-off-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/42012
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Arthur Heymans <arthur@aheymans.xyz>
Reviewed-by: Michael Niewöhner
This commit is contained in:
Angel Pons 2020-08-10 15:47:28 +02:00 committed by Michael Niewöhner
parent 62e883d73b
commit 2e29c3b0d5
3 changed files with 429 additions and 770 deletions

View file

@ -27,304 +27,8 @@
#include <vendorcode/google/chromeos/gnvs.h> #include <vendorcode/google/chromeos/gnvs.h>
#endif #endif
/* Path that the BIOS should take based on ME state */ /* FIXME: For verification purposes only */
static const char *me_bios_path_values[] __unused = { #include "me_common.c"
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
/* MMIO base address for MEI interface */
static u32 *mei_base_address;
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
struct mei_csr *csr;
if (!CONFIG(DEBUG_INTEL_ME))
return;
printk(BIOS_SPEW, "%-9s[%02x] : ", type, offset);
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
csr = ptr;
if (!csr) {
printk(BIOS_SPEW, "ERROR: 0x%08x\n", dword);
break;
}
printk(BIOS_SPEW, "cbd=%u cbrp=%02u cbwp=%02u ready=%u "
"reset=%u ig=%u is=%u ie=%u\n", csr->buffer_depth,
csr->buffer_read_ptr, csr->buffer_write_ptr,
csr->ready, csr->reset, csr->interrupt_generate,
csr->interrupt_status, csr->interrupt_enable);
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printk(BIOS_SPEW, "CB: 0x%08x\n", dword);
break;
default:
printk(BIOS_SPEW, "0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, int offset)
{
u32 dword = read32(mei_base_address + (offset/sizeof(u32)));
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "READ");
}
static inline void mei_write_dword_ptr(void *ptr, int offset)
{
u32 dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_base_address + (offset/sizeof(u32)), dword);
mei_dump(ptr, dword, offset, "WRITE");
}
#ifndef __SIMPLE_DEVICE__
static inline void pci_read_dword_ptr(struct device *dev, void *ptr, int offset)
{
u32 dword = pci_read_config32(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "PCI READ");
}
#endif
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(u32 dword)
{
write32(mei_base_address + (MEI_H_CB_WW/sizeof(u32)), dword);
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
static inline u32 read_cb(void)
{
u32 dword = read32(mei_base_address + (MEI_ME_CB_RW/sizeof(u32)));
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned int try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
udelay(ME_DELAY);
}
printk(BIOS_ERR, "ME: failed to become ready\n");
return -1;
}
static void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data)
{
struct mei_csr host;
unsigned int ndata, n;
u32 *data;
/* Number of dwords to write, ignoring MKHI */
ndata = mei->length >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printk(BIOS_DEBUG, "ME: request does not include MKHI\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/*
* This implementation does not handle splitting large messages
* across multiple transactions. Ensure the requested length
* will fit in the available circular buffer depth.
