device/dram/ddr2: Add common ddr2 spd decoder

Decode DDR2 SPD similar to DDR3 SPD decoder to ease
readability, reduce code complexity and reduce size of
maintainable code.

Rename dimm_is_registered to spd_dimm_is_registered_ddr3 to avoid
compilation errors.

Change-Id: I741f0e61ab23e3999ae9e31f57228ba034c2509e
Signed-off-by: Patrick Rudolph <siro@das-labor.org>
Reviewed-on: https://review.coreboot.org/18273
Reviewed-by: Arthur Heymans <arthur@aheymans.xyz>
Tested-by: build bot (Jenkins)
This commit is contained in:
Patrick Rudolph 2017-01-31 19:43:17 +01:00 committed by Martin Roth
parent 7e4d12c5b1
commit 6e53ae6f5c
6 changed files with 852 additions and 4 deletions

View File

@ -1 +1 @@
romstage-y += ddr3.c
romstage-y += ddr3.c ddr2.c

630
src/device/dram/ddr2.c Normal file
View File

@ -0,0 +1,630 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2017 Patrick Rudolph <siro@das-labor.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/**
* @file ddr2.c
*
* \brief Utilities for decoding DDR2 SPDs
*/
#include <console/console.h>
#include <device/device.h>
#include <device/dram/ddr2.h>
#include <string.h>
/*==============================================================================
* = DDR2 SPD decoding helpers
*----------------------------------------------------------------------------*/
/**
* \brief Checks if the DIMM is Registered based on byte[20] of the SPD
*
* Tells if the DIMM type is registered or not.
*
* @param type DIMM type. This is byte[20] of the SPD.
*/
int spd_dimm_is_registered_ddr2(enum spd_dimm_type type)
{
if ((type == SPD_DIMM_TYPE_RDIMM)
| (type == SPD_DIMM_TYPE_72B_SO_RDIMM))
return 1;
return 0;
}
/**
* \brief Calculate the checksum of a DDR2 SPD unique identifier
*
* @param spd pointer to raw SPD data
* @param len length of data in SPD
*
* @return the checksum of SPD data bytes 63, or 0 when spd data is truncated.
*/
u8 spd_ddr2_calc_checksum(u8 *spd, int len)
{
int i;
u8 c = 0;
if (len < 63)
/* Not enough bytes available to get the checksum */
return 0;
for (i = 0; i < 63; i++)
c += spd[i];
return c;
}
/**
* \brief Return size of SPD.
*
* Returns size of SPD. Usually 128 Byte.
*/
u32 spd_decode_spd_size_ddr2(u8 byte0)
{
return MIN(byte0, SPD_SIZE_MAX_DDR2);
}
/**
* \brief Return size of eeprom.
*
* Returns size of eeprom. Usually 256 Byte.
*/
u32 spd_decode_eeprom_size_ddr2(u8 byte1)
{
if (!byte1)
return 0;
if (byte1 > 0x0e)
return 0x3fff;
return 1 << byte1;
}
/**
* \brief Return index of MSB set
*
* Returns the index fof MSB set.
*/
static u8 spd_get_msbs(u8 c)
{
int i;
for (i = 7; i >= 0; i--)
if (c & (1 << i))
return i;
return 0;
}
/**
* \brief Decode SPD tck cycle time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_tck_time(u8 c)
{
u8 high, low;
high = c >> 4;
switch (c & 0xf) {
case 0xa:
low = 25;
break;
case 0xb:
low = 33;
break;
case 0xc:
low = 66;
break;
case 0xd:
low = 75;
break;
default:
low = (c & 0xf) * 10;
}
return ((high * 100 + low) << 8) / 100;
}
/**
* \brief Decode SPD bcd style timings
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_bcd_time(u8 c)
{
u8 high, low;
high = c >> 4;
low = c & 0xf;
return ((high * 10 + low) << 8) / 100;
}
/**
* \brief Decode SPD tRP, tRRP cycle time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_quarter_time(u8 c)
{
u8 high, low;
high = c >> 2;
low = 25 * (c & 0x3);
return ((high * 100 + low) << 8) / 100;
}
/**
* \brief Decode SPD tRR time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th us.
*/
static u32 spd_decode_tRR_time(u8 c)
{
switch (c) {
default:
case 0:
return 15625 << 8;
case 1:
