- A new test case for romcc

- Minor romcc fixes
- In smbus_wail_until_done a romcc glitch with || in romcc where it likes
  to run out of registers.  Use | to be explicit that I don't need the short
  circuiting behavior.
- Remove unused #defines from coherent_ht.c
- Update the test in auto.c to 512M
- Add definition of log2 to romcc_io.h
- Implement SPD memory sizing in raminit.c
- Reduce the number of memory devices back 2 to for the SOLO board.


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@883 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Eric Biederman 2003-06-18 11:03:18 +00:00
parent 99acb49cf7
commit d3283ec05f
8 changed files with 447 additions and 68 deletions

View File

@ -35,6 +35,18 @@ static void hlt(void)
__builtin_hlt(); __builtin_hlt();
} }
int log2(int value)
{
/* __builtin_bsr is a exactly equivalent to the x86 machine
* instruction with the exception that it returns -1
* when the value presented to it is zero.
* Otherwise __builtin_bsr returns the zero based index of
* the highest bit set.
*/
return __builtin_bsr(value);
}
typedef __builtin_msr_t msr_t; typedef __builtin_msr_t msr_t;
static msr_t rdmsr(unsigned long index) static msr_t rdmsr(unsigned long index)

View File

@ -11,6 +11,13 @@
#include "northbridge/amd/amdk8/coherent_ht.c" #include "northbridge/amd/amdk8/coherent_ht.c"
#include "sdram/generic_sdram.c" #include "sdram/generic_sdram.c"
#define NODE_ID 0x60
#define HT_INIT_CONTROL 0x6c
#define HTIC_ColdR_Detect (1<<4)
#define HTIC_BIOSR_Detect (1<<5)
#define HTIC_INIT_Detect (1<<6)
static int boot_cpu(void) static int boot_cpu(void)
{ {
volatile unsigned long *local_apic; volatile unsigned long *local_apic;
@ -59,6 +66,16 @@ static int cpu_init_detected(void)
} }
static void print_debug_pci_dev(unsigned dev)
{
print_debug("PCI: ");
print_debug_hex8((dev >> 16) & 0xff);
print_debug_char(':');
print_debug_hex8((dev >> 11) & 0x1f);
print_debug_char('.');
print_debug_hex8((dev >> 8) & 7);
}
static void print_pci_devices(void) static void print_pci_devices(void)
{ {
device_t dev; device_t dev;
@ -72,15 +89,33 @@ static void print_pci_devices(void)
(((id >> 16) & 0xffff) == 0x0000)) { (((id >> 16) & 0xffff) == 0x0000)) {
continue; continue;
} }
print_debug("PCI: 00:"); print_debug_pci_dev(dev);
print_debug_hex8(dev >> 11);
print_debug_char('.');
print_debug_hex8((dev >> 8) & 7);
print_debug("\r\n"); print_debug("\r\n");
} }
} }
static void dump_pci_device(unsigned dev)
{
int i;
print_debug_pci_dev(dev);
print_debug("\r\n");
for(i = 0; i <= 255; i++) {
unsigned char val;
if ((i & 0x0f) == 0) {
print_debug_hex8(i);
print_debug_char(':');
}
val = pci_read_config8(dev, i);
print_debug_char(' ');
print_debug_hex8(val);
if ((i & 0x0f) == 0x0f) {
print_debug("\r\n");
}
}
}
static void dump_spd_registers(void) static void dump_spd_registers(void)
{ {
unsigned device; unsigned device;
@ -112,6 +147,7 @@ static void dump_spd_registers(void)
} }
} }
static void main(void) static void main(void)
{ {
uart_init(); uart_init();
@ -132,7 +168,16 @@ static void main(void)
sdram_initialize(); sdram_initialize();
dump_spd_registers(); dump_spd_registers();
/* Check the first 8M */ dump_pci_device(PCI_DEV(0, 0x18, 2));
ram_check(0x00100000, 0x00800000);
/* Check the first 512M */
msr_t msr;
msr = rdmsr(TOP_MEM);
print_debug("TOP_MEM: ");
print_debug_hex32(msr.hi);
print_debug_hex32(msr.lo);
print_debug("\r\n");
#warning "FIXME if I pass msr.lo somehow I get the value 0x00000030 as stop in ram_check"
ram_check(0x00000000, 0x20000000);
} }
} }