*/
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write MKHI header */
mei_write_dword_ptr(mkhi, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_recv_msg(struct mkhi_header *mkhi, void *rsp_data, int rsp_bytes)
{
struct mei_header mei_rsp;
struct mkhi_header mkhi_rsp;
struct mei_csr me, host;
unsigned int ndata, n;
unsigned int expected;
u32 *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + sizeof(mkhi_rsp)) >> 2;
if (rsp_bytes & 3)
expected++;
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
break;
udelay(ME_DELAY);
}
if (!n) {
printk(BIOS_ERR, "ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printk(BIOS_ERR, "ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least MKHI header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) {
printk(BIOS_ERR, "ME: response is missing data %d != %d\n",
ndata, (expected - 1));
return -1;
}
/* Read and verify MKHI response header from the ME */
mei_read_dword_ptr(&mkhi_rsp, MEI_ME_CB_RW);
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printk(BIOS_ERR, "ME: invalid response, group %u ?= %u, "
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
return -1;
}
ndata--; /* MKHI header has been read */
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printk(BIOS_ERR, "ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data, void *rsp_data, int rsp_bytes)
{
if (mei_send_msg(mei, mkhi, req_data) < 0)
return -1;
if (mei_recv_msg(mkhi, rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/* Send END OF POST message to the ME */ /* Send END OF POST message to the ME */
static int __unused mkhi_end_of_post(void) static int __unused mkhi_end_of_post(void)
@ -438,11 +142,10 @@ static void intel_me7_finalize_smm(void)
struct me_hfs hfs; struct me_hfs hfs;
u32 reg32; u32 reg32;
mei_base_address = (u32 *) update_mei_base_address();
(pci_read_config32(PCH_ME_DEV, PCI_BASE_ADDRESS_0) & ~0xf);
/* S3 path will have hidden this device already */ /* S3 path will have hidden this device already */
if (!mei_base_address || mei_base_address == (u32 *)0xfffffff0) if (!is_mei_base_address_valid())
return; return;
/* Make sure ME is in a mode that expects EOP */ /* Make sure ME is in a mode that expects EOP */
@ -548,94 +251,13 @@ static me_bios_path intel_me_path(struct device *dev)
return path; return path;
} }
/* Prepare ME for MEI messages */
static int intel_mei_setup(struct device *dev)
{
struct resource *res;
struct mei_csr host;
/* Find the MMIO base for the ME interface */
res = find_resource(dev, PCI_BASE_ADDRESS_0);
if (!res || res->base == 0 || res->size == 0) {
printk(BIOS_DEBUG, "ME: MEI resource not present!\n");
return -1;
}
mei_base_address = (u32 *)(uintptr_t)res->base;
/* Ensure Memory and Bus Master bits are set */
pci_or_config16(dev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
/* Read the Extend register hash of ME firmware */
static int intel_me_extend_valid(struct device *dev)
{
struct me_heres status;
u32 extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printk(BIOS_ERR, "ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printk(BIOS_ERR, "ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printk(BIOS_DEBUG, "ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printk(BIOS_DEBUG, "ME: Extend SHA-256: ");
break;
default:
printk(BIOS_ERR, "ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_config32(dev, PCI_ME_HER(i));
printk(BIOS_DEBUG, "%08x", extend[i]);
}
printk(BIOS_DEBUG, "\n");
#if CONFIG(CHROMEOS)
/* Save hash in NVS for the OS to verify */
chromeos_set_me_hash(extend, count);
#endif
return 0;
}
/* Hide the ME virtual PCI devices */
static void intel_me_hide(struct device *dev)
{
dev->enabled = 0;
pch_enable(dev);
}
/* Check whether ME is present and do basic init */ /* Check whether ME is present and do basic init */
static void intel_me_init(struct device *dev) static void intel_me_init(struct device *dev)
{ {
me_bios_path path = intel_me_path(dev); me_bios_path path = intel_me_path(dev);
/* Do initial setup and determine the BIOS path */ /* Do initial setup and determine the BIOS path */
printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_bios_path_values[path]); printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_get_bios_path_string(path));
switch (path) { switch (path) {
case ME_S3WAKE_BIOS_PATH: case ME_S3WAKE_BIOS_PATH:

View file

@ -27,304 +27,8 @@
#include <vendorcode/google/chromeos/gnvs.h> #include <vendorcode/google/chromeos/gnvs.h>
#endif #endif
/* Path that the BIOS should take based on ME state */ /* FIXME: For verification purposes only */
static const char *me_bios_path_values[] __unused = { #include "me_common.c"
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
/* MMIO base address for MEI interface */
static u32 *mei_base_address;
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
struct mei_csr *csr;