return 15625 << 6;
case 2:
return 15625 << 7;
case 3:
return 15625 << 9;
case 4:
return 15625 << 10;
case 5:
return 15625 << 11;
}
}
/**
* \brief Decode SPD tRC,tRFC time
*
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th us.
*/
static void spd_decode_tRCtRFC_time(u8 *spd_40_41_42, u32 *tRC, u32 *tRFC)
{
u8 b40, b41, b42;
b40 = spd_40_41_42[0];
b41 = spd_40_41_42[1];
b42 = spd_40_41_42[2];
*tRC = b41 * 100;
*tRFC = b42 * 100;
if (b40 & 0x01)
*tRFC += 256 * 100;
switch ((b40 >> 1) & 0x07) {
case 1:
*tRFC += 25;
break;
case 2:
*tRFC += 33;
break;
case 3:
*tRFC += 50;
break;
case 4:
*tRFC += 66;
break;
case 5:
*tRFC += 75;
break;
default:
break;
}
switch ((b40 >> 4) & 0x07) {
case 1:
*tRC += 25;
break;
case 2:
*tRC += 33;
break;
case 3:
*tRC += 50;
break;
case 4:
*tRC += 66;
break;
case 5:
*tRC += 75;
break;
default:
break;
}
/* Convert to 1/256th us */
*tRC = (*tRC << 8) / 100;
*tRFC = (*tRFC << 8) / 100;
}
/**
* \brief Decode the raw SPD data
*
* Decodes a raw SPD data from a DDR2 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR2 SPD
* SPD_STATUS_CRC_ERROR -- CRC did not verify
* SPD_STATUS_INVALID_FIELD -- A field with an invalid value was
* detected.
*/
int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
{
u8 spd_size, cl, reg8;
u16 eeprom_size;
int ret = SPD_STATUS_OK;
memset(dimm, 0, sizeof(*dimm));
spd_size = spd_decode_spd_size_ddr2(spd[0]);
eeprom_size = spd_decode_eeprom_size_ddr2(spd[1]);
printram("EEPROM with 0x%04x bytes\n", eeprom_size);
printram("SPD contains 0x%02x bytes\n", spd_size);
if (spd_size < 64 || eeprom_size < 64) {
printram("ERROR: SPD to small\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
if (spd_ddr2_calc_checksum(spd, spd_size) != spd[63]) {
printram("ERROR: SPD checksum error\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_CRC_ERROR;
}
reg8 = spd[62];
if ((reg8 & 0xf0) != 0x10) {
printram("ERROR: Unsupported SPD revision %01x.%01x\n",
reg8 >> 4, reg8 & 0xf);
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
dimm->rev = reg8;
printram(" Revision : %01x.%01x\n", dimm->rev >> 4, dimm->rev & 0xf);
reg8 = spd[2];
printram(" Type : 0x%02x\n", reg8);
if (reg8 != 0x08) {
printram("ERROR: Unsupported SPD type %x\n", reg8);
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
dimm->dram_type = SPD_MEMORY_TYPE_SDRAM_DDR2;
dimm->row_bits = spd[3];
printram(" Rows : %u\n", dimm->row_bits);
if ((dimm->row_bits > 31) ||
((dimm->row_bits > 15) && (dimm->rev < 0x13))) {
printram(" Invalid number of memory rows\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->col_bits = spd[4];
printram(" Columns : %u\n", dimm->col_bits);
if (dimm->col_bits > 15) {
printram(" Invalid number of memory columns\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->ranks = (spd[5] & 0x7) + 1;
printram(" Ranks : %u\n", dimm->ranks);
dimm->mod_width = spd[6];
printram(" Module data width : x%u\n", dimm->mod_width);
if (!dimm->mod_width) {
printram(" Invalid module data width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->width = spd[13];
printram(" SDRAM width : x%u\n", dimm->width);
if (!dimm->width) {
printram(" Invalid SDRAM width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->banks = spd[17];
printram(" Banks : %u\n", dimm->banks);
if (!dimm->banks) {
printram(" Invalid module banks count\n");
ret = SPD_STATUS_INVALID_FIELD;
}
switch (spd[8]) {
case 0:
dimm->flags.operable_5_00V = 1;
printram(" Voltage : 5.0V\n");
break;
case 1:
dimm->flags.operable_3_33V = 1;
printram(" Voltage : 3.3V\n");
break;
case 2:
dimm->flags.operable_1_50V = 1;
printram(" Voltage : 1.5V\n");
