The x86 linker script added a .textfirst section. In
order to properly link ramstage as a relocatable module
the .textfirst section needs to be included.
Also, the support for code coverage was added by including
the constructor section and symbols. Coverage has not been
tested as I suspect it might not work in a relocatable
environment without some tweaking. However, the section
and symbols are there if needed.
Change-Id: Ie1f6d987d6eb657ed4aa3a8918b2449dafaf9463
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2883
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
There were some cbfs calls that did not get transitioned
to the new cbfs API. Fix the callsites to conform to the
actual cbfs, thus fixing the copilation errors.
Change-Id: Ia9fe2c4efa32de50982e21bd01457ac218808bd3
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2880
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
coreboot tables are, unlike general system tables, a platform
independent concept. Hence, use the same code for coreboot table
generation on all platforms. lib/coreboot_tables.c is based
on the x86 version of the file, because some important fixes
were missed on the ARMv7 version lately.
Change-Id: Icc38baf609f10536a320d21ac64408bef44bb77d
Signed-off-by: Stefan Reinauer <reinauer@coreboot.org>
Reviewed-on: http://review.coreboot.org/2863
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-by: Aaron Durbin <adurbin@google.com>
Tested-by: build bot (Jenkins)
This patch implements support for vboot firmware selection. The vboot
support is comprised of the following pieces:
1. vboot_loader.c - this file contains the entry point,
vboot_verify_firmware(), for romstage to call in order to perform
vboot selection. The loader sets up all the data for the wrapper
to use.
2. vboot_wrapper.c - this file contains the implementation calling the vboot
API. It calls VbInit() and VbSelectFirmware() with the data supplied
by the loader.
The vboot wrapper is compiled and linked as an rmodule and placed in
cbfs as 'fallback/vboot'. It's loaded into memory and relocated just
like the way ramstage would be. After being loaded the loader calls into
wrapper. When the wrapper sees that a given piece of firmware has been
selected it parses firmware component information for a predetermined
number of components.
Vboot result information is passed to downstream users by way of the
vboot_handoff structure. This structure lives in cbmem and contains
the shared data, selected firmware, VbInitParams, and parsed firwmare
components.
During ramstage there are only 2 changes:
1. Copy the shared vboot data from vboot_handoff to the chromeos acpi
table.
2. If a firmware selection was made in romstage the boot loader
component is used for the payload.
Noteable Information:
- no vboot path for S3.
- assumes that all RW firmware contains a book keeping header for the
components that comprise the signed firmware area.
- As sanity check there is a limit to the number of firmware components
contained in a signed firmware area. That's so that an errant value
doesn't cause the size calculation to erroneously read memory it
shouldn't.
- RO normal path isn't supported. It's assumed that firmware will always
load the verified RW on all boots but recovery.
- If vboot requests memory to be cleared it is assumed that the boot
loader will take care of that by looking at the out flags in
VbInitParams.
Built and booted. Noted firmware select worked on an image with
RW firmware support. Also checked that recovery mode worked as well
by choosing the RO path.
Change-Id: I45de725c44ee5b766f866692a20881c42ee11fa8
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2854
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The vboot firmware selection from romstage will need to
pass the resulting vboot data to other consumers. This will
be done using a cbmem entry.
Change-Id: I497caba53f9f3944513382f3929d21b04bf3ba9e
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2851
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Dynamic cbmem is now a requirement for relocatable ramstage.
This patch replaces the reserve_* fields in the romstage_handoff
structure by using the dynamic cbmem library.
The haswell code is not moved over in this commit, but it should be
safe because there is a hard requirement for DYNAMIC_CBMEM when using
a reloctable ramstage.
Change-Id: I59ab4552c3ae8c2c3982df458cd81a4a9b712cc2
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2849
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Here's the great news: From now on you don't have to worry about
hitting the right io.h include anymore. Just forget about romcc_io.h
and use io.h instead. This cleanup has a number of advantages, like
you don't have to guard device/ includes for SMM and pre RAM
anymore. This allows to get rid of a number of ifdefs and will
generally make the code more readable and understandable.