View File

@ -1,11 +1,3 @@
#define COHERENT_AMD_SOLO 1 /* AMD Solo motherboard */
#define COHERENT_ARIMA_HDAMA 2 /* Arima HDAMA motherboard */
#ifndef COHERENT_CONFIG
#define COHERENT_CONFIG COHERENT_AMD_SOLO
#endif
static void setup_coherent_ht_domain(void) static void setup_coherent_ht_domain(void)
{ {
static const unsigned int register_values[] = { static const unsigned int register_values[] = {

View File

@ -1,3 +1,4 @@
#include <cpu/k8/mtrr.h>
#define MEMORY_SUSE_SOLO 1 /* SuSE Solo configuration */ #define MEMORY_SUSE_SOLO 1 /* SuSE Solo configuration */
#define MEMORY_LNXI_SOLO 2 /* LNXI Solo configuration */ #define MEMORY_LNXI_SOLO 2 /* LNXI Solo configuration */
#define MEMORY_LNXI_HDAMA 3 /* LNXI HDAMA configuration */ #define MEMORY_LNXI_HDAMA 3 /* LNXI HDAMA configuration */
@ -1112,6 +1113,192 @@ static void sdram_set_registers(void)
print_debug("done.\r\n"); print_debug("done.\r\n");
} }
struct dimm_size {
unsigned long side1;
unsigned long side2;
};
static struct dimm_size spd_get_dimm_size(unsigned device)
{
/* Calculate the log base 2 size of a DIMM in bits */
struct dimm_size sz;
int value, low;
sz.side1 = 0;
sz.side2 = 0;
/* Note it might be easier to use byte 31 here, it has the DIMM size as
* a multiple of 4MB. The way we do it now we can size both
* sides of an assymetric dimm.
*/
value = smbus_read_byte(device, 3); /* rows */
if (value < 0) return sz;
sz.side1 += value & 0xf;
value = smbus_read_byte(device, 4); /* columns */
if (value < 0) return sz;
sz.side1 += value & 0xf;
value = smbus_read_byte(device, 17); /* banks */
if (value < 0) return sz;
sz.side1 += log2(value & 0xff);
/* Get the module data widht and convert it to a power of two */
value = smbus_read_byte(device, 7); /* (high byte) */
if (value < 0) return sz;
value &= 0xff;
value <<= 8;
low = smbus_read_byte(device, 6); /* (low byte) */
if (low < 0) return sz;
value = value | (low & 0xff);
sz.side1 += log2(value);
/* side 2 */
value = smbus_read_byte(device, 5); /* number of physical banks */
if (value <= 1) return sz;
/* Start with the symmetrical case */
sz.side2 = sz.side1;
value = smbus_read_byte(device, 3); /* rows */
if (value < 0) return sz;
if ((value & 0xf0) == 0) return sz; /* If symmetrical we are done */
sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
value = smbus_read_byte(device, 4); /* columns */
if (value < 0) return sz;
sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in columsn on side 2 */
return sz;
}
static unsigned spd_to_dimm_side0(unsigned device)
{
return (device - SMBUS_MEM_DEVICE_START) << 1;
}
static unsigned spd_to_dimm_side1(unsigned device)
{
return ((device - SMBUS_MEM_DEVICE_START) << 1) + 1;
}
static void set_dimm_size(unsigned long size, unsigned index)
{
unsigned value = 0;
/* Make certain the dimm is at least 32MB */
if (size >= (25 + 3)) {
/* Place the dimm size in 32 MB quantities in the bits 31 - 21.
* The initialize dimm size is in bits.
* Set the base enable bit0.
*/
value = (1 << ((size - (25 + 3)) + 21)) | 1;
}
/* Set the appropriate DIMM base address register */
pci_write_config32(PCI_DEV(0, 0x18, 2), 0x40 + (index << 2), value);
}
static void spd_set_ram_size(void)
{
unsigned device;