break;
case 3:
dimm->flags.operable_3_33V = 1;
printram(" Voltage : 3.3V\n");
break;
case 4:
dimm->flags.operable_2_50V = 1;
printram(" Voltage : 2.5V\n");
break;
case 5:
dimm->flags.operable_1_80V = 1;
printram(" Voltage : 1.8V\n");
break;
default:
printram(" Unknown voltage level.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->cas_supported = spd[18];
if ((dimm->cas_supported & 0x3) || !dimm->cas_supported) {
printram(" Invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
printram(" Supported CAS mask : 0x%x\n", dimm->cas_supported);
if ((dimm->rev < 0x13) && (dimm->cas_supported & 0x80)) {
printram(" Invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
if ((dimm->rev < 0x12) && (dimm->cas_supported & 0x40)) {
printram(" Invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* CL=X */
cl = spd_get_msbs(dimm->cas_supported);
/* SDRAM Cycle time at Maximum Supported CAS Latency (CL), CL=X */
dimm->cycle_time[cl] = spd_decode_tck_time(spd[9]);
/* SDRAM Access from Clock */
dimm->access_time[cl] = spd_decode_bcd_time(spd[10]);
if (dimm->cas_supported & (1 << (cl - 1))) {
/* Minimum Clock Cycle at CLX-1 */
dimm->cycle_time[cl - 1] = spd_decode_tck_time(spd[23]);
/* Maximum Data Access Time (tAC) from Clock at CLX-1 */
dimm->access_time[cl - 1] = spd_decode_bcd_time(spd[24]);
}
if (dimm->cas_supported & (1 << (cl - 2))) {
/* Minimum Clock Cycle at CLX-2 */
dimm->cycle_time[cl - 2] = spd_decode_tck_time(spd[25]);
/* Maximum Data Access Time (tAC) from Clock at CLX-2 */
dimm->access_time[cl - 2] = spd_decode_bcd_time(spd[26]);
}
reg8 = (spd[31] >> 5) | (spd[31] << 3);
if (!reg8) {
printram(" Invalid rank density.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* Rank density */
dimm->ranksize_mb = 128 * reg8;
/* Module density */
dimm->size_mb = dimm->ranksize_mb * dimm->ranks;
if (dimm->size_mb < 1024)
printram(" Capacity : %u MB\n", dimm->size_mb);
else
printram(" Capacity : %u GB\n", dimm->size_mb >> 10);
/* SDRAM Maximum Cycle Time (tCKmax) */
dimm->tCK = spd_decode_tck_time(spd[43]);
/* Minimum Write Recovery Time (tWRmin) */
dimm->tWR = spd_decode_quarter_time(spd[36]);
/* Minimum RAS# to CAS# Delay Time (tRCDmin) */
dimm->tRCD = spd_decode_quarter_time(spd[29]);
/* Minimum Row Active to Row Active Delay Time (tRRDmin) */
dimm->tRRD = spd_decode_quarter_time(spd[28]);
/* Minimum Row Precharge Delay Time (tRPmin) */
dimm->tRP = spd_decode_quarter_time(spd[27]);
/* Minimum Active to Precharge Delay Time (tRASmin) */
dimm->tRAS = spd[30] << 8;
/* Minimum Active to Active/Refresh Delay Time (tRCmin) */
/* Minimum Refresh Recovery Delay Time (tRFCmin) */
spd_decode_tRCtRFC_time(&spd[40], &dimm->tRC, &dimm->tRFC);
/* Minimum Internal Write to Read Command Delay Time (tWTRmin) */
dimm->tWTR = spd_decode_quarter_time(spd[37]);
/* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */
dimm->tRTP = spd_decode_quarter_time(spd[38]);
/* Data Input Setup Time Before Strobe */
dimm->tDS = spd_decode_bcd_time(spd[34]);
/* Data Input Hold Time After Strobe */
dimm->tDH = spd_decode_bcd_time(spd[35]);
/* SDRAM Device DQS-DQ Skew for DQS and associated DQ signals */
dimm->tDQSQ = (spd[44] << 8) / 100;
/* SDRAM Device Maximum Read Data Hold Skew Factor */
dimm->tQHS = (spd[45] << 8) / 100;
/* PLL Relock Time in us */
dimm->tPLL = spd[46] << 8;
/* Refresh rate in us */
dimm->tRR = spd_decode_tRR_time(spd[12]);
/* Number of PLLs on DIMM */
if (dimm->rev >= 0x11)
dimm->plls = (spd[21] >> 2) & 0x3;
/* SDRAM Thermal and Refresh Options */
printram(" General features :");
if ((dimm->rev >= 0x12) && (spd[22] & 0x04)) {