Potentially in the future some of the code in the io.h __PRE_RAM__
path should move to device.h or other device/ includes instead,
but that's another incremental change.
Change-Id: I356f06110e2e355e9a5b4b08c132591f36fec7d9
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2872
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This patch fixes an issue for rmodules which are copied into memory
at the final load/link location. If the bss section is cleared for
that rmodule the relocation could not take place properly since the
relocation information was wiped by act of clearing the bss. The
reason is that the relocation information resides at the same
address as the bss section. Correct this issue by performing the
relocation before clearing the bss.
Change-Id: I01a124a8201321a9eaf6144c743fa818c0f004b4
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2822
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
This patch adds a parallel implementation of cbmem that supports
dynamic sizing. The original implementation relied on reserving
a fixed-size block of memory for adding cbmem entries. In order to
allow for more flexibility for adding cbmem allocations the dynamic
cbmem infrastructure was developed as an alternative to the fixed block
approach. Also, the amount of memory to reserve for cbmem allocations
does not need to be known prior to the first allocation.
The dynamic cbmem code implements the same API as the existing cbmem
code except for cbmem_init() and cbmem_reinit(). The add and find
routines behave the same way. The dynamic cbmem infrastructure
uses a top down allocator that starts allocating from a board/chipset
defined function cbmem_top(). A root pointer lives just below
cbmem_top(). In turn that pointer points to the root block which
contains the entries for all the large alloctations. The corresponding
block for each large allocation falls just below the previous entry.
It should be noted that this implementation rounds all allocations
up to a 4096 byte granularity. Though a packing allocator could
be written for small allocations it was deemed OK to just fragment
the memory as there shouldn't be that many small allocations. The
result is less code with a tradeoff of some wasted memory.
+----------------------+ <- cbmem_top()
| +----| root pointer |
| | +----------------------+
| | | |--------+
| +--->| root block |-----+ |
| +----------------------+ | |
| | | | |
| | | | |
| | alloc N |<----+ |
| +----------------------+ |
| | | |
| | | |
\|/ | alloc N + 1 |<-------+
v +----------------------+
In addition to preserving the previous cbmem API, the dynamic
cbmem API allows for removing blocks from cbmem. This allows for
the boot process to allocate memory that can be discarded after
it's been used for performing more complex boot tasks in romstage.
In order to plumb this support in there were some issues to work
around regarding writing of coreboot tables. There were a few
assumptions to how cbmem was layed out which dictated some ifdef
guarding and other runtime checks so as not to incorrectly
tag the e820 and coreboot memory tables.
The example shown below is using dynamic cbmem infrastructure.
The reserved memory for cbmem is less than 512KiB.
coreboot memory table:
0. 0000000000000000-0000000000000fff: CONFIGURATION TABLES
1. 0000000000001000-000000000002ffff: RAM
2. 0000000000030000-000000000003ffff: RESERVED
3. 0000000000040000-000000000009ffff: RAM
4. 00000000000a0000-00000000000fffff: RESERVED
5. 0000000000100000-0000000000efffff: RAM
6. 0000000000f00000-0000000000ffffff: RESERVED
7. 0000000001000000-000000007bf80fff: RAM
8. 000000007bf81000-000000007bffffff: CONFIGURATION TABLES
9. 000000007c000000-000000007e9fffff: RESERVED
10. 00000000f0000000-00000000f3ffffff: RESERVED
11. 00000000fed10000-00000000fed19fff: RESERVED
12. 00000000fed84000-00000000fed84fff: RESERVED
13. 0000000100000000-00000001005fffff: RAM
Wrote coreboot table at: 7bf81000, 0x39c bytes, checksum f5bf
coreboot table: 948 bytes.