for(device = SMBUS_MEM_DEVICE_START;
device <= SMBUS_MEM_DEVICE_END;
device += SMBUS_MEM_DEVICE_INC)
{
struct dimm_size sz;
sz = spd_get_dimm_size(device);
set_dimm_size(sz.side1, spd_to_dimm_side0(device));
set_dimm_size(sz.side2, spd_to_dimm_side1(device));
}
}
static void set_top_mem(unsigned tom_k)
{
/* Error if I don't have memory */
if (!tom_k) {
die("No memory");
}
/* Now set top of memory */
msr_t msr;
msr.lo = (tom_k & 0x003fffff) << 10;
msr.hi = (tom_k & 0xffc00000) >> 22;
wrmsr(TOP_MEM, msr);
#if 1
/* And report the amount of memory. (I run out of registers if i don't) */
print_debug("RAM: 0x");
print_debug_hex32(tom_k);
print_debug(" KB\r\n");
#endif
}
static void order_dimms(void)
{
unsigned long tom;
unsigned mask;
unsigned index;
/* Remember which registers we have used in the high 8 bits of tom */
tom = 0;
for(;;) {
/* Find the largest remaining canidate */
unsigned canidate;
uint32_t csbase, csmask;
unsigned size;
csbase = 0;
canidate = 0;
for(index = 0; index < 8; index++) {
uint32_t value;
value = pci_read_config32(PCI_DEV(0, 0x18, 2), 0x40 + (index << 2));
/* Is it enabled? */
if (!(value & 1)) {
continue;
}
/* Is it greater? */
if (value <= csbase) {
continue;
}
/* Has it already been selected */
if (tom & (1 << (index + 24))) {
continue;
}
/* I have a new canidate */
csbase = value;
canidate = index;
}
/* See if I have found a new canidate */
if (csbase == 0) {
break;
}
/* Remember I have used this register */
tom |= (1 << (canidate + 24));
/* Remember the dimm size */
size = csbase >> 21;
/* Recompute the cs base register value */
csbase = (tom << 21) | 1;
/* Increment the top of memory */
tom += size;
/* Compute the memory mask */
csmask = ((size -1) << 21);
csmask |= 0xfe00; /* For now don't optimize */
/* Write the new base register */
pci_write_config32(PCI_DEV(0, 0x18, 2), 0x40 + (canidate << 2), csbase);
pci_write_config32(PCI_DEV(0, 0x18, 2), 0x60 + (canidate << 2), csmask);
}
set_top_mem((tom & ~0xff000000) << 15);
}
#define DRAM_CONFIG_LOW 0x90 #define DRAM_CONFIG_LOW 0x90
#define DCL_DLL_Disable (1<<0) #define DCL_DLL_Disable (1<<0)
#define DCL_D_DRV (1<<1) #define DCL_D_DRV (1<<1)
@ -1122,20 +1309,21 @@ static void sdram_set_registers(void)
#define DCL_MemClrStatus (1<<11) #define DCL_MemClrStatus (1<<11)
#define DCL_DimmEcEn (1<<17) #define DCL_DimmEcEn (1<<17)
#define NODE_ID 0x60
#define HT_INIT_CONTROL 0x6c
#define HTIC_ColdR_Detect (1<<4) static void spd_set_ecc_mode(void)
#define HTIC_BIOSR_Detect (1<<5)
#define HTIC_INIT_Detect (1<<6)
static void sdram_set_spd_registers(void)
{ {
unsigned long dcl; unsigned long dcl;
dcl = pci_read_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_LOW); dcl = pci_read_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_LOW);
/* Until I know what is going on disable ECC support */ /* Until I know what is going on disable ECC support */
dcl &= ~DCL_DimmEcEn; dcl &= ~DCL_DimmEcEn;
pci_write_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_LOW, dcl); pci_write_config32(PCI_DEV(0, 0x18, 2), DRAM_CONFIG_LOW, dcl);
}
static void sdram_set_spd_registers(void)
{
spd_set_ram_size();
spd_set_ecc_mode();
order_dimms();
} }
#define TIMEOUT_LOOPS 300000 #define TIMEOUT_LOOPS 300000