dimm->flags.pasr = 1;
printram(" PASR");
}
if ((dimm->rev >= 0x12) && (spd[22] & 0x02)) {
dimm->flags.terminate_50ohms = 1;
printram(" 50Ohm");
}
if (spd[22] & 0x01) {
dimm->flags.weak_driver = 1;
printram(" WEAK_DRIVER");
}
printram("\n");
/* SDRAM Supported Burst length */
printram(" Burst length :");
if (spd[16] & 0x06) {
dimm->flags.bl8 = 1;
printram(" BL8");
}
if (spd[22] & 0x04) {
dimm->flags.bl4 = 1;
printram(" BL4");
}
printram("\n");
dimm->dimm_type = spd[20] & SPD_DIMM_TYPE_MASK;
printram(" Dimm type : %x\n", dimm->dimm_type);
dimm->flags.is_ecc = !!(spd[11] & 0x3);
printram(" ECC support : %x\n", dimm->flags.is_ecc);
dimm->flags.stacked = !!(spd[5] & 0x10);
printram(" Package : %s\n",
dimm->flags.stacked ? "stack" : "planar");
if (spd_size > 71) {
memcpy(&dimm->manufacturer_id, &spd[64], 4);
printram(" Manufacturer ID : %x\n", dimm->manufacturer_id);
}
if (spd_size > 90) {
dimm->part_number[16] = 0;
memcpy(dimm->part_number, &spd[73], 16);
printram(" Part number : %s\n", dimm->part_number);
}
if (spd_size > 94) {
dimm->year = spd[93] + 2000;
dimm->weeks = spd[94];
printram(" Date : %d week %d\n", dimm->year, dimm->weeks);
}
if (spd_size > 98) {
memcpy(&dimm->serial, &spd[95], 4);
printram(" Serial number : 0x%08x\n", dimm->serial);
}
return ret;
}
/*
* The information printed below has a more informational character, and is not
* necessarily tied in to RAM init debugging. Hence, we stop using printram(),
* and use the standard printk()'s below.
*/
static void print_ns(const char *msg, u32 val)
{
u32 mant, fp;
mant = val / 256;
fp = (val % 256) * 1000 / 256;
printk(BIOS_INFO, "%s%3u.%.3u ns\n", msg, mant, fp);
}
static void print_us(const char *msg, u32 val)
{
u32 mant, fp;
mant = val / 256;
fp = (val % 256) * 1000 / 256;
printk(BIOS_INFO, "%s%3u.%.3u us\n", msg, mant, fp);
}
/**
* \brief Print the info in DIMM
*
* Print info about the DIMM. Useful to use when CONFIG_DEBUG_RAM_SETUP is
* selected, or for a purely informative output.
*
* @param dimm pointer to already decoded @ref dimm_attr structure
*/
void dram_print_spd_ddr2(const struct dimm_attr_st *dimm)
{
char buf[32];
int i;
printk(BIOS_INFO, " Row addr bits : %u\n", dimm->row_bits);
printk(BIOS_INFO, " Column addr bits : %u\n", dimm->col_bits);
printk(BIOS_INFO, " Number of ranks : %u\n", dimm->ranks);
printk(BIOS_INFO, " DIMM Capacity : %u MB\n", dimm->size_mb);
printk(BIOS_INFO, " Width : x%u\n", dimm->width);
printk(BIOS_INFO, " Banks : %u\n", dimm->banks);
/* CAS Latencies Supported */
printk(BIOS_INFO, " CAS latencies :");
for (i = 2; i < 8; i++) {
if (dimm->cas_supported & (1 << i))
printk(BIOS_INFO, " %u", i);
}
printk(BIOS_INFO, "\n");
for (i = 2; i < 8; i++) {
if (!(dimm->cas_supported & (1 << i)))
continue;
strcpy(buf, " tCK at CLx : ");
/* Simple snprintf replacement */
buf[11] = '0' + i;
print_ns(buf, dimm->cycle_time[i]);
strcpy(buf, " tAC at CLx : ");
/* Simple snprintf replacement */
buf[11] = '0' + i;
print_ns(buf, dimm->access_time[i]);
}
print_ns(" tCKmax : ", dimm->tCK);
print_ns(" tWRmin : ", dimm->tWR);
print_ns(" tRCDmin : ", dimm->tRCD);
print_ns(" tRRDmin : ", dimm->tRRD);
print_ns(" tRPmin : ", dimm->tRP);
print_ns(" tRASmin : ", dimm->tRAS);
print_ns(" tRCmin : ", dimm->tRC);
print_ns(" tRFCmin : ", dimm->tRFC);
print_ns(" tWTRmin : ", dimm->tWTR);
print_ns(" tRTPmin : ", dimm->tRTP);
print_ns(" tDS : ", dimm->tDS);
print_ns(" tDH : ", dimm->tDH);
print_ns(" tDQSQmax : ", dimm->tDQSQ);
print_ns(" tQHSmax : ", dimm->tQHS);
print_us(" tPLL : ", dimm->tPLL);
print_us(" tRR : ", dimm->tRR);
}