CBMEM ROOT 0. 7bfff000 00001000
MRC DATA 1. 7bffe000 00001000
ROMSTAGE 2. 7bffd000 00001000
TIME STAMP 3. 7bffc000 00001000
ROMSTG STCK 4. 7bff7000 00005000
CONSOLE 5. 7bfe7000 00010000
VBOOT 6. 7bfe6000 00001000
RAMSTAGE 7. 7bf98000 0004e000
GDT 8. 7bf97000 00001000
ACPI 9. 7bf8b000 0000c000
ACPI GNVS 10. 7bf8a000 00001000
SMBIOS 11. 7bf89000 00001000
COREBOOT 12. 7bf81000 00008000
And the corresponding e820 entries:
BIOS-e820: [mem 0x0000000000000000-0x0000000000000fff] type 16
BIOS-e820: [mem 0x0000000000001000-0x000000000002ffff] usable
BIOS-e820: [mem 0x0000000000030000-0x000000000003ffff] reserved
BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable
BIOS-e820: [mem 0x00000000000a0000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x0000000000efffff] usable
BIOS-e820: [mem 0x0000000000f00000-0x0000000000ffffff] reserved
BIOS-e820: [mem 0x0000000001000000-0x000000007bf80fff] usable
BIOS-e820: [mem 0x000000007bf81000-0x000000007bffffff] type 16
BIOS-e820: [mem 0x000000007c000000-0x000000007e9fffff] reserved
BIOS-e820: [mem 0x00000000f0000000-0x00000000f3ffffff] reserved
BIOS-e820: [mem 0x00000000fed10000-0x00000000fed19fff] reserved
BIOS-e820: [mem 0x00000000fed84000-0x00000000fed84fff] reserved
BIOS-e820: [mem 0x0000000100000000-0x00000001005fffff] usable
Change-Id: Ie3bca52211800a8652a77ca684140cfc9b3b9a6b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2848
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Change "ERROR" to "WARNING" -- not finding the indicated file is usually
not a fatal error.
Change-Id: I0600964360ee27484c393125823e833f29aaa7e7
Signed-off-by: Shawn Nematbakhsh <shawnn@google.com>
Reviewed-on: http://review.coreboot.org/2833
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The standard string functions memcmp(), memset(), and memcpy()
are needed by most programs. The rmodules class provides a way to
build objects for the rmodules class. Those programs most likely need
the string functions. Therefore provide those standard functions to
be used by any generic rmodule program.
Change-Id: I2737633f03894d54229c7fa7250c818bf78ee4b7
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2821
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Instead of hard coding the policy for how a relocated ramstage
image is saved add an interface. The interface consists of two
functions. cache_loaded_ramstage() and load_cached_ramstage()
are the functions to cache and load the relocated ramstage,
respectively. There are default implementations which cache and
load the relocated ramstage just below where the ramstage runs.
Change-Id: I4346e873d8543e7eee4c1cd484847d846f297bb0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2805
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.
This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.
The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.
e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16
The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.
With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:
13 entries total:
1:95,965
2:97,191 (1,225)
3:131,755 (34,564)
4:132,890 (1,135)
8:135,165 (2,274)
9:135,840 (675)
10:135,973 (132)
30:136,016 (43)
40:136,581 (564)
50:138,280 (1,699)
60:138,381 (100)
70:204,538 (66,157)
98:204,615 (77)
Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
When CONFIG_EARLY_CBMEM_INIT is selected romstage is supposed to have
initialized cbmem. Therefore provide a weak function for the chipset
to implement named cbmem_get_table_location(). When
CONFIG_EARLY_CBMEM_INIT is selected cbmem_get_table_location() will be
called to get the cbmem location and size. After that cbmem_initialize()
is called.
Change-Id: Idc45a95f9d4b1d83eb3c6d4977f7a8c80c1ffe76
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2797
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The romstage_handoff structure can be utilized from different components
of the romstage -- some in the chipset code, some in coreboot's core
libarary. To ensure that all users handle initialization of a newly
added romstage_handoff structure properly, provide a common function to
handle structure initialization.
Change-Id: I3998c6bb228255f4fd93d27812cf749560b06e61
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2795
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This patch adds an option to build the ramstage as a reloctable binary.
It uses the rmodule library for the relocation. The main changes
consist of the following:
1. The ramstage is loaded just under the cmbem space.
2. Payloads cannot be loaded over where ramstage is loaded. If a payload
is attempted to load where the relocatable ramstage resides the load
is aborted.
3. The memory occupied by the ramstage is reserved from the OS's usage
using the romstage_handoff structure stored in cbmem. This region is
communicated to ramstage by an CBMEM_ID_ROMSTAGE_INFO entry in cbmem.
