Peppy had some issues with FUI. We decided it was time to create
peppy-specific gma.c and i915io.c files. Using yabel and the i915tool,
we generated a replay attack, then interpolated against the slippy
i915io.c to get something working.
Also, in preparation for moving code out of the mainboard gma.c to
generic driver code, we got rid of some hardcodes in the mainboard
gma.c that have no business being there. The worst were the
computation of gmch_[m,n] and it turns out that we had some
long-standing bugs related to confusion about 'bpp'. I've killed the
word bpp everywhere I could because there are at least 3 things that
correspond to bpp. We now have framebuffer, pipe, and panel bpp. The
names are long because I want to avoid all the mistakes we've all been
making in the last year :-) Sadly, that means a lot of changes not just
peppy-related, but they are simple and in a good cause.
The test pattern generation is driven by a global variable in
mainboard/peppy/gma.c. I've found in the past that it's very useful
to have a function like this available, as one can activate it while
using a jtag debugger: halt at the right place in ramstage, set the
variable to 1, continue. It's not enough code to worry about always
including.
The last hard-codes for M and N registers are gone, and the function
to set from generic intel_dp.c code works. To avoid screen trash on a
dev mode boot, which we liked but nobody else did :-), we now take the
time to put a pleasing background color that sort of doubles as a
power LED.
Rough timing is ramstage start is at 2.2, and dev setup is done at
3.3. These new platforms are depressingly slow to boot. Rom init alone
is taking 1.9 seconds. 13 years ago it was 3 seconds from power on to bash
prompt. These CPUs are at least 10x faster and take much longer to get going.
Future work, once we get this through, is to move more functions to the
intel driver, and combine the mainboard i915io.c into the mainboard gma.c.
That separation only existed because i915io.c was generated by a tool, and it
had lots of ugliness. Most ugliness is gone.
Old-Change-Id: I6a6295b423a41e263f82cef33eacb92a14163321
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: https://chromium-review.googlesource.com/170013
Reviewed-by: Stefan Reinauer <reinauer@google.com>
Commit-Queue: Ronald Minnich <rminnich@chromium.org>
Tested-by: Ronald Minnich <rminnich@chromium.org>
Reviewed-by: Furquan Shaikh <furquan.m.shaikh@gmail.com>
(cherry picked from commit 8cdaf73e3602e15925859866714db4d5ec6c947d)
snow: Fix a typo in devicetree.cb that was breaking the snow build.
A typo in a recent change broke the snow build.
Old-Change-Id: I93074e68eb3d21510d974fd8e9c63b3947285afd
Signed-off-by: Gabe Black <gabeblack@google.com>
Reviewed-on: https://chromium-review.googlesource.com/171014
Reviewed-by: Ronald Minnich <rminnich@chromium.org>
Commit-Queue: Gabe Black <gabeblack@chromium.org>
Tested-by: Gabe Black <gabeblack@chromium.org>
(cherry picked from commit 154876c126a6690930141df178485658533096d2)
Squashed a fix into the initial patch and updated nehalem/gma.c
to have a non-static gtt_poll.
Change-Id: I2f4342c610d87335411da1d6d405171dc80c1f14
Signed-off-by: Isaac Christensen <isaac.christensen@se-eng.com>
Reviewed-on: http://review.coreboot.org/6657
Tested-by: build bot (Jenkins)
... based on the EDID detailed timing values for
pixel_clock and link_clock.
Two undocumented registers 0x6f040 and 0x6f044 correspond to link_m and link_n
respectively. Other two undocumented registers 0x6f030 and 0x6f034 correspond
to data_m and data_n respectively.
Calculations are based on the intel_link_compute_m_n from linux kernel.
Currently, the value for 0x6f030 does not come up right with our calculations.
Hence, set to hard-coded value.
Change-Id: I40ff411729d0a61759164c3c1098504973f9cf5e
Reviewed-on: https://gerrit.chromium.org/gerrit/62915
Reviewed-by: Ronald G. Minnich <rminnich@chromium.org>
Tested-by: Furquan Shaikh <furquan@chromium.org>
Commit-Queue: Furquan Shaikh <furquan@chromium.org>
Reviewed-on: http://review.coreboot.org/4381
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Now that we have horizontal display areas that are not multiples of 32 bytes,
things are more complex. We add three struct members (x, y resolution and
bytes per line) which are to be filled in by the mainboard as it sets the mode.
In future, the EDID code may take a stab at initializing these but the values are
context-dependent.
Change-Id: Ib9102d6bbf8c66931f5adb1029a04b881a982cfe
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Reviewed-on: https://gerrit.chromium.org/gerrit/60514
Tested-by: Ronald G. Minnich <rminnich@chromium.org>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Commit-Queue: Ronald G. Minnich <rminnich@chromium.org>
Reviewed-on: http://review.coreboot.org/4336
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
We've got enough of a handle on this to realize some things:
drm_dp_helper.h is by design device and architecture independent
i915.h is common to most intel graphics chipsets going back several years
i915_reg.h is as well
Move these files to src/include/device, and adjust the .c files accordingly.
Change-Id: I07512b3695fea0b22949074b467986420783d62a
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Reviewed-on: http://review.coreboot.org/3637
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Add three functions to edid.c:
void set_vbe_mode_info_valid(struct edid *edid, uintptr_t fb_addr)
takes an edid and uintptr_t, and fills in a static lb_framebuffer struct
as well as setting the static vbe_valid to 1 unless some problem
is found in the edid. The intent here is that this could be called from
the native graphics setup code on both ARM and x86.
int vbe_mode_info_valid(void)
returns value of the static vbe_valid.
void fill_lb_framebuffer(struct lb_framebuffer *framebuffer)
copies the static edid_fb to lb_framebuffer.
There is now a common vbe.h in src/include, removed the two special ones.
In general, graphics in coreboot is a mess, but graphics is always a
mess. We don't have a clean way to try two different ways to turn on
a device and use the one that works. One battle at a time. Overall,
things are much better.
The best part: this code would also work for ARM, which also uses EDID.
Change-Id: Id23eb61498b331d44ab064b8fb4cb10f07cff7f3
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Reviewed-on: http://review.coreboot.org/3636
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This code is taken from an EDID reader written at Red Hat.
The key function is
int decode_edid(unsigned char *edid, int size, struct edid *out)
Which takes a pointer to an EDID blob, and a size, and decodes it into
a machine-independent format in out, which may be used for driving
chipsets. The EDID blob might come for IO, or a compiled-in EDID
BLOB, or CBFS.
Also included are the changes needed to use the EDID code on Link.
Change-Id: I66b275b8ed28fd77cfa5978bdec1eeef9e9425f1
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: http://review.coreboot.org/2837
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>