View File

@ -36,7 +36,7 @@
*
* @param type DIMM type. This is byte[3] of the SPD.
*/
int dimm_is_registered(enum spd_dimm_type type)
int spd_dimm_is_registered_ddr3(enum spd_dimm_type type)
{
if ((type == SPD_DIMM_TYPE_RDIMM)
| (type == SPD_DIMM_TYPE_MINI_RDIMM)

View File

@ -0,0 +1,218 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2017 Patrick Rudolph <siro@das-labor.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* JEDEC Standard No. 21-C
* Annex J: Annex J: Serial Presence Detects for DDR2 SDRAM (Revision 1.3)
*/
#ifndef DEVICE_DRAM_DDR2L_H
#define DEVICE_DRAM_DDR2L_H
/**
* @file ddr2.h
*
* \brief Utilities for decoding DDR2 SPDs
*/
#include <stdint.h>
#include <spd.h>
/**
* \brief Convenience definitions for TCK values
*
* Different values for tCK, representing standard DDR2 frequencies.
* These values are in 1/256 ns units.
* @{
*/
#define TCK_800MHZ 320
#define TCK_700MHZ 365
#define TCK_666MHZ 384
#define TCK_533MHZ 480
#define TCK_400MHZ 640
#define TCK_333MHZ 768
#define TCK_266MHZ 960
#define TCK_200MHZ 1280
/** @} */
/**
* \brief Convenience macro for enabling printk with CONFIG_DEBUG_RAM_SETUP
*
* Use this macro instead of printk(); for verbose RAM initialization messages.
* When CONFIG_DEBUG_RAM_SETUP is not selected, these messages are automatically
* disabled.
* @{
*/
#if IS_ENABLED(CONFIG_DEBUG_RAM_SETUP)
#define printram(x, ...) printk(BIOS_DEBUG, x, ##__VA_ARGS__)
#else
#define printram(x, ...)
#endif
/** @} */
/*
* Module type (byte 20, bits 5:0) of SPD
* This definition is specific to DDR2. DDR3 SPDs have a different structure.
*/
enum spd_dimm_type {
SPD_DIMM_TYPE_UNDEFINED = 0x00,
SPD_DIMM_TYPE_RDIMM = 0x01,
SPD_DIMM_TYPE_UDIMM = 0x02,
SPD_DIMM_TYPE_SO_DIMM = 0x04,
SPD_DIMM_TYPE_72B_SO_CDIMM = 0x06,
SPD_DIMM_TYPE_72B_SO_RDIMM = 0x07,
SPD_DIMM_TYPE_MICRO_DIMM = 0x08,
SPD_DIMM_TYPE_MINI_DIMM = 0x10,
SPD_DIMM_TYPE_MINI_UDIMM = 0x20,
/* Masks to bits 5:0 to give the dimm type */
SPD_DIMM_TYPE_MASK = 0x3f,
};
/**
* \brief DIMM flags
*
* Characteristic flags for the DIMM, as presented by the SPD
*/
union dimm_flags_st {
/* The whole point of the union/struct construct is to allow us to clear
* all the bits with one line: flags.raw = 0.
* We do not care how these bits are ordered */
struct {
/* Module can work at 5.00V */
unsigned operable_5_00V:1;
/* Module can work at 3.33V */
unsigned operable_3_33V:1;
/* Module can work at 2.50V */
unsigned operable_2_50V:1;
/* Module can work at 1.80V - All DIMMS must be 1.8V operable */
unsigned operable_1_80V:1;
/* Module can work at 1.50V */
unsigned operable_1_50V:1;
/* Module can work at 1.35V */
unsigned operable_1_35V:1;
/* Module can work at 1.20V */
unsigned operable_1_25V:1;
/* Has an 8-bit bus extension, meaning the DIMM supports ECC */
unsigned is_ecc:1;
/* Supports weak driver */
unsigned weak_driver:1;
/* Supports terminating at 50 Ohm */
unsigned terminate_50ohms:1;
/* Partial Array Self Refresh */