View File

@ -53,7 +53,7 @@ static int smbus_wait_until_done(void)
smbus_delay(); smbus_delay();
val = inw(SMBUS_IO_BASE + SMBGSTATUS); val = inw(SMBUS_IO_BASE + SMBGSTATUS);
if (((val & 0x8) == 0) || ((val & 0x437) != 0)) { if (((val & 0x8) == 0) | ((val & 0x437) != 0)) {
break; break;
} }
} while(--loops); } while(--loops);

View File

@ -51,6 +51,7 @@ TESTS=\
simple_test30.c \ simple_test30.c \
simple_test31.c \ simple_test31.c \
simple_test32.c \ simple_test32.c \
simple_test33.c \
raminit_test.c \ raminit_test.c \
raminit_test2.c \ raminit_test2.c \
raminit_test3.c \ raminit_test3.c \

View File

@ -1428,6 +1428,10 @@ static struct triple *pre_triple(struct compile_state *state,
{ {
struct block *block; struct block *block;
struct triple *ret; struct triple *ret;
/* If I am an OP_PIECE jump to the real instruction */
if (base->op == OP_PIECE) {
base = MISC(base, 0);
}
block = block_of_triple(state, base); block = block_of_triple(state, base);
ret = build_triple(state, op, type, left, right, ret = build_triple(state, op, type, left, right,
base->filename, base->line, base->col); base->filename, base->line, base->col);
@ -1447,6 +1451,17 @@ static struct triple *post_triple(struct compile_state *state,
{ {
struct block *block; struct block *block;
struct triple *ret; struct triple *ret;
int zlhs;
/* If I am an OP_PIECE jump to the real instruction */
if (base->op == OP_PIECE) {
base = MISC(base, 0);
}
/* If I have a left hand side skip over it */
zlhs = TRIPLE_LHS(base->sizes);
if (zlhs && (base->op != OP_WRITE) && (base->op != OP_STORE)) {
base = LHS(base, zlhs - 1);
}
block = block_of_triple(state, base); block = block_of_triple(state, base);
ret = build_triple(state, op, type, left, right, ret = build_triple(state, op, type, left, right,
base->filename, base->line, base->col); base->filename, base->line, base->col);
@ -1491,7 +1506,7 @@ static void display_triple(FILE *fp, struct triple *ins)
fprintf(fp, " %-10p", ins->param[i]); fprintf(fp, " %-10p", ins->param[i]);
} }
for(; i < 2; i++) { for(; i < 2; i++) {
printf(" "); fprintf(fp, " ");
} }
fprintf(fp, " @ %s:%d.%d\n", fprintf(fp, " @ %s:%d.%d\n",
ins->filename, ins->line, ins->col); ins->filename, ins->line, ins->col);
@ -12248,6 +12263,7 @@ struct least_conflict {
struct triple *ins; struct triple *ins;
struct triple_reg_set *live; struct triple_reg_set *live;
size_t count; size_t count;
int constraints;
}; };
static void least_conflict(struct compile_state *state, static void least_conflict(struct compile_state *state,
struct reg_block *blocks, struct triple_reg_set *live, struct reg_block *blocks, struct triple_reg_set *live,
@ -12257,19 +12273,13 @@ static void least_conflict(struct compile_state *state,
struct live_range_edge *edge; struct live_range_edge *edge;
struct triple_reg_set *set; struct triple_reg_set *set;
size_t count; size_t count;
int constraints;
#if 0
#define HI() fprintf(stderr, "%-10p(%-15s) %d\n", ins, tops(ins->op), __LINE__)
#else
#define HI()
#endif
#warning "FIXME handle instructions with left hand sides..." #warning "FIXME handle instructions with left hand sides..."
/* Only instructions that introduce a new definition /* Only instructions that introduce a new definition
* can be the conflict instruction. * can be the conflict instruction.
*/ */