4. There is no need to reserve cbmem space for the OS controlled memory for
the resume path because the ramsage region has been reserved in #3.
5. Since no memory needs to be preserved in the wake path, the loading
and begin of execution of a elf payload is straight forward.
Change-Id: Ia66cf1be65c29fa25ca7bd9ea6c8f11d7eee05f5
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2792
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
Introduce a new cbmem id to indicate romstage information. Proper
coordination with ramstage and romstage can use this cbmem entity
to communicate between one another.
Change-Id: Id785f429eeff5b015188c36eb932e6a6ce122da8
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2790
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
There is a need to calculate the proper placement for an rmodule
in memory. e.g. loading a compressed rmodule from flash into ram
can be an issue. Determining the placement is hard since the header
is not readable until it is decompressed so choosing the wrong location
may require a memmove() after decompression. This patch provides
a function to perform this calculation by finding region below a given
address while making an assumption on the size of the rmodule header..
Change-Id: I2703438f58ae847ed6e80b58063ff820fbcfcbc0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2788
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
The cbfs stage loading routine already zeros out the full
memory region that a stage will be loaded. Therefore, it is
unnecessary to to clear the bss again after once ramstage starts.
Change-Id: Icc7021329dbf59bef948a41606f56746f21b507f
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2865
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This code is taken from an EDID reader written at Red Hat.
The key function is
int decode_edid(unsigned char *edid, int size, struct edid *out)
Which takes a pointer to an EDID blob, and a size, and decodes it into
a machine-independent format in out, which may be used for driving
chipsets. The EDID blob might come for IO, or a compiled-in EDID
BLOB, or CBFS.
Also included are the changes needed to use the EDID code on Link.
Change-Id: I66b275b8ed28fd77cfa5978bdec1eeef9e9425f1
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: http://review.coreboot.org/2837
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Coreboot's ramstage defines certain sections/symbols in its fixed
static linker script. It uses these sections/symbols for locating the
drivers as well as its own program information. Add these sections
and symbols to the rmodule linker script so that ramstage can be
linked as an rmodule. These sections and symbols are a noop for other
rmodule-linked programs, but they are vital to the ramstage.
Also add a comment in coreboot_ram.ld to mirror any changes made there
to the rmodule linker script.
Change-Id: Ib9885a00e987aef0ee1ae34f1d73066e15bca9b1
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2786
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
In certain situations boot speed can be increased by providing an
alternative implementation to cbfs_load_payload(). The
ALT_CBFS_LOAD_PAYLOAD option allows for the mainboard or chipset to
provide its own implementation.
Booted baskingridge board with alternative and regular
cbfs_load_payload().
Change-Id: I547ac9881a82bacbdb3bbdf38088dfcc22fd0c2c
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2782
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
By including the heap in the bss output section the size is accounted
for in a elf PT_LOAD segment. Without this change the heap wasn't being
put into a PT_LOAD segment. The result is a nop w.r.t. functionality,
but readelf and company will have proper MemSiz fields.
Change-Id: Ibfe9bb87603dcd4c5ff1c57c6af910bbba96b02b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2750
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
A rmodule is short for relocation module. Relocaiton modules are
standalone programs. These programs are linked at address 0 as a shared
object with a special linker script that maintains the relocation
entries for the object. These modules can then be embedded as a raw
binary (objcopy -O binary) to be loaded at any location desired.
Initially, the only arch support is for x86. All comments below apply to
x86 specific properties.
The intial user of this support would be for SMM handlers since those
handlers sometimes need to be located at a dynamic address (e.g. TSEG
region).
The relocation entries are currently Elf32_Rel. They are 8 bytes large,
and the entries are not necessarily in sorted order. An future
optimization would be to have a tool convert the unsorted relocations
into just sorted offsets. This would reduce the size of the blob
produced after being processed. Essentialy, 8 bytes per relocation meta
entry would reduce to 4 bytes.
Change-Id: I2236dcb66e9d2b494ce2d1ae40777c62429057ef
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2692
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This eliminates the use of do_div() in favor of using libgcc
functions.