unsigned pasr:1;
/* Supports burst length 8 */
unsigned bl8:1;
/* Supports burst length 4 */
unsigned bl4:1;
/* DIMM Package is stack */
unsigned stacked:1;
};
unsigned int raw;
};
/**
* \brief DIMM characteristics
*
* The characteristics of each DIMM, as presented by the SPD
*/
struct dimm_attr_st {
enum spd_memory_type dram_type;
enum spd_dimm_type dimm_type;
/* BCD SPD revision */
u8 rev;
/* Supported CAS mask, bit 0 == CL0 .. bit7 == CL7 */
u8 cas_supported;
/* Maximum cloclk to data cycle times for various CAS.
* Fields 0 and 1 are unused. */
u32 cycle_time[8];
/* Maximum data access times for various CAS.
* Fields 0 and 1 are unused. */
u32 access_time[8];
/* Flags extracted from SPD */
union dimm_flags_st flags;
/* Number of banks */
u8 banks;
/* SDRAM width */
u8 width;
/* Module width */
u8 mod_width;
/* Number of ranks */
u8 ranks;
/* Number or row address bits */
u8 row_bits;
/* Number or column address bits */
u8 col_bits;
/* Number of PLLs on module */
u8 plls;
/* Size of module in MiB */
u16 size_mb;
/* Size of one rank in MiB */
u16 ranksize_mb;
/* Latencies are in units of 1/256 ns */
u32 tCK;
u32 tWR;
u32 tRCD;
u32 tRRD;
u32 tRP;
u32 tRAS;
u32 tIS;
u32 tIH;
u32 tDS;
u32 tDH;
u32 tRC;
u32 tRFC;
u32 tWTR;
u32 tRTP;
u32 tDQSQ;
u32 tQHS;
/* Latencies are in units of 1/256 us */
u32 tPLL;
u32 tRR;
/* Manufacturer ID */
u32 manufacturer_id;
/* ASCII part number - NULL terminated */
u8 part_number[17];
/* Year manufactured */
u16 year;
/* Week manufactured */
u8 weeks;
/* Unique serial number */
u32 serial;
};
/** Result of the SPD decoding process */
enum spd_status {
SPD_STATUS_OK = 0,
SPD_STATUS_INVALID,
SPD_STATUS_CRC_ERROR,
SPD_STATUS_INVALID_FIELD,
};
/** Maximum SPD size supported */
#define SPD_SIZE_MAX_DDR2 128
int spd_dimm_is_registered_ddr2(enum spd_dimm_type type);
u8 spd_ddr2_calc_checksum(u8 *spd, int len);
u32 spd_decode_spd_size_ddr2(u8 byte0);
u32 spd_decode_eeprom_size_ddr2(u8 byte1);
int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2]);
void dram_print_spd_ddr2(const struct dimm_attr_st *dimm);
#endif /* DEVICE_DRAM_DDR2L_H */

View File

@ -201,7 +201,7 @@ typedef u8 spd_raw_data[256];
u16 spd_ddr3_calc_crc(u8 *spd, int len);
u16 spd_ddr3_calc_unique_crc(u8 *spd, int len);
int spd_decode_ddr3(dimm_attr * dimm, spd_raw_data spd_data);
int dimm_is_registered(enum spd_dimm_type type);
int spd_dimm_is_registered_ddr3(enum spd_dimm_type type);
void dram_print_spd_ddr3(const dimm_attr * dimm);
int spd_xmp_decode_ddr3(dimm_attr * dimm,
spd_raw_data spd,

View File

@ -703,7 +703,7 @@ static void vx900_dram_freq(ramctr_timing * ctrl)
pci_mod_config8(MCU, 0x6b, 0x80, 0x00);
/* Step 8 - If we have registered DIMMs, we need to set bit[0] */
if (dimm_is_registered(ctrl->dimm_type)) {
if (spd_dimm_is_registered_ddr3(ctrl->dimm_type)) {
printram("Enabling RDIMM support in memory controller\n");
pci_mod_config8(MCU, 0x6c, 0x00, 0x01);
}