if (!triple_is_def(state, ins)) { if (!triple_is_def(state, ins)) {
HI();
return; return;
} }
@ -12280,22 +12290,25 @@ HI();
for(set = live; set; set = set->next) { for(set = live; set; set = set->next) {
struct live_range *lr; struct live_range *lr;
lr = conflict->rstate->lrd[set->member->id].lr; lr = conflict->rstate->lrd[set->member->id].lr;
/* Ignore it if there cannot be an edge between these two nodes */
if (!arch_regcm_intersect(conflict->ref_range->classes, lr->classes)) {
continue;
}
for(edge = conflict->ref_range->edges; edge; edge = edge->next) { for(edge = conflict->ref_range->edges; edge; edge = edge->next) {
if (edge->node == lr) { if (edge->node == lr) {
break; break;
} }
} }
if (!edge && (lr != conflict->ref_range)) { if (!edge && (lr != conflict->ref_range)) {
HI();
return; return;
} }
count++; count++;
} }
if (count <= 1) { if (count <= 1) {
HI();
return; return;
} }
#if 0
/* See if there is an uncolored member in this subset. /* See if there is an uncolored member in this subset.
*/ */
for(set = live; set; set = set->next) { for(set = live; set; set = set->next) {
@ -12306,11 +12319,79 @@ HI();
} }
} }
if (!set && (conflict->ref_range != REG_UNSET)) { if (!set && (conflict->ref_range != REG_UNSET)) {
HI(); return;
}
#endif
/* See if any of the live registers are constrained,
* if not it won't be productive to pick this as
* a conflict instruction.
*/
constraints = 0;
for(set = live; set; set = set->next) {
struct triple_set *uset;
struct reg_info info;
unsigned classes;
unsigned cur_size, size;
/* Skip this instruction */
if (set->member == ins) {
continue;
}
/* Find how many registers this value can potentially
* be assigned to.
*/
classes = arch_type_to_regcm(state, set->member->type);
size = regc_max_size(state, classes);
/* Find how many registers we allow this value to
* be assigned to.
*/
info = arch_reg_lhs(state, set->member, 0);
/* If the value does not live in a register it
* isn't constrained.
*/
if (info.reg == REG_UNNEEDED) {
continue;
}
if ((info.reg == REG_UNSET) || (info.reg >= MAX_REGISTERS)) {
cur_size = regc_max_size(state, info.regcm);
} else {
cur_size = 1;
}
/* If there is no difference between potential and
* actual register count there is not a constraint
*/
if (cur_size >= size) {
continue;
}
/* If this live_range feeds into conflict->inds
* it isn't a constraint we can relieve.
*/
for(uset = set->member->use; uset; uset = uset->next) {
if (uset->member == ins) {
break;
}
}
if (uset) {
continue;
}
constraints = 1;
break;
}
/* Don't drop canidates with constraints */
if (conflict->constraints && !constraints) {
return; return;
} }
#if 0
fprintf(stderr, "conflict ins? %p %s count: %d constraints: %d\n",
ins, tops(ins->op), count, constraints);
#endif
/* Find the instruction with the largest possible subset of /* Find the instruction with the largest possible subset of
* conflict ranges and that dominates any other instruction * conflict ranges and that dominates any other instruction
* with an equal sized set of conflicting ranges. * with an equal sized set of conflicting ranges.
@ -12322,6 +12403,7 @@ HI();
/* Remember the canidate instruction */ /* Remember the canidate instruction */
conflict->ins = ins; conflict->ins = ins;
conflict->count = count; conflict->count = count;
conflict->constraints = constraints;