This was tested by building and booting on Google Snow (ARMv7)
and Qemu (x86). printk()s which use division in vtxprintf() look good.
Change-Id: Icad001d84a3c05bfbf77098f3d644816280b4a4d
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: David Hendricks <dhendrix@chromium.org>
Reviewed-on: http://review.coreboot.org/2606
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
A board without HAVE_ACPI_RESUME did not build with
COLLECT_TIMESTAMPS enabled as `cbmem.c` was not built.
Change-Id: I9c8b575d445ac566a2ec533d73080bcccc3dfbca
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/2549
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
In the file `COPYING` in the coreboot repository and upstream [1]
just one space is used.
The following command was used to convert all files.
$ git grep -l 'MA 02' | xargs sed -i 's/MA 02/MA 02/'
[1] http://www.gnu.org/licenses/gpl-2.0.txt
Change-Id: Ic956dab2820a9e2ccb7841cab66966ba168f305f
Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-on: http://review.coreboot.org/2490
Tested-by: build bot (Jenkins)
Reviewed-by: Anton Kochkov <anton.kochkov@gmail.com>
It's been on for all boards per default since several years now
and the old code path probably doesn't even work anymore. Let's
just have one consistent way of doing things.
Change-Id: I58da7fe9b89a648d9a7165d37e0e35c88c06ac7e
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2547
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Entry point in payload segment header is a 64 bit integer (ntohll). The debug
message is currently reading that as a 32 bit integer (which will produce
00000000 for most platforms).
Change-Id: I931072bbb82c099ce7fae04f15c8a35afa02e510
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2535
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
The order of some printk arguments were reversed.
Change-Id: I5e8f70b79050b92ebe8cfa5aae94b6cd1a5fd547
Signed-off-by: David Hendricks <dhendrix@chromium.org>
Reviewed-on: http://review.coreboot.org/2364
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
For x86, the old CBFS search behavior was to bypass bootblock and we should keep
that. This will speed up searching if a file does not exist in CBFS.
For arm, the size in header is correct now so we can remove the hack by
CONFIG_ROM_SIZE.
Change-Id: I541961bc4dd083a583f8a80b69e293694fb055ef
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2292
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Some variables are using incorrect data type in debug messages.
Also corrects a typo (extra 'x').
Change-Id: Ia3014ea018f8c1e4733c54a7d9ee196d0437cfbb
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2294
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
For ARM platform, the bootblock may need more C source files to initialize
UART / SPI for loading romstage. To preventing making complex and implicit
dependency by using #include inside bootblock.c, we should add a new build class
"bootblock".
Also #ifdef __BOOT_BLOCK__ can be used to detect if the source is being compiled
for boot block.
For x86, the bootblock is limited to fewer assembly files so it's not using this
class. (Some files shared by x86 and arm in top level or lib are also changed
but nothing should be changed in x86 build process.)
Change-Id: Ia81bccc366d2082397d133d9245f7ecb33b8bc8b
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2252
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
LZMA decode library used to retrieve output size by:
outSize = *(UInt32 *)(src + LZMA_PROPERTIES_SIZE);
'src' is aligned but LZMA_PROPERTIES_SIZE may refer to an unaligned address like
src+5, and using that as integer pointer may fail on platforms like ARM. Also
this will fail on systems using big-endian (outSize was encoded in
little-endian).
To fix this, reconstruct outSize in little-endian way.
Change-Id: If678e735cb270c3e5e29f36f1fad318096bf7d59
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2246
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
.. to reflect the recent changes w.r.t avoiding
trouble with the coreboot pre-commit hooks.
and fix two whitespace errors.
Change-Id: I6c94e95dd439940cf3b44231c8aab5126e9d45c7
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2158
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-by: Martin Roth <martin.roth@se-eng.com>
Make the comments match what pre-commit-hook wants.
Change-Id: Ib99a6583f97221df3638bd3b7723f51d5f9c223c
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Reviewed-on: http://review.coreboot.org/2143
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
In order to provide some insight on what code is executed during
coreboot's run time and how well our test scenarios work, this
adds code coverage support to coreboot's ram stage. This should
be easily adaptable for payloads, and maybe even romstage.
