The GCC 4.9.2 update showed that the boot_state_init_entry
structures were being padded and assumed to be aligned in to an
increased size. The bootstate scheduler for static entries,
boot_state_schedule_static_entries(), was then calculating the
wrong values within the array. To fix this just use a pointer to
the boot_state_init_entry structure that needs to be scheduled.
In addition to the previous issue noted above, the .bs_init
section was sitting in the read only portion of the image while
the fields within it need to be writable. Also, the
boot_state_schedule_static_entries() was using symbol comparison
to terminate a loop which in C can lead the compiler to always
evaluate the loop at least once since the language spec indicates
no 2 symbols can be the same value.
Change-Id: I6dc5331c2979d508dde3cd5c3332903d40d8048b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/8699
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Change-Id: I0c2943bb0889552dc384d8efb5226cd6982a4d81
Signed-off-by: Patrick Georgi <patrick@georgi-clan.de>
Reviewed-on: http://review.coreboot.org/6663
Tested-by: build bot (Jenkins)
Reviewed-by: Edward O'Callaghan <eocallaghan@alterapraxis.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
... and drop the wrapper on ARMv7
Change-Id: If3ffe953cee9e61d4dcbb38f4e5e2ca74b628ccc
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Reviewed-on: http://review.coreboot.org/3639
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
it has been unused since 9 years or so, hence drop it.
Change-Id: I0706feb7b3f2ada8ecb92176a94f6a8df53eaaa1
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/3212
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
In order to properly sequence the boot state machine it's
important that outside code can block the transition from
one state to the next. When timers are not involved there's
no reason for any of the existing code to block a state
transition. However, if there is a timer callback that needs to
complete by a certain point in the boot sequence it is necessary
to place a block for the given state.
To that end, 4 new functions are added to provide the API for
blocking a state.
1. boot_state_block(boot_state_t state, boot_state_sequence_t seq);
2. boot_state_unblock(boot_state_t state, boot_state_sequence_t seq);
3. boot_state_current_block(void);
4. boot_state_current_unblock(void);
Change-Id: Ieb37050ff652fd85a6b1e0e2f81a1a2807bab8e0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3204
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
It's helpful to provide a distinct state that affirmatively
describes that OS resume will occur. The previous code included
the check and the actual resuming in one function. Because of this
grouping one had to annotate the innards of the ACPI resume
path to perform specific actions before OS resume. By providing
a distinct state in the boot state machine the necessary actions
can be scheduled accordingly without modifying the ACPI code.
Change-Id: I8b00aacaf820cbfbb21cb851c422a143371878bd
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3134
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Many of the boot state callbacks can be scheduled at compile time.
Therefore, provide a way for a compilation unit to inform the
boot state machine when its callbacks should be called. Each C
module can export the callbacks and their scheduling requirements
without changing the shared boot flow code.
Change-Id: Ibc4cea4bd5ad45b2149c2d4aa91cbea652ed93ed
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3133
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The boot flow currently has a fixed ordering. The ordering
is dictated by the device tree and on x86 the PCI device ordering
for when actions are performed. Many of the new machines and
configurations have dependencies that do not follow the device
ordering.
In order to be more flexible the concept of a boot state machine
is introduced. At the boundaries (entry and exit) of each state there
is opportunity to run callbacks. This ability allows one to schedule
actions to be performed without adding board-specific code to
the shared boot flow.
Change-Id: I757f406c97445f6d9b69c003bb9610b16b132aa6
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3132
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>