/* Free the old collection of live registers */ /* Free the old collection of live registers */
for(set = conflict->live; set; set = next) { for(set = conflict->live; set; set = next) {
next = set->next; next = set->next;
@ -12353,7 +12435,6 @@ HI();
; ;
} }
} }
HI();
return; return;
} }
@ -12362,12 +12443,6 @@ static void find_range_conflict(struct compile_state *state,
struct least_conflict *conflict) struct least_conflict *conflict)
{ {
#if 0
static void verify_blocks(struct compile_state *stae);
verify_blocks(state);
print_blocks(state, stderr);
print_dominators(state, stderr);
#endif
/* there are 3 kinds ways conflicts can occure. /* there are 3 kinds ways conflicts can occure.
* 1) the life time of 2 values simply overlap. * 1) the life time of 2 values simply overlap.
* 2) the 2 values feed into the same instruction. * 2) the 2 values feed into the same instruction.
@ -12387,37 +12462,25 @@ static void find_range_conflict(struct compile_state *state,
* is at or after the instruction. * is at or after the instruction.
*/ */
memset(conflict, 0, sizeof(*conflict)); memset(conflict, 0, sizeof(*conflict));
conflict->rstate = rstate; conflict->rstate = rstate;
conflict->ref_range = ref_range; conflict->ref_range = ref_range;
conflict->ins = 0; conflict->ins = 0;
conflict->count = 0; conflict->live = 0;
conflict->live = 0; conflict->count = 0;
conflict->constraints = 0;
walk_variable_lifetimes(state, rstate->blocks, least_conflict, conflict); walk_variable_lifetimes(state, rstate->blocks, least_conflict, conflict);
if (!conflict->ins) { if (!conflict->ins) {
struct live_range_edge *edge;
struct live_range_def *lrd;
fprintf(stderr, "edges:\n");
for(edge = ref_range->edges; edge; edge = edge->next) {
lrd = edge->node->defs;
do {
fprintf(stderr, " %-10p(%s)", lrd->def, tops(lrd->def->op));
lrd = lrd->next;
} while(lrd != edge->node->defs);
fprintf(stderr, "|\n");
}
fprintf(stderr, "range:\n");
lrd = ref_range->defs;
do {
fprintf(stderr, " %-10p(%s)", lrd->def, tops(lrd->def->op));
lrd = lrd->next;
} while(lrd != ref_range->defs);
fprintf(stderr,"\n");
internal_error(state, ref_range->defs->def, "No conflict ins?"); internal_error(state, ref_range->defs->def, "No conflict ins?");
} }
if (!conflict->live) { if (!conflict->live) {
internal_error(state, ref_range->defs->def, "No conflict live?"); internal_error(state, ref_range->defs->def, "No conflict live?");
} }
#if 0
fprintf(stderr, "conflict ins: %p %s count: %d constraints: %d\n",
conflict->ins, tops(conflict->ins->op),
conflict->count, conflict->constraints);
#endif
return; return;
} }
@ -12452,6 +12515,13 @@ static struct triple *split_constrained_range(struct compile_state *state,
* be assigned to. * be assigned to.
*/ */
info = arch_reg_lhs(state, cset->member, 0); info = arch_reg_lhs(state, cset->member, 0);
/* If the register doesn't need a register
* splitting it can't help.
*/
if (info.reg == REG_UNNEEDED) {
continue;
}
#warning "FIXME do I need a call to arch_reg_rhs around here somewhere?" #warning "FIXME do I need a call to arch_reg_rhs around here somewhere?"
if ((info.reg == REG_UNSET) || (info.reg >= MAX_REGISTERS)) { if ((info.reg == REG_UNSET) || (info.reg >= MAX_REGISTERS)) {
cur_size = regc_max_size(state, info.regcm); cur_size = regc_max_size(state, info.regcm);
@ -12497,6 +12567,10 @@ static int split_ranges(