See http://gcc.gnu.org/onlinedocs/gcc/Gcov.html for
more information.
To instrument coreboot, select CONFIG_COVERAGE ("Code coverage
support") in Kconfig, and recompile coreboot. coreboot will then
store its code coverage information into CBMEM, if possible.
Then, run "cbmem -CV" as root on the target system running the
instrumented coreboot binary. This will create a whole bunch of
.gcda files that contain coverage information. Tar them up, copy
them to your build system machine, and untar them. Then you can
use your favorite coverage utility (gcov, lcov, ...) to visualize
code coverage.
For a sneak peak of what will expect you, please take a look
at http://www.coreboot.org/~stepan/coreboot-coverage/
Change-Id: Ib287d8309878a1f5c4be770c38b1bc0bb3aa6ec7
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2052
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
Reviewed-by: Martin Roth <martin@se-eng.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
ARM does not need them, and they're causing trouble
Change-Id: I6c70a52c68fdcdbf211217d30c96e1c2877c7f90
Signed-off-by: David Hendricks <dhendrix@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2009
Tested-by: build bot (Jenkins)
Instead of adding regparm(0) to each assembler function called
by coreboot, add an asmlinkage macro (like the Linux kernel does)
that can be different per architecture (and that is empty on ARM
right now)
Change-Id: I7ad10c463f6c552f1201f77ae24ed354ac48e2d9
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1973
Reviewed-by: David Hendricks <dhendrix@chromium.org>
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
It only has two files, move them to src/lib
Change-Id: I17943db4c455aa3a934db1cf56e56e89c009679f
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1959
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
Set_boot_successful depends on CMOS parts that non-PC80
platforms do not have. For now, make the current path
depend on CONFIG_PC80_SYSTEM, and make the alternative
empty.
Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Change-Id: I68cf63367c8054d09a7a22303e7c04fb35ad0153
Reviewed-on: http://review.coreboot.org/1954
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
The use of ramstage.a required the build system to handle some
object files in a special way, which were put in the drivers
class.
These object files didn't provide any symbols that were used
directly (but only via linker magic), and so the linker never
considered them for inclusion.
With ramstage.a gone, we can drop this special class, too.
Change-Id: I6f1369e08d7d12266b506a5597c3a139c5c41a55
Signed-off-by: Patrick Georgi <patrick.georgi@secunet.com>
Reviewed-on: http://review.coreboot.org/1872
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
We moved GNVS to it's own section, but forgot to tell the cbmem code
about it. This is purely cosmetical, but add it anyways.
Change-Id: Icb3788c0325ea79cc1efff4a876412d07da7936e
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1782
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Several small improvements of the stack checking code:
- move the CPU0 stack check right before jumping to the payload
and out of hardwaremain (that file is too crowded anyways)
- fix prototype in lib.h
- print size of used stack
- use checkstack function both on CPU0 and CPU1-x
- print amount of stack used per core
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Test: Boot coreboot on Link, see the following output:
...
CPU1: stack: 00156000 - 00157000, lowest used address 00156c68,
stack used: 920 bytes
CPU2: stack: 00155000 - 00156000, lowest used address 00155c68,
stack used: 920 bytes
CPU3: stack: 00154000 - 00155000, lowest used address 00154c68,
stack used: 920 bytes
...
Jumping to boot code at 1110008
CPU0: stack: 00157000 - 00158000, lowest used address 00157af8,
stack used: 1288 bytes
Change-Id: I7b83eeee0186559a0a62daa12e3f7782990fd2df
Reviewed-on: http://review.coreboot.org/1787
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
In hardwaremain() we can't add timestamps before we actually
reinitialized the cbmem area. Hence we kept the timestamps in
an array and added them later. This is ugly and intrusive and
helped hiding a bug that prevented any timestamps to be logged
in hardwaremain() when coming out of an S3 resume.
The problem is solved by moving the logic to keep a few timestamps
around into the timestamp code. This also gets rid of a lot of ugly
ifdefs in hardwaremain.c
Change-Id: I945fc4c77e990f620c18cbd054ccd87e746706ef
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1785
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>