if (!CONFIG(DEBUG_INTEL_ME))
return;
printk(BIOS_SPEW, "%-9s[%02x] : ", type, offset);
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
csr = ptr;
if (!csr) {
printk(BIOS_SPEW, "ERROR: 0x%08x\n", dword);
break;
}
printk(BIOS_SPEW, "cbd=%u cbrp=%02u cbwp=%02u ready=%u "
"reset=%u ig=%u is=%u ie=%u\n", csr->buffer_depth,
csr->buffer_read_ptr, csr->buffer_write_ptr,
csr->ready, csr->reset, csr->interrupt_generate,
csr->interrupt_status, csr->interrupt_enable);
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printk(BIOS_SPEW, "CB: 0x%08x\n", dword);
break;
default:
printk(BIOS_SPEW, "0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, int offset)
{
u32 dword = read32(mei_base_address + (offset/sizeof(u32)));
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "READ");
}
static inline void mei_write_dword_ptr(void *ptr, int offset)
{
u32 dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_base_address + (offset/sizeof(u32)), dword);
mei_dump(ptr, dword, offset, "WRITE");
}
#ifndef __SIMPLE_DEVICE__
static inline void pci_read_dword_ptr(struct device *dev, void *ptr, int offset)
{
u32 dword = pci_read_config32(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "PCI READ");
}
#endif
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(u32 dword)
{
write32(mei_base_address + (MEI_H_CB_WW/sizeof(u32)), dword);
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
static inline u32 read_cb(void)
{
u32 dword = read32(mei_base_address + (MEI_ME_CB_RW/sizeof(u32)));
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned int try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
udelay(ME_DELAY);
}
printk(BIOS_ERR, "ME: failed to become ready\n");
return -1;
}
static void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data)
{
struct mei_csr host;
unsigned int ndata, n;
u32 *data;
/* Number of dwords to write, ignoring MKHI */
ndata = mei->length >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printk(BIOS_DEBUG, "ME: request does not include MKHI\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/*
* This implementation does not handle splitting large messages
* across multiple transactions. Ensure the requested length
* will fit in the available circular buffer depth.
*/
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write MKHI header */
mei_write_dword_ptr(mkhi, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_recv_msg(struct mkhi_header *mkhi, void *rsp_data, int rsp_bytes)
{
struct mei_header mei_rsp;
struct mkhi_header mkhi_rsp;
struct mei_csr me, host;
unsigned int ndata, n;
unsigned int expected;
u32 *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + sizeof(mkhi_rsp)) >> 2;
if (rsp_bytes & 3)
expected++;
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
break;
udelay(ME_DELAY);
}
if (!n) {
printk(BIOS_ERR, "ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printk(BIOS_ERR, "ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least MKHI header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) {
printk(BIOS_ERR, "ME: response is missing data %d != %d\n",
ndata, (expected - 1));
return -1;
}
/* Read and verify MKHI response header from the ME */
mei_read_dword_ptr(&mkhi_rsp, MEI_ME_CB_RW);
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printk(BIOS_ERR, "ME: invalid response, group %u ?= %u, "
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
return -1;
}
ndata--; /* MKHI header has been read */
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printk(BIOS_ERR, "ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data, void *rsp_data, int rsp_bytes)
{
if (mei_send_msg(mei, mkhi, req_data) < 0)
return -1;
if (mei_recv_msg(mkhi, rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/* Send END OF POST message to the ME */ /* Send END OF POST message to the ME */
static int __unused mkhi_end_of_post(void) static int __unused mkhi_end_of_post(void)
@ -431,11 +135,10 @@ void intel_me8_finalize_smm(void)
struct me_hfs hfs; struct me_hfs hfs;
u32 reg32; u32 reg32;
mei_base_address = (void *) update_mei_base_address();
(pci_read_config32(PCH_ME_DEV, PCI_BASE_ADDRESS_0) & ~0xf);
/* S3 path will have hidden this device already */ /* S3 path will have hidden this device already */
if (!mei_base_address || mei_base_address == (u32 *)0xfffffff0) if (!is_mei_base_address_valid())
return; return;
/* Make sure ME is in a mode that expects EOP */ /* Make sure ME is in a mode that expects EOP */
@ -533,91 +236,6 @@ static me_bios_path intel_me_path(struct device *dev)
return path; return path;
} }
/* Prepare ME for MEI messages */
static int intel_mei_setup(struct device *dev)
{
struct resource *res;
struct mei_csr host;
/* Find the MMIO base for the ME interface */
res = find_resource(dev, PCI_BASE_ADDRESS_0);
if (!res || res->base == 0 || res->size == 0) {
printk(BIOS_DEBUG, "ME: MEI resource not present!\n");