{ {
struct triple *new; struct triple *new;
#if 0
fprintf(stderr, "split_ranges %d %s %p\n",
rstate->passes, tops(range->defs->def->op), range->defs->def);
#endif
if ((range->color == REG_UNNEEDED) || if ((range->color == REG_UNNEEDED) ||
(rstate->passes >= rstate->max_passes)) { (rstate->passes >= rstate->max_passes)) {
return 0; return 0;
@ -12506,6 +12580,9 @@ static int split_ranges(
if (arch_select_free_register(state, used, range->classes) == REG_UNSET) { if (arch_select_free_register(state, used, range->classes) == REG_UNSET) {
struct least_conflict conflict; struct least_conflict conflict;
#if 0
fprintf(stderr, "find_range_conflict\n");
#endif
/* Find where in the set of registers the conflict /* Find where in the set of registers the conflict
* actually occurs. * actually occurs.
*/ */
@ -12528,6 +12605,11 @@ static int split_ranges(
* *
*/ */
#warning "WISHLIST implement live range splitting..." #warning "WISHLIST implement live range splitting..."
#if 0
print_blocks(state, stderr);
print_dominators(state, stderr);
#endif
return 0; return 0;
} }
} }
@ -12536,7 +12618,13 @@ static int split_ranges(
new->id = rstate->defs; new->id = rstate->defs;
rstate->defs++; rstate->defs++;
#if 0 #if 0
fprintf(stderr, "new: %p\n", new); fprintf(stderr, "new: %p old: %s %p\n",
new, tops(RHS(new, 0)->op), RHS(new, 0));
#endif
#if 0
print_blocks(state, stderr);
print_dominators(state, stderr);
#endif #endif
return 1; return 1;
} }
@ -12717,17 +12805,29 @@ static int select_free_color(struct compile_state *state,
arch_select_free_register(state, used, range->classes); arch_select_free_register(state, used, range->classes);
} }
if (range->color == REG_UNSET) { if (range->color == REG_UNSET) {
struct live_range_def *lrd;
int i; int i;
if (split_ranges(state, rstate, used, range)) { if (split_ranges(state, rstate, used, range)) {
return 0; return 0;
} }
for(edge = range->edges; edge; edge = edge->next) { for(edge = range->edges; edge; edge = edge->next) {
if (edge->node->color == REG_UNSET) { warning(state, edge->node->defs->def, "edge reg %s",
continue;
}
warning(state, edge->node->defs->def, "reg %s",
arch_reg_str(edge->node->color)); arch_reg_str(edge->node->color));
lrd = edge->node->defs;
do {
warning(state, lrd->def, " %s",
tops(lrd->def->op));
lrd = lrd->next;
} while(lrd != edge->node->defs);
} }
warning(state, range->defs->def, "range: ");
lrd = range->defs;
do {
warning(state, lrd->def, " %s",
tops(lrd->def->op));
lrd = lrd->next;
} while(lrd != range->defs);
warning(state, range->defs->def, "classes: %x", warning(state, range->defs->def, "classes: %x",
range->classes); range->classes);
for(i = 0; i < MAX_REGISTERS; i++) { for(i = 0; i < MAX_REGISTERS; i++) {

View File

@ -0,0 +1,41 @@
static void main(void)
{
unsigned long loops0, loops1, loops2;
unsigned long accum;
accum = 0;
loops0 = 10;
do {
unsigned short val;
val = __builtin_inw(0x10e0);
if (((val & 0x08) == 0) || (val == 1)) {
break;
}
} while(--loops0);
if (loops0 < 0) return;
accum += loops0;
loops1 = 20;
do {
unsigned short val;
val = __builtin_inw(0x10e0);
if (((val & 0x08) == 0) || (val == 1)) {
break;
}
} while(--loops1);
loops2 = 30;
do {
unsigned short val;
val = __builtin_inw(0x10e0);
if (((val & 0x08) == 0) || (val == 1)) {
break;
}
} while(--loops2);
accum += loops1 + loops0;
}