return -1;
}
mei_base_address = (u32 *)(uintptr_t)res->base;
/* Ensure Memory and Bus Master bits are set */
pci_or_config16(dev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
#if CONFIG(CHROMEOS)
#include <vendorcode/google/chromeos/chromeos.h>
#endif
/* Read the Extend register hash of ME firmware */
static int intel_me_extend_valid(struct device *dev)
{
struct me_heres status;
u32 extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printk(BIOS_ERR, "ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printk(BIOS_ERR, "ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printk(BIOS_DEBUG, "ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printk(BIOS_DEBUG, "ME: Extend SHA-256: ");
break;
default:
printk(BIOS_ERR, "ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_config32(dev, PCI_ME_HER(i));
printk(BIOS_DEBUG, "%08x", extend[i]);
}
printk(BIOS_DEBUG, "\n");
#if CONFIG(CHROMEOS)
/* Save hash in NVS for the OS to verify */
chromeos_set_me_hash(extend, count);
#endif
return 0;
}
/* Hide the ME virtual PCI devices */
static void intel_me_hide(struct device *dev)
{
dev->enabled = 0;
pch_enable(dev);
}
static int intel_me_read_mbp(me_bios_payload *mbp_data); static int intel_me_read_mbp(me_bios_payload *mbp_data);
/* Check whether ME is present and do basic init */ /* Check whether ME is present and do basic init */
@ -627,7 +245,7 @@ static void intel_me_init(struct device *dev)
me_bios_payload mbp_data; me_bios_payload mbp_data;
/* Do initial setup and determine the BIOS path */ /* Do initial setup and determine the BIOS path */
printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_bios_path_values[path]); printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_get_bios_path_string(path));
switch (path) { switch (path) {
case ME_S3WAKE_BIOS_PATH: case ME_S3WAKE_BIOS_PATH:

View file

@ -0,0 +1,419 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <device/mmio.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <device/pci_def.h>
#include <string.h>
#include <delay.h>
#include <halt.h>
#include "me.h"
#include "pch.h"
/* Path that the BIOS should take based on ME state */
static const char *me_bios_path_values[] __unused = {
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
static inline const char *const me_get_bios_path_string(int path)
{
return me_bios_path_values[path];
}
/* MMIO base address for MEI interface */
static u32 *mei_base_address;
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
struct mei_csr *csr;
if (!CONFIG(DEBUG_INTEL_ME))
return;
printk(BIOS_SPEW, "%-9s[%02x] : ", type, offset);
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
csr = ptr;
if (!csr) {
printk(BIOS_SPEW, "ERROR: 0x%08x\n", dword);
break;
}
printk(BIOS_SPEW, "cbd=%u cbrp=%02u cbwp=%02u ready=%u "
"reset=%u ig=%u is=%u ie=%u\n", csr->buffer_depth,
csr->buffer_read_ptr, csr->buffer_write_ptr,
csr->ready, csr->reset, csr->interrupt_generate,
csr->interrupt_status, csr->interrupt_enable);
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printk(BIOS_SPEW, "CB: 0x%08x\n", dword);
break;
default:
printk(BIOS_SPEW, "0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, int offset)
{
u32 dword = read32(mei_base_address + (offset / sizeof(u32)));
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "READ");
}
static inline void mei_write_dword_ptr(void *ptr, int offset)
{
u32 dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_base_address + (offset / sizeof(u32)), dword);
mei_dump(ptr, dword, offset, "WRITE");
}
#ifndef __SIMPLE_DEVICE__
static inline void pci_read_dword_ptr(struct device *dev, void *ptr, int offset)
{
u32 dword = pci_read_config32(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
mei_dump(ptr, dword, offset, "PCI READ");
}
#endif
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(u32 dword)
{
write32(mei_base_address + (MEI_H_CB_WW / sizeof(u32)), dword);
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
static inline u32 read_cb(void)
{
u32 dword = read32(mei_base_address + (MEI_ME_CB_RW / sizeof(u32)));
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned int try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
udelay(ME_DELAY);
}
printk(BIOS_ERR, "ME: failed to become ready\n");
return -1;
}
static void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_msg(struct mei_header *mei, struct mkhi_header *mkhi, void *req_data)
{
struct mei_csr host;
unsigned int ndata, n;
u32 *data;
/* Number of dwords to write, ignoring MKHI */
ndata = mei->length >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printk(BIOS_DEBUG, "ME: request does not include MKHI\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/*
* This implementation does not handle splitting large messages
* across multiple transactions. Ensure the requested length
* will fit in the available circular buffer depth.
*/
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write MKHI header */
mei_write_dword_ptr(mkhi, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_recv_msg(struct mkhi_header *mkhi, void *rsp_data, int rsp_bytes)
{
struct mei_header mei_rsp;
struct mkhi_header mkhi_rsp;
struct mei_csr me, host;
unsigned int ndata, n;
unsigned int expected;
u32 *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + sizeof(mkhi_rsp)) >> 2;
if (rsp_bytes & 3)
expected++;
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
break;
udelay(ME_DELAY);
}
if (!n) {
printk(BIOS_ERR, "ME: timeout waiting for data: expected %u, available %u\n",
expected, me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printk(BIOS_ERR, "ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least MKHI header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) {
printk(BIOS_ERR, "ME: response is missing data %d != %d\n",
ndata, (expected - 1));
return -1;
}
/* Read and verify MKHI response header from the ME */
mei_read_dword_ptr(&mkhi_rsp, MEI_ME_CB_RW);
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printk(BIOS_ERR, "ME: invalid response, group %u ?= %u, "
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
return -1;
}
ndata--; /* MKHI header has been read */
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printk(BIOS_ERR, "ME: not enough room in response buffer: %u != %u\n",
ndata, rsp_bytes >> 2);
return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data, void *rsp_data, int rsp_bytes)
{
if (mei_send_msg(mei, mkhi, req_data) < 0)
return -1;
if (mei_recv_msg(mkhi, rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
#ifdef __SIMPLE_DEVICE__
static inline void update_mei_base_address(void)
{
mei_base_address = (u32 *)(pci_read_config32(PCH_ME_DEV, PCI_BASE_ADDRESS_0) & ~0xf);
}
static inline bool is_mei_base_address_valid(void)
{
return mei_base_address && mei_base_address != (u32 *)0xfffffff0;
}
#else
/* Prepare ME for MEI messages */
static int intel_mei_setup(struct device *dev)
{
struct resource *res;
struct mei_csr host;
/* Find the MMIO base for the ME interface */
res = find_resource(dev, PCI_BASE_ADDRESS_0);
if (!res || res->base == 0 || res->size == 0) {
printk(BIOS_DEBUG, "ME: MEI resource not present!\n");
return -1;
}
mei_base_address = (u32 *)(uintptr_t)res->base;
/* Ensure Memory and Bus Master bits are set */
pci_or_config16(dev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
#if CONFIG(CHROMEOS)
#include <vendorcode/google/chromeos/chromeos.h>
#endif
/* Read the Extend register hash of ME firmware */
static int intel_me_extend_valid(struct device *dev)
{
struct me_heres status;
u32 extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printk(BIOS_ERR, "ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printk(BIOS_ERR, "ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printk(BIOS_DEBUG, "ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printk(BIOS_DEBUG, "ME: Extend SHA-256: ");
break;
default:
printk(BIOS_ERR, "ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_config32(dev, PCI_ME_HER(i));
printk(BIOS_DEBUG, "%08x", extend[i]);
}
printk(BIOS_DEBUG, "\n");
#if CONFIG(CHROMEOS)
/* Save hash in NVS for the OS to verify */
chromeos_set_me_hash(extend, count);
#endif
return 0;
}
/* Hide the ME virtual PCI devices */
static void intel_me_hide(struct device *dev)
{
dev->enabled = 0;
pch_enable(dev);
}
#endif